新版圆柱的体积(公开课用)

合集下载

【新】人教版六年级数学下册《圆柱的体积1》公开课课件.ppt

【新】人教版六年级数学下册《圆柱的体积1》公开课课件.ppt

If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.
。2020年12月15日星期二2020/12/152020/12/152020/12/15
• 15、会当凌绝顶,一览众山小。2020年12月2020/12/152020/12/152020/12/1512/15/2020
3、圆柱的体积大小与什么有关?
圆柱体的大小与底面积 有关!
高相等时底面积越大的 体积越大。
将一个圆柱截成不相等的两段,哪个圆柱 体积大?


当底面积相等时,高 越长的体积越大。


• 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2020/12/152020/12/15Tuesday, December 15, 2020
长方形的体积= 长×宽×高 正方形的体积= 棱长×棱长 ×棱长
V= S × h
大胆猜想圆柱体的体积等于??
因为变换成长方体后,底面积和 高的大小是不变的,所以圆柱的 体积也等于底面积×高
直柱体的体积 = 底面积×高
V =s h
一、填表。
底面积 s 高 h 圆柱体积 V
(平方米) (米) (立方米)
• 10、人的志向通常和他们的能力成正比例。2020/12/152020/12/152020/12/1512/15/2020 2:17:50 PM • 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2020/12/152020/12/152020/12/15Dec-2015-Dec-20 • 12、越是无能的人,越喜欢挑剔别人的错儿。2020/12/152020/12/152020/12/15Tuesday, December 15, 2020 • 13、志不立,天下无可成之事。2020/12/152020/12/152020/12/152020/12/1512/15/2020

圆柱的体积ppt课件

圆柱的体积ppt课件

鼓励参与
老师对参与挑战和互动的 同学表示肯定和鼓励,激 发更多学生积极参与课堂 互动。
06
知识拓展:相关公式推导 过程
圆柱表面积公式推导
圆柱侧面积
圆柱的侧面积等于底圆的周长乘 以高,即 $S_{侧} = 2\pi rh$。
圆柱底面积
圆柱的底面积等于圆的面积,即 $S_{底} = \pi r^{2}$。
优秀学生作品欣赏
作品1
该同学的作品内容丰富、条理清晰,公式推 导和实例计算均准确无误,同时注重课件美 观性,整体效果非常好。
作品2
该同学的作品在公式推导方面非常详细,每 一个步骤都有解释和说明,便于理解和记忆 。同时,该同学还加入了一些实际应用的例 子,使课件更加生动有趣。
05
互动环节:现场挑战题目
现场出题并邀请学生解答
01
02
03
邀请学生上台
选择1-2名学生上台参与挑战,确保学生 自愿参与。
现场出题
学生解答
给出一个与圆柱体积相关的实际问题,如 计算某个圆柱形容器的体积等。
要求上台的学生现场进行解答,可以使用 公式或口算,鼓励多种方法解答。
分享解题思路和方法
01
02
03
学生分享
邀请上台解答问题的学生 分享他们的解题思路和方 法,以及遇到的问题和困 难。
VS
注意事项
注意侧面积公式中的$\pi$和公式中的 $\pi$是同一个数值,避免在计算中出现 错误。
例题三:综合问题,涉及多个参数
解题思路
需先根据题目所给条件列出方程或方程组,解出未知量后再代入圆柱体积公式求解体积。
注意事项
多个参数之间可能有关联,需仔细审题并理清各参数之间的关系。

《圆柱的体积》优秀ppt课件

《圆柱的体积》优秀ppt课件

新知导入
一瓶装满的矿泉水,小明喝了一些,把瓶盖拧紧后倒置放平, 无水部分高10cm,内直径是6cm。小明喝了多少水?
3.14 × (6 ÷2 )2 ×10 =3.14×9 ×10 =282.6( cm3 ) = 282.6( mL ) 答:小明喝了282.6 mL 水。
课堂练习
哪根木料的体积大?
新知导入
把圆柱切开,拼成 一个近似的长方形。
把圆柱的底面分 成许多相等的扇形。
新知导入
把圆柱底面平均分的份数越多, 拼成的立体图形越接近长方体。
新知导入
底面积 高

