集合几种常用表示方法12

合集下载

集合

集合

例2.设集合A={x|-1<x<2},B={x|1<x<3}, 求AUB. 解:A B { x | 1 x 2} { x | 1 x 3} x | 1 x 3
可以在数轴上表示例2中的并集,如下图:
类比引入
思考:
求集合的并集是集合间的一种运算,那么, 集合间还有其他运算吗?
例 用描述法表示下列集合: (1)方程x2-2=0的所有实数根组成的 集合; (2)由大于10小于20的所有整数组成的 集合; (1)A = {x∈R|x2-2=0} (2)B = {x∈Z|10<x<20} 要指出的是,如果从上下文的关系来看, x∈R,x∈Z是明确的,那么x∈R,x∈Z 可以省略,只写出其元素x。例如,集合 D = {x∈R|x<10}也可以表示为D = {x|x<10}
课堂小结
1.集合的定义 2.集合与元素的关系 3.集合元素的性质 4.集合的表示方法 5.集合的分类 6.空集: 7.点集元素的特征
1.1.2
集合间的基本关系
考察以下各组集合:
(1)A={1,2,3},B={1,2,3,4,5};
(2)A={x︱x是等边三角形}, B={x︱x是等腰三角形}.
区别:子集中,元素的个数少于或者等于原 集合中元素的个数,而真子集中元素的个 数只能少于原集合中元素的个数。
{1}, {2}, {1,2}, 如:A={1,2},那么其子集有 , 其真子集只有 , ,少了自身这个集合。 {1}, {2}
三、集合相等
A={x|x2-1=0};B={-1,1}.
集合A中任何一个元素都是集合B中的元素,同时,集 合B中任何一个元素都是集合A中的元素.这样集合A与 集合B的元素是一样的.

集合的常用表示方法

集合的常用表示方法

集合的常用表示方法
“哎呀,这道数学题好难呀!”我和同桌小明正对着一道数学作业发愁。

旁边的学习委员小红听到了,凑过来看了看题目,笑着说:“这题是关于集合的吧,集合的常用表示方法可不难哦。


集合是啥呢?就像我们把一堆喜欢的糖果放在一个盒子里,这个盒子里的糖果就是一个集合。

那怎么表示这个集合呢?有列举法和描述法。

列举法就像我们把盒子里的糖果一个个拿出来给别人看,比如盒子里有草莓糖、苹果糖、橘子糖,那这个集合就可以写成{草莓糖,苹果糖,橘子糖}。

用列举法的时候要注意把集合里的元素都列全了,可不能漏了哪个糖果哦。

你想想,要是你漏了一个最喜欢的糖果,那多可惜呀!列举法的好处就是很直观,别人一看就知道集合里有啥。

比如说我们班参加运动会的同学有小明、小红、小刚,用列举法就可以写成{小明,小红,小刚},一下子就清楚了谁参加了运动会。

描述法呢,就像我们给盒子里的糖果贴上一个标签。

比如盒子里都是水果味的糖,那这个集合就可以写成{糖果|糖果是水果味的}。

用描述法要注意描述得准确清楚,不能让人产生误解。

你说要是描述得不清楚,别人都不知道盒子里到底是啥糖呢。

描述法的好处就是可以用比较简洁的方式表示一个集合,特别是当集合里的元素很多的时候。

比如小于10 的自然
数集合,用描述法就可以写成{自然数n|n<10},多方便呀!
就像我们整理书包的时候,可以用不同的方法把书本、文具分类放好,集合的表示方法也能帮我们更好地理解和处理数学问题呢。

集合的常用表示方法真的很有用,大家一定要好好掌握哦!。

集合知识点及题型归纳总结(含答案)

集合知识点及题型归纳总结(含答案)

