单级倒立摆系统的分析与设计

合集下载

单级倒立摆系统

单级倒立摆系统

单级倒立摆系统建模图中u 是施加于小车的水平方向的作用力,x 是小车的位移,θ是摆杆的倾斜角。

若不给小车施加控制力,倒摆会向左或向右倾斜,控制的目的是当倒摆出现偏角时,在水平方向上给小车以作用力,使得摆杆和小车能够迅速恢复到平衡位置(θ=0,x=0)。

为了建立倒立摆系统的简易模型又不失其实质,可先作如下假设: 1、倒立摆与摆杆均为匀质刚体。

2、可忽略摆与载体,载体与外界的摩擦,即忽略摆轴、轮轴、轮与接触面之间的摩擦力等。

系统的受力如下图示,其中小车的质量为M ,瞬时位移为x ,摆杆长度为2L ,质量为m ,瞬时位置为)sin (θL x -。

Hx小车受力图 摆杆受力图运用牛顿力学定律,小车沿x 轴方向运动有:22dtxd M H u =-摆杆重心沿x 轴方向有:22)sin (dtL x d m H θ-= 摆杆重心沿y 轴方向有:22)cos (dtL d m mg V θ=- 摆杆围绕其重心的转动运动可用力矩方程来描述:θθθcos sin HL VL I += 式中,2231)2(121mL L m I ==为摆杆围绕其重心的转动惯量。

控制中要求θ小于5弧度,即在θ很小时,θθ≈sin ,1cos ≈θ,将方程在平衡点(θ=0,x=0)附近线性化处理。

则以上各式变为:xM H u =- ① )(θL x m H -= ② 0=-mg V ③HL VL I +=θθ④ 由式①和式②得:u mL xm M =++θ )( ⑤ 由式②、③和④得:θθmgL xmL mL I =++ )(2 ⑥ 由式⑤和式⑥可得单级倒立摆方程:u MmLI m M mL MmL I m M gL M m m 22)()()(++++++=θθu MmLI m M mL I MmL I m M gL m x 22222)()(++++++=θ 对以上两式进行拉氏变换,整理得以u 为输入量,以摆杆摆角θ为输出量得传递函数G(s)=gL m M m s MmL I m M mLs U s )(])[()()(22+-++=θ控制指标共有4个,即单级倒立摆的摆角θ、摆速θ、小车位置x 、小车速度x。

(完整版)单级倒立摆毕业设计

(完整版)单级倒立摆毕业设计
图1-2 Atmega16引脚图
缺点:价格稍显昂贵,编程较复杂。
方案三:使用STM32F103内部集成了1μs的双12位ADC,可对角度传感器信号进行采集与处理。硬件电路连接较简单,低功耗,系统运行稳定。最高工作频率72MHz,运算速度较快。STM32引脚如图1-3:
图1-3 STM32引脚图
缺点:价格昂贵,编程复杂。
缺点:扭矩较大,反应动作较慢,价格昂贵。
方案三:采用直流电机,直流电机具有最优越的调速性能,主要表现在调速方便(可无级调速)、调速范围宽、低速性能好、运行平稳、噪音低、效率高的优点。
图1-1 8051引脚图
缺点:51单片内部资源有限,内部没有集成的A/D转换器,在一些需要数据采的应用场合,需要外扩A/D转换器,硬件连接较复杂,给系统设计过程带来不便。
方案二:使用atmega16内部集成了10位A/D转换器,可对角度传感器信号进行采集与处理,还集成了PWM的功能,硬件电路连接较简单,系统运行稳定。运算速度较快。Atmega16简介:ATmega16是基于增强的AVR RISC结构的低功耗8 位CMOS微控制器。由于其先进的指令集以及单时钟周期指令执行时间,ATmega16 的数据吞吐率高达1 MIPS/MHz,从而可以减缓系统在功耗和处理速度之间的矛盾。ATmega16 AVR 内核具有丰富的指令集和32 个通用工作寄存器。所有的寄存器都直接与运算逻单元(ALU) 相连接,使得一条指令可以在一个时钟周期内同时访问两个独立的寄存器。这种结构大大提高了代码效率,并且具有比普通的CISC 微控制器最高至10 倍的数据吞吐率。ATmega16 有如下特点:16K字节的系统内可编程Flash(具有同时读写的能力,即RWW),512 字节EEPROM,1K 字节SRAM,32 个通用I/O 口线,32 个通用工作寄存器,用于边界扫描的JTAG 接口,支持片内调试与编程,三个具有比较模式的灵活的定时器/ 计数器(T/C),片内/外中断,可编程串行USART,有起始条件检测器的通用串行接口,8路10位具有可选差分输入级可编程增益(TQFP 封装) 的ADC ,具有片内振荡器的可编程看门狗定时器,一个SPI 串行端口,以及六个可以通过软件进行选择的省电模式。工作于空闲模式时CPU 停止工作,而USART、两线接口、A/D 转换器、SRAM、T/C、SPI 端口以及中断系统继续工作;停电模式时晶体振荡器[1]停止振荡,所有功能除了中断和硬件复位之外都停止工作;在省电模式下,异步定时器继续运行,允许用户保持一个时间基准,而其余功能模块处于休眠状态; ADC 噪声抑制模式时终止CPU 和除了异步定时器与ADC 以外所有I/O 模块的工作,以降低ADC 转换时的开关噪声; Standby 模式下只有晶体或谐振振荡器运行,其余功能模块处于休眠状态,使得器件只消耗极少的电流,同时具有快速启动能力;扩展Standby 模式下则允许振荡器和异步定时器继续工作。引脚图如图1-2:

