整式章节测试题精选
整式章节单元测试题及答案

整式章节单元测试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项不是单项式?A. 3xB. -2C. 5x²D. 4x³2. 多项式3x² - 4x + 1的次数是多少?A. 1B. 2C. 3D. 43. 多项式2x³ - x² + 5x - 3的首项系数是?A. 2B. -1C. 5D. 34. 合并同类项后,2x² + 3x - 5与3x² - 4x + 6的和是?A. 5x² - x - 1B. 5x² - x + 1C. 5x² + x - 1D. 5x² + x + 15. 如果多项式f(x) = ax³ + bx² + cx + d,其中 a = 2,b = -3,c = 4,d = -5,那么f(1)的值是?A. -2B. -1C. 0D. 1二、填空题(每题2分,共10分)6. 单项式-5x的系数是________。
7. 多项式4x³ - 2x² + 3x - 1的常数项是________。
8. 如果多项式f(x) = 2x³ - x² + 5x + 3,那么f(-1) =________。
9. 两个多项式的和是5x³ - 2x² + 3x + 1,其中一个多项式是3x³ + x² - 2x + 5,另一个多项式是________。
10. 如果多项式f(x) = 3x³ + 2x² - 5x + 7,那么f(0)=________。
三、解答题(每题5分,共30分)11. 计算多项式2x³ - 3x² + x - 5与多项式4x³ + x² - 2x + 3的差。
12. 求多项式3x³ - 2x² + 5x - 7与多项式2x³ + 3x² - 4x + 6的乘积。
初中数学浙教版七年级上册第4章 代数式4.4 整式-章节测试习题(3)