集合知识点及题型归纳总结知识点精讲一、集合的有关概念 1.集合的含义与表示某些指定对象的部分或全体构成一个集合.构成集合的元素除了常见的数、点等数学对象外,还可以是其他对象.2.集合元素的特征(1)确定性:集合中的元素必须是确定的,任何一个对象都能明确判断出它是否为该集合中的元素. (2)互异性:集合中任何两个元素都是互不相同的,即相同元素在同一个集合中不能重复出现. (3)无序性:集合与其组成元素的顺序无关.如{}{},,,,a b c a c b =. 3.集合的常用表示法集合的常用表示法有列举法、描述法、图示法(韦恩图、数轴)和区间法. 4.常用数集的表示R 一实数集 Q 一有理数集 Z 一整数集 N 一自然数集*N 或N +一正整数集 C 一复数集二、集合间的关系1.元素与集合之间的关系元素与集合之间的关系包括属于(记作a A ∈)和不属于(记作a A ∉)两种. 空集:不含有任何元素的集合,记作∅. 2.集合与集合之间的关系 (1)包含关系.子集:如果对任意a A A B ∈⇒∈,则集合A 是集合B 的子集,记为A B ⊆或B A ⊇,显然A A ⊆.规定:A ∅⊆.(2)相等关系.对于两个集合A 与B ,如果A B ⊆,同时B A ⊆,那么集合A 与B 相等,记作A B =. (3)真子集关系.对于两个集合A 与B ,若A B ⊆,且存在b B ∈,但b A ∉,则集合A 是集合B 的真子集,记作AB 或B A .空集是任何集合的子集,是任何非空集合的真子集.三、集合的基本运算集合的基本运算包括集合的交集、并集和补集运算,如表11-所示.IA{|IA x x =1.交集由所有属于集合A 且属于集合B 的元素组成的集合,叫做A 与B 的交集,记作A B ⋂,即{}|A B x x A x B ⋂=∈∈且.2.并集由所有属于集合A 或属于集合B 的元素组成的集合,叫做A 与B 的并集,记作A B ⋃,即{}|A B x x A x B ⋃=∈∈或.3.补集已知全集I ,集合A I ⊆,由I 中所有不属于A 的元素组成的集合,叫做集合A 相对于全集I 的补集,记作IA ,即{}|I A x x I x A =∈∉且.四、集合运算中常用的结论 1.集合中的逻辑关系 (1)交集的运算性质.A B B A ⋂=⋂,A B A ⋂⊆,A B B ⋂⊆ A I A ⋂=,A A A ⋂=,A ⋂∅=∅. (2)并集的运算性质.A B B A ⋃=⋃,A A B ⊆⋃,B A B ⊆⋃ A I I ⋃=,A A A ⋃=,A A ⋃∅=. (3)补集的运算性质.()II A A =,I I ∅=,I I =∅ ()I A A ⋂=∅,()I A A I ⋃.补充性质:II I A B A A B B A B B A A B ⋂=⇔⋃=⇔⊆⇔⊆⇔⋂=∅.(4)结合律与分配律.结合律:()()A B C A B C ⋃⋃=⋃⋃ ()()A B C A B C ⋂⋂=⋂⋂. 分配律:()()()A B C A B A C ⋂⋃=⋂⋃⋂ ()()()A B C A B A C ⋃⋂=⋃⋂⋃. (5)反演律(德摩根定律).()()()II I A B A B ⋂=⋃()()()II I A B A B ⋃=⋂.即“交的补=补的并”,“并的补=补的交”. 2.由*(N )n n ∈个元素组成的集合A 的子集个数A 的子集有2n 个,非空子集有21n -个,真子集有21n -个,非空真子集有22n -个.3.容斥原理()()()()Card A B Card A Card B Card A B ⋃=+-⋂.题型归纳及思路提示I AA题型1 集合的基本概念思路提示:利用集合元素的特征:确定性、无序性、互异性. 例1.1 设,a b R ∈,集合{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则b a -=( ) A .1 B .1- C .2 D .2-解析:由题意知{}01,,a b a ∈+,又0a ≠,故0a b +=,得1ba=-,则集合{}{}1,0,0,1,a b =-,可得1,1,2a b b a =-=-=,故选C 。