(完整版)一级倒立摆系统分析

(完整版)一级倒立摆系统分析

一级倒立摆的系统分析一、倒立摆系统的模型建立如图1-1所示为一级倒立摆的物理模型图1-1 一级倒立摆物理模型对于上图的物理模型我们做以下假设:M:小车质量m:摆杆质量b:小车摩擦系数l:摆杆转动轴心到杆质心的长度I:摆杆惯量F:加在小车上的力x:小车位置ɸ:摆杆与垂直向上方向的夹角θ:摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)图1-2是系统中小车和摆杆的受力分析图。

其中,N和P为小车与摆杆相互作用力的水平和垂直方向的分量。

注意:实际倒立摆系统中的检测和执行装置的正负方向已经完全确定,因而矢量方向定义如图所示,图示方向为矢量正方向。

图1-2 小车及摆杆受力分析分析小车水平方向受力,可以得到以下方程:M ẍ=F-bẋ-N (1-1)由摆杆水平方向的受力进行分析可以得到以下方程:N =md 2dt 2(x +l sin θ) (1-2)即: N =mẍ+mlθcos θ−mlθ2sin θ (1-3)将这个等式代入式(1-1)中,可以得到系统的第一个运动方程: (M +m )ẍ+bẋ+mlθcos θ−mlθ2sin θ=F (1-4)为推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得出以下方程: P −mg =md 2dt 2(l cos θ) (1-5)P −mg =− mlθsin θ−mlθ2cos θ (1-6) 利用力矩平衡方程可以有:−Pl sinθ−Nl cosθ=Iθ (1-7)注意:此方程中的力矩方向,由于θ=π+ɸ,cosɸ=−cosθ,sinɸ=−sinθ,所以等式前面含有负号。

合并两个方程,约去P和N可以得到第二个运动方程:(I+ml2)θ+mgl sinθ=−mlẍcosθ (1-8)设θ=π+ɸ,假设ɸ与1(单位是弧度)相比很小,即ɸ<<1,则可以进行近似处理:cosθ=−1,sinθ=−ɸ,(dθdt )2=0。