长方体的体积=底面积 × 高
圆柱的体积 = 底面积 × 高
V=Sh
新知导入
同桌交流
(1)已知圆的半径和高,怎样求圆柱的体积? V=∏r2h
容积是指容器所能容纳物体的体积
杯子的底面积: 3.14 ×(8÷2)2 =3.14 ×16 =50.24(cm3)
杯子的容积: 50.24 ×10 =502.4( cm3 ) = 502.4(mL) 50.24 mL >498 mL 答:杯子能装下这袋牛奶。
新知导入
一根圆柱形木料底面直径是0.4m,长5m。 如果做一张课桌用去木料0.02m3 这根木 料最多能做多少张课桌?
(2)已知圆的直径和高,怎样求圆柱的体积? V=∏(d ÷2 )2h
(3)已知圆的周长和高,怎样求圆柱的体积? V=∏(C÷d÷2 )2h
新知导入
1.一根圆柱形形木料,底面 积是75 cm2 ,长90cm。它
的体积是多少?
2.一口圆柱形水井,地面以
下的井深10m,底面直径为 1m。挖出的土有多少m3?
杯子的底面积: 3.14 ×(8÷2)2 =3.14 ×16 =50.24(cm3)

《圆柱的体积》一等奖公开课课件

《圆柱的体积》一等奖公开课课件

3.14×(3÷2)2×0.5×2 =7.065(m2)
答:两个花坛共需要填土7.065方。
经过大海的一番磨砺, 卵石才变得更加美丽光滑。
圆柱的体积
5 什么叫物体的体积?你会计算下面哪些图形的体积?


2.5cm 4cm
5cm
V长=abh4cmV Nhomakorabea=a3V=Sh
能将圆柱转化成一种学过的图形, 计算出它的体积吗?
把圆柱的底面平均分的份数越多,切拼成的立体图 形越接近长方体。
把圆柱的底面平均分的份数越多,切拼成的立体图 形越接近长方体。
=
长方体的底面积等于圆柱的 底面积 , 高等于圆柱的 高 。
长方体体积==底底面面积积××高高
圆柱体积 V=Sh
V=Sh
做一做
202X CIICK HERE TO ADD A TITLE
如果知道圆柱底面的半径r和高h,圆柱的体积公 式还可以写成:
V=πr2×h .
21 22.4
60 90

人教版六年级下册数学《圆柱的体积》课件

人教版六年级下册数学《圆柱的体积》课件

粮囤的容积
粮囤所装玉米
3.14×1.5²×2
14.13×750÷1000
=3.14×2.25×2
=10597.5÷1000
1.5m
=14.13 (m³ )
=10.5975(吨)
2m
答:这个粮囤能装10.5975吨。
花坛的底面积 3.14×(3÷2)2=3.14×1.5 2=7.065 (m2 )
两个花坛的体积 7.065×0.5×2=3.5325×2=7.065(m³)
练一练
已知底面直径和高求圆柱体积。
V=π(
d 2
)2h
= 3.14×(1÷2)2×10
= 7.85(立方米)
答:挖出的土有7.85立方米。
思考:
8cm
1.已知什么?
2.要求什么?
10cm
3.要注意什么?
下图的杯子能不能装下这袋牛奶?(数据是从杯子里面测
量得到的。)
8cm
10cm
杯子的容积。
杯子的底面积: 3.14 ×(8÷2)2
六 下数 学
目 1 温故知新 录 2 新知探究
3 课堂练习
4 课堂小结
013
学而时习之,不亦说乎
物体所占空间的大小是物体的体积。
高 宽
长方体的体积=长×宽×高

正方体的体积=棱长×棱长×棱长
棱长
r πr
S=πr2
学,然后知不足。
203
圆柱体积怎么计算?
小组讨论: 1.你准备把圆柱转化成什么立体图形? 2.你是怎样转化成这个立体图形的?
=3.14 ×16 =50.24(cm3)
杯子的容积: 50.24 ×10
=502.4( cm3 ) = 502.4(mL) 502.4 mL >498 mL 答:杯子能装下这袋牛奶。