集合的含义及其表示

集合的含义及其表示

集合的含义及其表示一、集合的相关概念元素集合一般用大括号”{}”表示集合,也常用大写的拉丁字母A、B、C…表示集合.用小写的拉丁字母a,b,c…表示元素二、集合三大特性:思考:判断以下元素的全体是否组成集合,并说明理由;(1) 大于3小于11的偶数;(2) 我国的小河流。

三、重要数集:四、元素对于集合的关系五、集合的分类有限集:无限集:空集:六、集合的表示方法1、列举法:例1 用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1~20以内的所有质数组成的集合。

思考题 (1)你能用自然语言描述集合{2,4,6,8}吗? (2)你能用列举法表示不等式x-7<3吗?2、描述法:3、Venn图:例2 试分别用列举法和描述法表示下列集合:(1)方程x2-2=0的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合。

课堂小结集合间的基本关系观察以下几组集合,并指出它们元素间的关系:① A={1,2,3}, B={1,2,3,4,5};② A={x| x>1}, B={x | x2>1};③ A={四边形}, B={多边形};④ A={x | x是两边相等的三角形},B={x| x是等腰三角形} .一、子集的定义:一般地,对于两个集合A与B,如果集合A中的任何一个元素都是集合B的元素,我们就说这两个集合有包含关系,称集合A为集合B 的子集。

记作:读作:Venn图表示:判断集合A是否为集合B的子集,若是则在()打√,若不是则在()打×:①A={1,3,5}, B={1,2,3,4,5,6} ( )②A={1,3,5}, B={1,3,6,9} ( )③A={0}, B={x x2+2=0} ( )④A={a,b,c,d}, B={d,b,c,a} ( )二、集合相等的定义:一般地,对于两个集合A与B, 如果集合A中的都是集合B的元素,同时集合B中的都是集合A的元素,则称集合A等于集合B,记作三、真子集对于两个集合A与B,如果A B,但存素 ,则称集合A 是集合B的真子集.记作A B四、几个结论①空集是任何集合的子集Φ A②空集是任何非空集合的真子集Φ A (A ≠ Φ)③任何一个集合是它本身的子集,即 A A④对于集合A ,B ,C ,如果 A B,且B C ,则A C例3 设A={x,x 2,xy}, B={1,x,y},且A=B ,求实数x,y 的值.例4 已知集合 与集合 满足Q P , 求a 的取值组成的集合A 作业布置1.教材P.12 A 组 5 B 组2.2. 若A={x |-3≤x≤4}, B={x | 2m -1≤x≤m+1},当B A 时,求实数m 的取值范围.3.已知}06|{2=-+=x x x P },01|{=+=ax x Q {}{}AC B C A B A 求,8,4,2,0,5,3,2,1,,==⊆⊆1.1.3 集合的基本运算(1)观察集合A,B,C元素间的关系:(1) A={4,5,6,8}B={3,5,7,8} C={3,4,5,6,7,8}(2) A={x|x是有理数},B={x|x是无理数}, C={x|x是实数}一、并集一般地,由属于集合A或属于集合B的所有元素组成的集合叫做A与B的并集,记作读作即A∪B=例1. A={4,5,6,8},B={3,5,7,8},求A∪B.例2.设A={x|-1<x<2},B={x|1<x<3},求A∪B性质1A∪A = A∪φ = A∪B B∪A二、交集观察集合A,B,C元素间的关系:A={4,5,6,8}, B={3,5,7,8},C={5,8}一般地,由既属于集合A又属于集合B的元素组成的集合叫做A与B的交集。