用u来代表被控对象的输入力F,线性化后的两个运动方程如下:{(I+ml2)ɸ−mglɸ=mlẍ(M+m)ẍ+bẋ−mlɸ=u(1-9)假设初始条件为0,则对式(1-9)进行拉普拉斯变换,可以得到:{(I+ml2)Φ(s)s2−mglΦ(s)=mlX(s)s2(M+m)X(s)s2+bX(s)s−mlΦ(s)s2=U(s) (1-10) 由于输出为角度ɸ,求解方程组的第一个方程,可以得到:X(s)=[(I+ml2)ml −gs2]Φ(s) (1-11)或改写为:Φ(s)X(s)=mls2(I+ml2)s2−mgl(1-12)如果令v=ẍ,则有:Φ(s)V(s)=ml(I+ml2)s2−mgl(1-13)如果将上式代入方程组的第二个方程,可以得到:(M+m)[(I+ml2)ml −gs]Φ(s)s2+b[(I+ml2)ml+gs2]Φ(s)s−mlΦ(s)s2=U(s) (1-14) 整理后可得传递函数:Φ(s) U(s)=mlqs2s4+b(I+ml2)qs3−(M+m)mglqs2−bmglqs(1-15)其中q=[(M+m)(I+ml2)−(ml)2]假设系统状态空间方程为:X=AX+Buy=CX+Du (1-16) 方程组对ẍ,ɸ解代数方程,可以得到解如下:{ẋ=ẋẍ=−(I+ml2)bI(M+m)+Mml2ẋ+m2gl2I(M+m)+Mml2ɸ+(I+ml2)I(M+m)+Mml2uɸ=ɸɸ=−mlbI(M+m)+Mml2ẋ+mgl(M+m)I(M+m)+Mml2ɸ+mlI(M+m)+Mml2u(1-17)整理后可以得到系统状态空间方程:[ẋẍɸɸ]=[01000−(I+ml2)bI(M+m)+Mml2m2gl2I(M+m)+Mml200010−mlbI(M+m)+Mml2mgl(M+m)I(M+m)+Mml20][xẋɸɸ]+[(I+ml2)I(M+m)+Mml2mlI(M+m)+Mml2]uy=[xɸ]=[10000010][xẋɸɸ]+[0]u(1-18)由(1-9)的第一个方程为:(I+ml2)ɸ−mgl ɸ=mlẍ对于质量均匀分布的摆杆可以有:I=13ml2于是可以得到:(13ml2+ml2)ɸ−mgl ɸ=mlẍ化简可以得到:ɸ=3g4l ɸ+34lẍ(1-19)设X={x, ẋ, ɸ , ɸ},u=ẍ则有:[ẋẍɸɸ]=[010000000001003g4l0][xẋɸɸ]+[134l]uy=[xɸ]=[10000010][xẋɸɸ]+[0]u(1-20)以上公式推理是根据牛顿力学的微分方程验证的。

单级倒立摆系统的建模与控制器设计

单级倒立摆系统的建模与控制器设计

单级倒立摆系统的建模与控制器设计摘要:本文主要研究的是单级倒立摆的建模、控制与仿真问题。

倒立摆是一类典型的快速、多变量、非线性、强耦合、自然不稳定系统。

由于在实际中有很多这样的系统,因此对它的研究在理论上和方法论上均有深远的意义。

本文首先建立了单级倒立摆的数学模型,对其进行了近似线性化处理,得到了它的状态空间描述,并对系统的开环特性进行了仿真和分析。

然后,基于极点配置方法设计了单级倒立摆系统的控制器。

最后,用Matlab对系统进行了数值仿真,验证了所设计的控制算法的有效性。

1、绪论------------------------------------------------------------- 12、单级倒立摆系统的建模与分析--------------------------------------- 32.1 单级倒立摆系统的建模---------------------------------------- 32.2 单级倒立摆系统的模型分析------------------------------------ 63、单级倒立摆系统的极点配置控制器设计------------------------------ 113.1 单级倒立摆系统控制器设计的目标----------------------------- 113.2 单级倒立摆系统的能控性分析--------------------------------- 113.3 单级倒立摆系统的极点配置控制器设计------------------------- 123.4 闭环系统仿真分析------------------------------------------- 134、PID控制器的设计与分析------------------------------------------ 184.1、PID控制的基本原理----------------------------------------- 184.2、方案设计-------------------------------------------------- 184.3、PID控制设计分析------------------------------------------- 204.4、软件仿真调试结果------------------------------------------ 204.5、与极点控制器结果对比分析---------------------------------- 225、结论------------------------------------------------------------ 23 致谢--------------------------------------------------------------- 24 参考文献----------------------------------------------------------- 251、绪论倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。