最新圆柱的体积(公开课)PPT课件

最新圆柱的体积(公开课)PPT课件
❖ 荤素搭配 ❖ 荤素搭配是饮食的重要原则,也是长寿健康
秘诀之一。饮食应以谷物、蔬菜、瓜果等素 食为主,辅以适当的肉、蛋、鱼类,不可过 食油腻厚味。
四、常用饮食养生的方法
❖ 1、三条小原则 ❖ (1)因时施食 ❖ (2)因地施食 ❖ (3)因人施食 ❖ 2、六条小常识
四、常用饮食养生的方法
❖ 因时施食 ❖ 根据四季变化:春夏养阳,秋冬养阴 ❖ 春季:阳气生发,食宜清润平淡,如百合,甘蔗、
圆柱圆的体柱积 = 底面积 ×高 V=Sh
体积 = 底面积×高
V =s h
例4
一根圆柱形钢材,底面积 是50平方厘米,高是2.1米。 它的体积是多少?
一、填表。
15 3
45
40 4
160
如果已知圆柱底面的半径(r) 和高( h ),你会计算圆柱的 体积吗?
如果已知圆柱底面的直径(d) 和高( h )呢?
六条小常识
❖ 定时定时定温度:三分胃病七分养,尤 其是有胃病的病人,更要注意这几点。
❖ 没有食欲不进食,没有食欲意味着脾胃 功能虚弱,强行进食只会损伤脾胃功能。
一、中医饮食疗法特点
❖ 定义:是在中医理论指导下,运用食 物配方来预防和治疗疾病的一种方法
中医饮食疗法特点
❖ 中医理论特点:整体观和辩证施治 ❖ 中医饮食疗法特点:整体观念和辩证施食 ❖ 药食同源:中药也是由食物发展而来,
食物对防治疾病同样重要 ❖ 中药属性:四性五味 ❖ 食物属性:四性五味 ❖ 提倡先食疗后药药疗
三、中医饮食调护的基本原则
❖ 谨和五味 ❖ 饮食应多样化,合理搭配,不可偏食。《素问.藏气
法时论》中说:“五谷为养,五果为助,五畜为益, 五菜为充,气味合而服之,补精益气。”这就是说 人体的营养应来源于粮、肉、菜、果等各类食品, 所需的营养成分应多样化。只有做到饮食的多样化 和合理搭配才能摄取到人体必须的各种营养,维持 气血阴阳的平衡。

《圆柱的体积》教学课件

《圆柱的体积》教学课件

底面积×高
底面积×高
圆柱的体积 = 底面积× 高
V=Sh =╥ r 2 h
-------------------
例:一根圆柱形石料,底面半径2
分米,高是30分米。这个圆柱形 石料的体积是多少立方分米?
石料的底面积: 3.14 ×22 =12.56(平方分米 ) 石料的体积: 12.56 × 30=376.8(立方分米)
答:这个各圆柱的体积。
(1)底面积4.5平方米,高3米。 (2)底面圆的半径是3厘米,高4厘米 (3)底面圆的直径是6分米,高是8分米。
一个圆柱的体积是25.12立 方分米,底面积是6.28平方分 米,求圆柱的高是多少分米?
25.12 ÷6.28 =4(分米) 答:圆柱的高是4分米。
圆柱的体积
想一想:
在学习计算圆的面积时, 我们是怎样把圆变成已学过的 图形来计算面积的
高 宽

棱长
长方体的体积=长×宽×高 正方体的体积=棱长×棱长×棱长
v长=a b h
v正 =a 3
V=s底 h
讨论:
能不能把圆柱转化成我 们已经学过的形体来求出它 的体积?
圆柱 的体积 = 近似长方体 的体积

六年级【下】册数学-3.圆柱的体积人教版(26张ppt)公开课课件

六年级【下】册数学-3.圆柱的体积人教版(26张ppt)公开课课件
生活中的圆柱
计算下面立体图形的体积
底面积: 20平方厘米 高: 5厘米
底面积: 10平方厘米 高: 8厘米
体积=底面积×高
V=s h
如何计算圆柱的体积?