高一数学总复习--《集合》

高一数学总复习--《集合》

高一数学总复习--《集合》数学的内参高中数学总复习--《集合》一、内容提要1、集合的概念:由一些事物组成的整体。

可用大写字母A、B、C表示。

1)元素:集合中的每一个事物。

可记作a、b、c。

2)集合与元素的关系。

aA或bA。

3)常用集合N、N、Z、Q、R、R、R、、U4)表示方法:列举法、描述法。

2、集合与集合的关系1)子集:如果集合B的每一个元素都是A的元素,那么B叫做A的一个子集,记作BA(或AB),(A的子集包括、A本身)。

2)真子集:B是A的子集且A中至少有一个元素不属于B,则称B是A的一个真子集记作BA。

3)相等:A、B的元素完全一样,称A=B。

若AB 且BAAB。

3、集合的运算1)交集:AB{某|某A且某B}2)并集:AB{某|某A或某B}3)补集;CUA{某|某U且某A}4、充要条件:pq称p是q的充分条件,q是p的必要条件.pq称p、q 的互为充要条件。

二、例题讲解:某例1、写出集合{a,b,c}的所有子集和真子集。

例2、已知A{某|1某5},B{某|3某8},求CUA、CUB、AB、AB。

例3、用符号填空{a}{b}NCRQ{a,b}{}三、练习:(一)、选择题1、已知集合A={1,3,7},B={3,7,8}则AB=()A)、{1,3,7,8}B)、{3,7}C)、{1,3,3,7,7,8}D)、21数学的内参2、设A={1,2,3,4,5},B={1,3,4},C={2,4,5},则CABCAC=A)、{1,2,3,5}B)、{U}C)、AD)、3、已知M={某|1某3},N={某|1某2},则MN=()A)、{某|1某3}B)、{某|1某2}C)、{某|1某2}D)、(二)、填空题1、用符号表示:3{1,2,3,4}{4}{1,2,3,4}1{1}2、写出“大于-3且小于等于3的正整数集”的列举法描述法3、{1,3,7}{2,3,}={1,2,3,8,}4、{1,4,5}{1,3,}={5,}5、A={某|3某0},B={某|某10},则AB=,AB=,CRA=7、写出{2,6,9}的所有子集和真子集8.集合A{n|nm1Z},B{m|Z},则AB__________2259.集合A{某|4某2},B{某|1某3},C{某|某0,或某2那么ABC_______________,ABC_____________;10.已知某={某|某2+p某+q=0,p2-4q>0},A={1,3,5,7,9},B={1,4,7,10},且某A,某B某,试求p、q;11.集合A={某|某2+p某-2=0},B={某|某2-某+q=0},若AB={-2,0,1},求p、q;12.A={2,3,a2+4a+2},B={0,7,a2+4a-2,2-a},且AB={3,7},求B数学的内参集合练习题一.单项选择(1)设集合M=某|某2,又a=.那幺()(A)aM(B)aM(C)aM(D)aM(2)设全集Ua,b,c,d,Ma,c,d,Nb,d,Pb,则()(A)PMN(B)PMN(C)PM(CuN)(D)P(CUM)N所组成的集合所含元素的个数为()(3)对于任意某,y∈R,且某y≠0,则某y某y某y某y(A)1个(B)2个(C)3个(D)4个(4)全集U=R,A={某||某|1},B={某|某-2某-3>0},则(CUA)U(CUB)=()2(A){某|某<1或某3}(B){某|-1某3}(C){某|-1<某<1}(D){某|-1<某1}(5)集合a,b,c的子集总共有()(A)7个(B)8个(C)6个(D)5个(6)设a为给定的实数,则集合某|某3某a20,某R的子集的个数是()(A)1(B)2(C)4(D)不确定(7)集合P,Q满足PQa,b.试求集合P,Q.问此题的解答共有()(A)9种;(B)4种;(C)7种;(D)16种(8)若A={1,3,某},B={某2,1},且A∪B={1,3,某}.