单级倒立摆课程设计

单级倒立摆课程设计

单级倒立摆课程设计一、课程目标知识目标:1. 让学生掌握单级倒立摆的基本概念、原理和数学模型;2. 使学生了解单级倒立摆在实际工程中的应用和价值;3. 引导学生运用物理知识分析单级倒立摆的动态特性及稳定性。

技能目标:1. 培养学生运用数学、物理知识解决实际问题的能力;2. 提高学生动手实践能力,学会设计、搭建和调试单级倒立摆控制系统;3. 培养学生团队协作、沟通表达及分析问题的能力。

情感态度价值观目标:1. 激发学生对物理科学研究的兴趣,培养创新意识和探索精神;2. 引导学生关注我国在倒立摆技术领域的发展,增强国家认同感;3. 培养学生严谨的科学态度和良好的学习习惯。

课程性质:本课程为物理学科实验课程,旨在通过实践操作,让学生深入理解单级倒立摆的原理和应用。

学生特点:本课程针对高中学生,他们在数学、物理基础知识方面有较好的储备,具备一定的动手能力和探究精神。

教学要求:结合学生特点,注重理论与实践相结合,引导学生主动参与,提高综合运用知识解决实际问题的能力。

将课程目标分解为具体的学习成果,便于后续教学设计和评估。

二、教学内容1. 理论知识:- 单级倒立摆的基本概念、原理及数学模型;- 倒立摆系统的动态特性分析;- 倒立摆稳定性判据及控制方法。

2. 实践操作:- 搭建单级倒立摆实验装置;- 设计并实现单级倒立摆控制系统;- 调试优化控制系统,实现倒立摆的稳定控制。

3. 教学大纲:- 第一周:单级倒立摆基本概念、原理及数学模型学习;- 第二周:倒立摆系统的动态特性分析;- 第三周:稳定性判据及控制方法学习;- 第四周:实践操作,搭建实验装置;- 第五周:设计并实现单级倒立摆控制系统;- 第六周:调试优化控制系统,总结交流。

教材章节:本教学内容参考课本第十章“自动控制”,具体涉及第1节“倒立摆控制”和第2节“倒立摆控制系统设计”。

教学内容安排和进度:按照教学大纲,每周安排一次课,共计6周。

理论教学与实践操作相结合,保证学生充分理解并掌握单级倒立摆相关知识。

直线一级倒立摆建模

直线一级倒立摆建模

一、直线一级倒立摆建模1、微分方程的推导对于倒立摆系统,经过小心假设忽略掉一些次要因素后,倒立摆系统就是一个典型的刚体运动系统,可以在惯性坐标系统内应用景点力学理论建立系统的动力学方程。

微分方程的推导:在忽略了空气阻力,各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如下图1所示.图1做如下假设:M 小车质量m 摆杆质量b 小车摩擦系数L 摆杆转动轴心到杆质心的长度I 摆杆惯量F 加在小车上的力x 小车位置φ摆杆与垂直向上方向的夹角θ摆杆与垂直向下方向的夹角(考虑带摆杆初始位置为竖直向下)图2图2是系统中小车和摆杆的受力分析图。

其中,N和P为小车和摆杆的相互作用力的水平和垂直方向的分量。

在实际倒立摆系统中检测和执行装置的正负方向已经完全确定,所以矢量方向定义如图2所示,图示方向为矢量的正方向。

分析小车水平方向所受合力,可以得到方程:(式1)由摆杆水平方向的受力进行分析可以得到下面等式:= (式2、式3)将式3代入式1可得系统第一个运动方程:(式4)为了推出系统第二个运动方程,对摆杆垂直向上的合力进行分析可得方程:= (式5 式6)力矩平衡方程如下:(式7)式中:合并式6、式7得第二个运动方程:(式8)设θ = π +φ(φ是摆杆与垂直向上方向之间的夹角),假设φ与1(单位是弧度)相比很小,即φ <<1,则可以进行近似处理:用u来代表被控对象的输入力F,线性化后两个运动方程如下:(式9)对式(3-9)进行拉普拉斯变换(推导传递函数时假设初始条件为0。