圆柱的体积
人教版数学六年级下册第三单元第三课
回顾圆的面积推导过程
转化
S=πr2
r πr
把圆柱的底面分成16等份
把圆柱的底面分成32等份
先要计算出杯子的容积.
3.14×(8÷2)2×10 =3.14×16×10 =3.14×160 =502.4(cm3) =502.4(ml)
502.4 ml>498ml 答:能装下这袋奶。
(名师示范课)六年级【下】册数学- 3.1.3 圆柱的体积 人教版(26张ppt)公开课课件 (名师示范课)六年级【下】册数学- 3.1.3 圆柱的体积 人教版(26张ppt)公开课课件
第3关
努 力 吧 !
(名师示范课)六年级【下】册数学- 3.1.3 圆柱的体积 人教版(26张ppt)公开课课件
第一关
(名师示范课)六年级【下】册数学- 3.1.3 圆柱的体积 人教版(26张ppt)公开课课件
圆柱体积=底面积×高
1.5米=150厘米 50×150=7500(立方厘米)
答:它的体积是7500立方厘米。
(名师示范课)六年级【下】册数学- Байду номын сангаас.1.3 圆柱的体积 人教版(26张ppt)公开课课件
第2关
(名师示范课)六年级【下】册数学- 3.1.3 圆柱的体积 人教版(26张ppt)公开课课件
(1)、压路机的前轮
半径是1米,前轮宽2米。
3.14×1 2 ×2
(2)、铅笔
直径是0.8厘米,长是20厘米。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学习好资料欢迎下载
《圆柱的体积》教案
学习目标:
1、通过具体情境观察、实物感知等活动,感受物体体积的大小,发展空间观念。

2、通过圆柱与长方体的“类比”,经过“猜想与验证”探索圆柱体积计算方法的过程,体会“类比”
的数学思想方法。

3、掌握圆柱体积的计算方法,能正确计算圆柱的体积,能运用圆柱体积计算方法解决简单的实际问题。

4、通过探索和解决问题,渗透、体验知识间相互“转化”的思想方法。

教学重点:掌握圆柱体积公式的推导过程。

教学难点:掌握圆柱体积公式的推导过程。

教学准备:课件圆柱等分模型量杯
教学过程:
一、问题导入
1、问题一:一个杯子能装多少毫升水呢?有什么办法知道?
学生:倒入量杯量一量
学生:倒入正方体或者长方体中。

2、问题二:这么粗的柱子,需要多少木材呢?还能量吗?
(制造冲突,体会探究如何计算圆柱体积的必要性。


二、探究活动
1、比较大小、探究圆柱的体积与哪些要素有关。

出示等底不等高圆柱,等高不等底圆柱
(设计意图:本环节教学让学生根据已有的知识解决简单的问题,通过探究活动,引导学生找出决定圆柱体积的两个因素,为学习新知识作铺垫,同时也发展了学生的抽象概括能力。


2、大胆猜想,感知体积公式,确定探究目标。

(1)、再次设疑:如果要准确的计算圆柱的体积,你有什么好办法?学生想如何计算圆柱的体积。

(2)、引导学生回忆圆的面积公式和长方体的体积公式的推导过程。

(3)、让学生思考:怎样计算圆柱的体积呢,依据学过的知识,你可以做出怎样的猜想?
3、确定方法,探究实验,验证体积公式。

(1)、方法一:通过叠硬币计算圆柱的体积。

(2)、方法二:圆柱平均分成若干小扇形体后应该也能够转化成一个近似长方体
(3)、教师用课件演示将圆柱体转化成长方体的过程,向学生明确圆柱的体积确实可以像计算长方体体积那样,用底面积乘以高。

(课件出示)
(4)、小结:
要想求出一个圆柱的体积,需要知道什么条件?
三、巩固发展
3、水杯的底面直径是6cm,高是16cm,这个水杯能装多少毫升水?
四、本课小结。

相关文档
最新文档