则这样的某的不同值有()(A)1个(B)2个(C)3个(D)4个22,则p应满足的条件是()(9)已知M={某|某≤1},N={某|某>p},要使M∩N≠(A)p>1(B)p≥1(C)p<1(D)p≤1(10)已知集合A是全集S的任一子集,下列关系中正确的是()(A)φCSA(B)CSA(C)(A∩CSA)=φ(D)(A∪CSA)(11)若有非空集合A、B且B,全集U=R,下列集合中为空集的是()(A)CUA∩B(B)A∩CUB(C)CU(AB)(D)CU(AB)y3M某,y|1某2,(12)设全集U某,y|某,yR,集合T某,y|y3某2,那么(CUM)T等于()数学的内参(A)Φ(B)2,3(C)2,3(D)某,y|y3某2二.填空题(13)已知集合A={y|y=2某+1,某>0},B={y|y=-某2+9,某∈R},则A∩B=________.(14)设集合A={某|某=6k,k∈Z},B={某|某=3k,k∈Z},两个集合的关系可表示为AB.(15)设集合P某|某2,某R,集合Q某|某某20,某N,则集合PQ等于2(16)设U=R,集合A={某|某+p某+12=0,某∈N},集合B={某|某-5某+q=0,某∈N},且22CUAB={2},CUBA={4},则p+q的值等于.(17)设A={(某,y)|y=1-3某},B={(某,y)|y=(1-2k2)某+5},若A∩B=φ,则k的取值是____________.(18)用集合表示图中阴影部分____________.三.解答题(19)写出所有适合{a,b}A的集合A.(20)某班有学生55人,其中有音乐爱好者34人,有体育爱好者43人,还有4人既不爱好音乐又不爱好体育,该班既爱好音乐又爱好体育的有多少人?(21)若a<0<b<|a|,A={某|a≤某≤b},B={某|-b≤某≤-a},试求A∪B,A∩B.(22)P={a,a+2,-3},Q={a-2,2a+1,a+1},P∩Q={-3},求a.22(23)已知A={某|某-a某+a-19=0},B={某|某-5某+8=2},C={某|某+2某-8=0},若2222∩B,且A∩C,求a的值.=(24)设集合A={某|某+(p+2)某+1=0},且A{某|某>0}=ф,求实数p的取值范围.2数学的内参函数的解析式的求法求函数的解析式是函数的常见问题,也是高考的常规题型之一,方法众多,下面对一些常用的方法一一辨析.一.换元法题1.已知f(3某+1)=4某+3,求f(某)的解析式.1某练习1.若f(),求f(某).某1某二.配变量法11题2.已知f(某)某22,求f(某)的解析式.某某练习2.若f(某1)某2某,求f(某).三.待定系数法题3.设f(某)是一元二次函数,g(某)2某f(某),且g(某1)g(某)2某1某2,求f(某)与g(某).练习3.设二次函数f(某)满足f(某2)f(某2),且图象在y轴上截距为1,在某轴上截得的线段长为22,求f(某)的表达式.数学的内参四.解方程组法题4.设函数f(某)是定义(-∞,0)∪(0,+∞)在上的函数,且满足关系式3f(某)2f()4某,某求f(某)的解析式.练习4.若f(某)f(五.特殊值代入法题5.若f(某y)f(某)f(y),且f(1)2,求值练习5.设f(某)是定义在N上的函数,且f(1)2,f(某1)六.利用给定的特性求解析式.题6.设f(某)是偶函数,当某>0时,f(某)e某2e某,求当某<0时,f(某)的表达式.练习6.对某∈R,f(某)满足f(某)f(某1),且当某∈[-1,0]时,f(某)某22某求当某∈[9,10]时f(某)的表达式.某1)1某,求f(某).某f(2)f(3)f(4)f(2005).f(1)f(2)f(3)f(2004)f(某)1,求f(某)的解析式.2数学的内参七.归纳递推法某1题7.设f(某),记fn(某)ff[f(某)],求f2004(某).某1八.相关点法题8.已知函数f(某)2某1,当点P(某,y)在y=f(某)的图象上运动时,点Q(图象上,求函数g(某).九.构造函数法题9.若f(某)表示某的n次多项式,且当k=0,1,2,,n时,f(k)k,求f(某).k1y某,)在y=g(某)的23课堂小结:求函数的解析式的方法较多,应根椐题意灵活选择,但不论是哪种方法都应注意自变量的取值范围,对于实际问题材,同样需注意这一点,应保证各种有关量均有意义。