):(式10)整理后得到传递函数:(式11)其中:2、状态空间方程设系统状态空间方程为:(式12)方程组对解代数方程,得到解如下:(式13)整理后得到系统状态空间方程:(式14)3、实际系统模型假定系统物理参数设计如下:M 小车质量 1.08Kg m 摆杆质量 0.1Kgb 小车摩擦系数 0.1N/m/sec l 摆杆转动轴心到杆质心的长度 0.3mI 摆杆惯量 0.0027Kg*m*m将上述参数带入,可以得到以外界作用力作为输入的系统状态方程:======+++++++=⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅u x x x y u x x x x 000100001034577.20914849.0008966.26234577.0010000689655.00914849.000010φφφφφφφ二、对象的性能分析1、分析系统的单位阶跃响应:a=[0 1 0 0;0 -0.0914849 0.689655 0;0 0 0 1;0 -0.234577 26.8966 0] b=[0;0.914849;0;2.34577] c=[1 0 0 0;0 0 1 0] d=[0;0] a =0 1.0000 0 0 0 -0.0915 0.6897 0 0 0 0 1.0000 0 -0.2346 26.8966 0b =0.91482.3458c =1 0 0 00 0 1 0d =利用传递函数得到如下响应曲线[num,den]=ss2tf(a,b,c,d)num =0 -0.0000 0.9148 0.0000 -22.98860 -0.0000 2.3458 -0.0000 0 den =1.0000 0.0915 -26.8966 -2.2989 0 step(num,den)从图上可知其阶跃响应不稳定。

(完整)倒立摆实验报告

(完整)倒立摆实验报告

专业实验报告摆杆受力和力矩分析θmg VH θX V X H图2 摆杆系统摆杆水平方向受力为:H 摆杆竖直方向受力为:V 由摆杆力矩平衡得方程:cos sin Hl Vl I φφθθπφθφ⎧-=⎪=-⎨⎪=-⎩(1) 代入V 、H ,得到摆杆运动方程。

当0φ→时,cos 1θ=,sin φθ=-,线性化运动方程:2()I ml mgl mlx θθ+-=1.2 传递函数模型以小车加速度为输入、摆杆角度为输出,令,进行拉普拉斯变换得到传递函数:22()()mlG s ml I s mgl=+- (2) 倒立摆系统参数值:M=1.096 % 小车质量 ,kg m=0.109 % 摆杆质量 ,kg0.1β= % 小车摩擦系数g=9.8 % 重力加速度,l=0.25 % 摆杆转动轴心到杆质心的长度,m I= 0.0034 % 摆杆转动惯量,以小车加速度为输入、摆杆角度为输出时,倒立摆系统的传递函数模型为:20.02725()0.01021250.26705G s s =- (3) 1.3 倒立摆系统状态空间模型以小车加速度为输入,摆杆角度、小车位移为输出,选取状态变量:(,,,)x x x θθ= (4)由2()I ml mgl mlx θθ+-=得出状态空间模型001001000000001330044x x x x x g g lμθθθθ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥'==+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦(5) μθθθ'⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=0001000001 xx x y (6) 由倒立摆的参数计算出其状态空间模型表达式:(7)010000001000100029.403x x x x x μθθθθ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥'==+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦(8)00x μθθ⎤⎥⎡⎤⎥'+⎢⎥⎥⎣⎦⎥⎥⎦作用)增大,系统响应快,对提高稳态精度有益,但过大易作用)对改善动态性能和抑制超调有利,但过强,即校正装Ax B Cx μ+= 1n x ⎥⎥⎥⎦,1n x x x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,1111n n nn a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ , 1n B b ⎥⎥⎥⎦,]n C c =。

大学课程设计-直线一级倒立摆控制系统设计

大学课程设计-直线一级倒立摆控制系统设计

摘要倒立摆系统是一个典型的快速、多变量、非线性、不稳定系统,对倒立摆的控制研究无论在理论上和方法上都有深远的意义。

本论文以实验室原有的直线一级倒立摆实验装置为平台,重点研究其PID控制方法,设计出相应的PID控制器,并将控制过程在MATLAB上加以仿真。

本文主要研究内容是:首先概述自动控制的发展和倒立摆系统研究的现状;介绍倒立摆系统硬件组成,对单级倒立摆模型进行建模,并分析其稳定性;研究倒立摆系统的几种控制策略,分别设计了相应的控制器,以MATLAB为基础,做了大量的仿真研究,比较了各种控制方法的效果;借助固高科技MATLAB实时控制软件实验平台;利用设计的控制方法对单级倒立摆系统进行实时控制,通过在线调整参数和突加干扰等,研究其实时性和抗千扰等性能;对本论文进行总结,对下一步研究作一些展望。

关键词:一级倒立摆,PID,MATLAB仿真目录第1章MATLAB仿真软件的应用 (9)1.1 MA TLAB的基本介绍 (9)1.2 MA TLAB的仿真 (9)1.3 控制系统的动态仿真 (10)1.4 小结 (12)第2章直线一级倒立摆系统及其数学模型 (13)2.1 系统组成 (13)2.1.1 倒立摆的组成 (14)2.1.2 电控箱 (14)2.1.3 其它部件图 (14)2.1.4 倒立摆特性 (15)2.2 模型的建立 (15)2.2.1 微分方程的推导 (16)2.2.2 传递函数 (17)2.2.3 状态空间结构方程 (18)2.2.4 实际系统模型 (20)2.2.5 采用MA TLAB语句形式进行仿真 (21)第3章直线一级倒立摆的PID控制器设计与调节 (34)3.1 PID控制器的设计 (34)3.2 PID控制器设计MA TLAB仿真 (36)结论 (41)致谢 (42)参考文献 (43)第1章 MATLAB仿真软件的应用1.1 MATLAB的基本介绍MTALAB系统由五个主要部分组成,下面分别加以介绍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单级倒立摆系统的分析与设计小组成员:武锦张东瀛杨姣李邦志胡友辉一.倒立摆系统简介倒立摆系统是一个典型的高阶次、多变量、不稳定和强耦合的非线性系统。

由于它的行为与火箭飞行以及两足机器人行走有很大的相似性,因而对其研究具有重大的理论和实践意义。

由于倒立摆系统本身所具有的上述特点,使它成为人们深入学习、研究和证实各种控制理论有效性的实验系统。

单级倒立摆系统(Simple Inverted Pendulum System)是一种广泛应用的物理模型,其结构和飞机着陆、火箭飞行及机器人的关节运动等有很多相似之处,因而对倒立摆系统平衡的控制方法在航空及机器人等领域有着广泛的用途,倒立摆控制理论产生的方法和技术将在半导体及精密仪器加工、机器入技术、导弹拦截控制系统、航空器对接控制技术等方面具有广阔的开发利用前景。

倒立摆仿真或实物控制实验是控制领域中用来检验某种控制理论或方法的典型方案。

最初研究开始于二十世纪50年代,单级倒立摆可以看作是一个火箭模型,相比之下二阶倒立摆就复杂得多。

1972年,Sturgen等采用线性模拟电路实现了对二级倒立摆的控制。

目前,一级倒立摆控制的仿真或实物系统已广泛用于教学。

二.系统建模1.单级倒立摆系统的物理模型图1:单级倒立摆系统的物理模型单级倒立摆系统是如下的物理模型:在惯性参考系下的光滑水平平面上,放置一个可以在平行于纸面方向左右自由移动的小车(cart ),一根刚性的摆杆(pendulum leg )通过其末端的一个不计摩擦的固定连接点(flex Joint )与小车相连构成一个倒立摆。

倒立摆和小车共同构成了单级倒立摆系统。

倒立摆可以在平行于纸面180°的范围内自由摆动。

倒立摆控制系统的目的是使倒立摆在外力的摄动下摆杆仍然保持竖直向上状态。

在小车静止的状态下,由于受到重力的作用,倒立摆的稳定性在摆杆受到微小的摄动时就会发生不可逆转的破坏而使倒立摆无法复位,这时必须使小车在平行于纸面的方向通过位移产生相应的加速度。