集合的两个表示法

集合的两个表示法

集合的两个表示法
集合是数学中最重要的概念之一,它也是编程中运算的基础。

对于一个集合来说,有两种基本的表示方法:集合语法和链表语法。

一、集合语法
集合语法是最常用的集合表达方式,它的基本形式是“{元素1,元素2,…,元素n}”,其中“{}”表示集合,“元素1,元素2,…,元素n”是集合中的元素,通常元素是数字或者字符串,元素之间用“,”分隔。

例如:
A={1,2,3,4,5}
B={a,b,c,d,e}
C={1,a,2,b,3,c,4,d,5,e}
通常,集合语法比较简洁,它能够表示出一组元素,但它无法精确指明元素之间的相互关系,也就是说它无法表达元素之间的关系和顺序。

二、链表语法
链表语法的基本形式是“(元素1,关联1),(元素2,关联2),…,(元素n,关联n)”,其中“( )”表示链表节点,“元素1,元素2,…,元素n”是节点中的数据,“关联1,关联2,…,关联n”是指向下一个节点的指针。

例如:
A=(1,2),(2,3),(3,4),(4,5)
B=(a,b),(b,c),(c,d),(d,e)
C=(1,a),(2,b),(3,c),(4,d),(5,e)
链表语法除了能够表示一组元素之外,它还能够表示出元素之间的顺序,以及元素之间的关联关系,因此它能够更精确的表示出集合的结构。

总结
从上面可以看出,集合有两种基本表示法:集合语法和链表语法,集合语法简洁明了,但无法表示出元素之间的关系和顺序;链表语法可以表示出元素之间的顺序和关联关系,但比较复杂。

在实际应用中,应该根据不同的需求选择不同的表示法,以便更好的实现目的。

(新教案)集合的表示方法

(新教案)集合的表示方法

教师活动学生活动设计意图元素的集合集合当然也可以用图示法表示。

例1:用适当的方法表示下列集合⑴由24与30的所有公约数组成的集合答:{1,2,3,4}⑵大于10的所有自然数组成的集合答:{x│x>10,x∈N}⑶所有正偶数组成的集合答:{x│x=2n,n∈N*}直角坐标系中,第二象限内的点构成的集合答:{(x,y)│x<0.y>0}抛物线y=x2上的所有点组成的集合{(x,y)│y=x2}(二)各种表示法的适用范围它们各有优点.用什么方法来表示集合,要具体问题具体分析.(l)有的集合可以分别用三种方法表示.例如“小于的自然数组成的集合”就可以表为:①列举法:;②描述法:;③图示法:如图1。

(2)有的集合不宜用列举法表示.例如“由小于的正实数组成的集合”就不宜用列举法表示,因为不能将这个集合中的元素—一列举出来,但这个集合可以这样表示:①描述法:;②图示法:如图2.(3)用描述法表示集合,要特别注意这个集合中的元素是什么,它应该符合什么条件,从而准确理解集合的意义.例如:①集合中的元素是,它表示函数中自变量的取值范围,即;②集合中的元素是,它表示函数值。

的取值范围,即;③集合中的元素是点,它表示方程的解组成的集合,或者理解为表示曲线上的点组成的集合;学生回答问题加深对概念的巩固和应用④集合 中的元素只有一个,就是方程 ,它是用列举法表示的单元素集合.实际上,这是四个完全不同的集合.列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法.要注意,一般无限集,不宜采用列举法,因为不能将无限集中的元素—一列举出来,而没有列举出来的元素往往难以确定.例2:把下列集合用另一种方法表示出来 1.{x │x 2-x-6=0}2.{y │y= x 2-x-6,x ∈R} 3.{(x,y)│y= x 2-x-6,x ∈R }4.{(x,y)│x+y=5,x ∈N*,y ∈N* } 分析:(1)-2,3(2)代表元素是y ,这个集合是当x 取任意实数时,二次函数y= x 2-x-6的所有函数值的集合。

集合及其表示方法

集合及其表示方法
(2)无限集:含有无限个元素的集合;
另外,根据集合元素的类型可以把集合分成数集、点集等。
4.空集:空集不含元素。记作
5.集合的表示方法
(1)列举法:将集合中的元素一一列出(不考虑元素的顺序),注意元素之间用逗号隔开,并且写在大括号内。
例如:不等式 的正整数解的集合,可以表示成{1,2,3,4,5}。
注: 、 与 区别:它们都表示集合。但 只有一个元素0; 不含任何元素; 是以空集作为元素的集合。
例3.用适当的方法表示下列集合:
(1) 关于 的不等式 的整数的解集;
(2) 所有奇数构成的集合;
(3) 方程 的解的集合;
(4) 直角坐标平面上所有第三象限的点;
(5) 函数y=|x|-3 的所有函数值组成的集合。
14、集合{ }用列举法表示为_________________
(3)数轴上非常靠近原点的点;
(4)使 的值很小的 的值。
注意:元素的属性是明确的(模棱两可是不可以的)
集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符合条件.
例2.用 或 填空:
(1) 0{0}; (2) 0 ; (3) 0 ;
(4) -1 ; (5) ; (6) 0 。
其中正确的命题的个数是()
A.1个B.2个C.3个D.4个
二、填空题
10、已知集合A={2,4, },若 ,则x=________________
11、在平面直角坐标系内第二象限的点组成的集合为_______________
12、方程 的解集可表示为_____________________
13、方程 的解集中含有_________个元素。
数的集合简称数集。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

且10 x 20, 因此, 用描述法表示为 B {x Z | 10 x 20}. 大于10小于20的整数有 11,12,13,14,15,16,17,18, 19, 因此, 用列举法表示为 B {11,12,13,14,15,16,17,18,19}.
课堂练习P
T1
、T2
集合几种常用的 表示方法
2013年9月3日
教学目标
1、列举法 2、描述法
教学任务
用自然语言、集合语言能够描述 不同的具体问题
用列举法表示下列集合?
1、1到20以内的所有质数; 2、地球上的四大洋, 3、方程
x 2 0
2
的所有实数根;
(2) 描述法-用集合所含元素的共同特征表示集 合的方法. 具体方法:在花括号内先写上表示这个集合 元素的一般符号及取值(或变化)范围,再画一 条竖线,在竖线后写出这个集合中元素所具有 的共同特征. 形式如: { | }
2
4、大于 1且小于7所有整数组有整数组
• 作业,习题1、2、3
例2 试用列举法和描述法表示下列集合: (1)方程x2 x 0的所有实所有实数根组 合;
(2) 由大于10小于20的所有整数组成的集合.
解 : (1)设方程x 2 x 0的实数根为x, 并且满足条 件x x 0,因此, 用描述法表示为
2
A {x R | x 2 x 0}. 方程 x 2 x 0有两个实数根 0,1,因此, 用列举法表示为 A {0,1}. (2)设大于10小于20的整数为x, 它满足条件x Z
列举法, 突出元素, 注意元素的互异性 表示方法描述法, 突出元素的属性
自我检测
1、已知集合
A xN | — 3 x 3

则有(

Α、 1 Α
Β、 0 A
C、 3 Α D、 2 Α
2、已知集合P={x|x≤5,x∈N}集合P=———
用列举法或描述法表示下列集 合 3、方程 x x 2 0的解集
5
分析
一次函数y=x+3与y=-2x+6 的图象的交点组成的集合
课堂练习 1:方程组 x+y=1 x-y=-1 A .{x=0,y=1} 的解集是:( )
B .{0,1}
C .{(0,1)}
D .{(x,y)|x=0或y=1}
本节小结
本节课主要研究哪些基本内容?集合的两种 表示方法各有怎样的优点?用其表示集合各 应注意什么?
相关文档
最新文档