依照惯性参考系下的牛顿力学原理,作用力与物体位移对时间的二阶导数存在线性关系,单级倒立摆系统是一个非线性系统。

各个参数的物理意义为:M — 小车的质量 m — 倒立摆的质量F — 作用到小车上的水平驱动力L — 倒立摆的长度 x — 小车的位置 θ— 某一时刻摆角整个倒立摆系统就受到重力、驱动力和摩擦阻力的三个外力的共同作用。

这里,驱动力F 是由连接小车的传动装置提供,控制倒立摆的稳定实际上就是依靠控制驱动力F 使小车在水平面上做与倒立摆运动相关的特定运动。

为了简化模型以利于仿真,假设小车与导轨以及摆杆与小车铰链之间的摩擦均为0。

2.单级倒立摆系统的数学模型令小车的水平位移为x ,运动速度为v ,加速度a 。

小车的动能为212kc E Mx =&,选择特定的参考平面使得小车的势能为0。

摆杆的长度为L ,某时刻摆角为θ,在摆杆上与固定连接点距离为q (0<q<l )的位置处取一质量为△m 的质元,则有 sin cos m m x x q y q θθ=+⎧⎨=⎩V V 该质元的动能为:2222211()(2cos )22k m m m E m x y m x q x q θθθ=+=++V V V &&&&&&V V 势能为:cos p m E m g q θ=⋅⋅V V , 其中 m dq ρ=⋅V ,ρ是摆杆的线密度 则系统的总动能可以通过对和从0到L 积分获得:2220111()cos 226lk kc k m E E E dq M m x ml x ml θθθ=+=+++⎰V &&&& 01cos 2l p p m E E dq mgl θ==⎰V 其中小车的动能和势能为: 212kc E Mx =& , 0pc E = 系统的拉格朗日方程可写为:2221111()cos cos 2262k p L E E M m x ml x ml mgl θθθθ=-=+++-&&&& 由欧拉—拉格朗日方程: d L L F dt x x ∂∂-=∂∂& , 0d L L dt θθ∂∂-=∂∂& 可以确定摆杆的运动方程: 211222111232()cos sin cos sin 0m M x ml ml F ml x ml mgl θθθθθθθ⎧++⋅-⋅=⎪⎨+-=⎪⎩&&&&&&&&& 为避免复杂的求解微分方程的运算,考虑摆角在θ=0附近的微小变化,倒立摆在垂直位置可以近似为:cos θ≈1,sin θ≈0,运动方程可简化为:1221132()()()0m M x ml F t ml ml x g θθθ⎧++=⎪⇒⎨+-=⎪⎩&&&&&&&& 令所有作用力、位移与角度参数为时间t 的函数,则2()[()()]t F t m M x mlθ=-+&&&& 2[()()]()032l ml F t m M x x g θ-++-=&&&& ∴ 43()()44mg x F t t m M m Mθ=-++&& 22()43()[()()]44m M mg F t F t t ml ml m M m M θθ+=--++&& 66()()()(4)(4)g m M F t t l m M l m M θ+=-+++ 将转换后的线性系统用两个2阶微分方程描述,系统的状态矢量为:令(,,,),()T x x x f F t θθ==&& ,则状态方程描述为: x Ax Bf y Cx=+⎧⎨=⎩& 将相关参数带入,得到010006()6000(4)(4)()000103400044g m M l m M l m M f t x x mgm M m M ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥++⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎢⎥⎢⎥++⎣⎦⎣⎦&01006()000(4)000130004g m M l m M A mgm M ⎡⎤⎢⎥+⎢⎥+⎢⎥=⎢⎥⎢⎥⎢⎥-⎢⎥+⎣⎦ 06(4)044l m M B m M ⎡⎤⎢⎥⎢⎥-+⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦10000010C ⎡⎤=⎢⎥⎣⎦三. 控制对象的初步分析倒立摆系统的基本数据:M ——小车质量2Kgm ——摆杆质量0.5KgL ——摆杆长度 0.5m得到系统的状态方程如下:0100034.5882000 1.4118000101.72940000.4706u x x x x θ⎡⎤θ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥θ-θ⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦&&&&&&&&10000010y x x x θθθ⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦&&由状态方程可知,系统的开环特征值为:开环系统有极点在右半平面,因此原系统为不稳定系统。

由能控性的定义,根据状态方程x Ax Bu =+&^2^3S=[B AB A B A B],rank(S)=4,满秩,所以系统完全能控;由能观性的定义,^2^3T P=[C CA CA CA ],rank(P)=4,满秩,所以系统完全能观。

四.控制器的设计1.控制方案的选取经典控制理论主要采用频域分析方法,能够很好地解决单输入单输出问题。

单级倒立摆系统的控制对象是一个单输入(力)两输出(角度和位移)的非最小相位系统。

根据对系统的力学分析,应用牛顿第二定律,建立小车在水平方向运动和摆杆旋转运动的方程,并进行线性化,拉氏变换,得出传递函数,从而得到零、极点分布情况。

为使闭环系统能稳定工作,需引入适当的反馈,使闭环系统特征方程的根都位于左平面上。

用经典控制理论的频域分析法设计非最小相位系统的控制器不需要十分精确的对象数学模型。

因为只要控制器使系统具有充分大的相位裕量,就能获得系统参数很宽范围内的稳定性。

与经典控制理论相比,现代控制理论有较强的系统性,从分析到设计、综合都有比较完整的理论和方法。

以单级倒立摆为例,这是一个多变量系统,应用最优状态调节器理论和状态观测器理论的控制思想,控制器采用线性定常状态反馈和观测器的结构。

控制对象(小车、摆杆)分别由传感器检测出两个位置量,然后由观测器重构系统状态,通过状态反馈,组成一个闭环系统,使不稳定系统变为稳定系统,系统的瞬态和静态性能良好。

此外,很多文献介绍了基于输出反馈的PID控制系统,但其控制效果不理想,主要原因是系统的高阶次和多变量。

以及基于模糊神经网络的倒立摆控制系统,该方法由于模糊神经网络系统的自适应能力,有效地克服了系统存在的非线性和不确定性,但该方法过分依赖人直接控制被控对象的经验。

这里我们结合《最优控制》课程的学习,选用基于状态空间设计法的LQR 最优调节器,较好地兼顾了系统的稳定性和快速性,应用实例说明了该方法的有效性。

对倒立摆系统进行控制的目的是:(1)通过状态反馈变不稳定系统为稳定系统;(2)使系统的瞬态和静态性能良好,系统的调节过程迅速,振荡不要太大。

由前面的分析可知,单级倒立摆系统是不稳定的,但系统的状态是完全可控和可观的。

根据线性系统控制理论,倒立摆经过适当的状态反馈后,所得到的闭环系统是可以稳定的,并且反馈所需的全部状态可以用状态观测器重构。

具体选择控制器方案时要考虑:在保证达到上述控制目标的前提下,控制器的设计和结构尽可能简单,容易实现。

控制器设计方案如下:(1) 应用确定性系统的控制理论,该系统为确定性系统;(2) 控制规律采用线性定常状态反馈,反馈增益由LQR 调节器理论算出;(3) 采用状态观测器重构系统状态。

2.最优调节器设计线性定常系统的状态反馈增益可由闭环系统的极点配置来确定,也可由最优控制理论计算获得,这里采用后一种方法。

单级倒立摆控制对象模型是一个单输入、双输出系统,它的状态方程为: x Ax Bu =+&设状态反馈调节器的形式为u(k)=-K x(k),1T K R B P -=通过使性能指标函数T T 0J=x (k)Qx(k)+u (k)Ru(k)∞⎰ 为最小,其中,(1) Q 为4*4对称半正定矩阵,R 是标量,R>0(2) 矩阵P 是Riccati 代数方程10T T PA A P PBR B P Q -+-+=的唯一正定解。

相关文档
最新文档