章节测试题1.【答题】在代数式:中,单项式的个数有()A. 1个B. 2个C. 3个D. 4个【答案】C【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】此题考查单项式的定义,单项式是指字母与数字的积叫单项式,一个数字也是单项式;此题中是单项式,所以选C. ;2.【答题】下列各式中,不是整式的是()A. 6xyB.C. x+9D. 4【答案】B【分析】根据多项式与单项式统称为整式,判断即可.【解答】A. 6xy,单项式,是整式,不符合题意;B. ,不是整式,符合题意;.x+9,多项式,是整式,不符合题意;D. 4,单项式,是整式,不符合题意,选B.3.【答题】下列说法中,正确的有()①的系数是;②-22ab2的次数是5;③多项式mn2+2mn-3n-1的次数是3;④a-b和都是整式.A. 1个B. 2个C. 3个D. 4个【答案】C【分析】本题考查了单项式和多项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】(1)因为的系数是,所以①正确;(2)因为的次数是3,所以②错误;(3)因为的次数是3,所以③正确;(4)因为是多项式,是单项式,而单项式和多项式统称为整式,所以④正确;即正确的说法有3个.选C.4.【答题】下列关于单项式﹣3x5y2的说法中,正确的是()A. 它的系数是3B. 它的次数是7C. 它的次数是5D. 它的次数是2【答案】B【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】单项式﹣3x5y2的系数是-3,次数是7,只有B选项是正确的,选B.5.【答题】已知一列数......请写出第5个数是()A. 5x5B. 5x6C.D.【答案】D【分析】根据题意列出代数式即可.【解答】解:奇数位置为负,偶数为正,并且x的指数比系数的绝对值大1,由此得第5个数为:选D.6.【答题】单项式的系数和次数分别是()A. ,3B. ,3C. ,3D. -2,2【答案】C【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】单项式的系数是,单项式的字母为x、y,x的指数为1,y的指数为2,故单项式的次数为1+2=3.选C.7.【答题】单项式的系数和次数分别是()A. B.C. D.【答案】D【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】单项式的系数和次数分别是 ,5.选D.8.【答题】在代数式,2πx2y,,﹣5,a中,单项式的个数是()A. 2个B. 3个C. 4个D. 5个【答案】B【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】2πx2y,﹣5,a是单项式;是多项式;是分式;选B.9.【答题】单项式的()A. 系数是,次数是2次B. 系数是,次数是3次C. 系数是,次数是2次D. 系数是,次数是3次【答案】D【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】解:单项式的系数是:次数是:选D.方法总结:单项式中的数字因数就是单项式的系数,单项式中所有字母的指数的和就是单项式的次数.10.【答题】如图,用火柴棒搭三角形,搭1个三角形需要3根火柴棒,搭2个三角形需要5根火柴棒,搭3个三角形需要7根火柴,……,那么搭2014个这样的三角形需要火柴棒()A. 6042根B. 6043根C. 4028根D. 4029根【答案】D【分析】根据题意先列出代数式,再代入数值计算即可.【解答】解:∵一个三角形需要3根火柴,2个三角形需要3+2=5根火柴,3个三角形需要3+2×2=7根火柴,…n个三角形需要3+2(n-1)=(2n+1)根火柴.当n=2014时,2n+1=2×2014+1=4029根,选D.11.【答题】多项式的项分别是()A. -x2,,1B. -x2,,-1C. x2,,1D. x2,,-1【答案】B【分析】利用多项式的相关定义进而分析得出答案.【解答】解:利用几个单项式的和叫做多项式,每个单项式叫做多项式的项,得:多项式-x2-x-1的各项分别是:-x2,-x,-1.选B.12.【答题】在整式2xy2,-x,3,x+1,ab-x2,2x2-x+3中,单项式有()A. 1个B. 2个C. 3个D. 4个【答案】C【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】解:数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式.可以做出选择.2xy2,-x,3是单项式.选C.13.【答题】单项式的系数和次数分别是()A. ,3B. ,3C. ,2D. ,2【答案】B【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】根据单项式系数和次数的概念可得:单项式-x2y的系数是-,次数是3.选B.方法总结:本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.14.【答题】已知代数式的值为7,则的值为()A. B. C. 8 D. 10【答案】C【分析】本题考查了代数式求值,先对已知条件和原式化简,找出相同点,再整体代入计算即可.【解答】解:∵2x2-3x+9=7,∴x2-x=-1,则原式=-1+9=8.选C.15.【答题】如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A. y=2n+1B. y=2n+1+nC. y=2n+nD. y=2n+n+1【答案】C【分析】根据题意列出代数式即可.【解答】分析:由题意可得下边三角形的数字规律为:n+2n,继而求得答案.本题解析:观察可知左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为2,22,…,2n,下边三角形的数字规律为1+2,2+22,…,n+2n,∴y=2n+n.选C.16.【答题】单项式的系数和次数分别是()A. ,3B. ,3C. ,2D. ,2【答案】B【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】根据单项式系数和次数的概念可得:单项式-x2y的系数是-,次数是3.选B.17.【答题】下列代数式中,是4次单项式的为()A. 4abcB. ﹣2πx2yC. xyz2D. x4+y4+z4【答案】C【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】A.4abc,3次单项式;B.﹣2πx2y,3次单项式;C.xyz2,4次单项式;D.x4+y4+z4,4次多项式,故符合题意的只有C,选C.18.【答题】如果单项式3a n b2c是5次单项式,那么n=()A. 2B. 3C. 4D. 5【答案】A【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】根据单项式的次数的概念可得:n+2+1=5,解得,n=2,选A.19.【答题】单项式4xy2z3的次数是()A. 3B. 4C. 5D. 6【答案】D【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】单项式的次数是指单项式中所有字母指数的和,1+2+3=6,选D.20.【答题】如图,正方形ABCD的边长为1,电子蚂蚁P从点A分别以1个单位/秒的速度顺时针绕正方形运动,电子蚂蚁Q从点A以3个单位/秒的速度逆时针绕正方形运动,则第2017次相遇在()A. 点AB. 点BC. 点CD. 点D【答案】D【分析】本题主要考查规律性问题,通过分析先确定前几次相遇点是解题的关键.【解答】由题意可知,点P的运动速度是1个单位/秒,点Q的速度是3个单位/秒,第一次相遇在点D,依此类推,可知第二次相遇在点C,第三次相遇在点B,第四次相遇在点A,第五次相遇在点D……,由此可知四次一循环,2017÷4=504……1,所以第2017次相遇在点D,选D.。
第2章 《整式的加减》章节测试卷 C卷

第2章 《整式的加减》章节测试题 (C 卷)(时间:90分钟 满分:100分)班级_____________ 姓名___________ 成绩_____________一、填空题(每题3分,共36分)1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 , 化简后的结果是 。
2、当2-=x 时,代数式-122-+x x = ,122+-x x = 。
3、写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 。
4、已知:11=+xx ,则代数式51)1(2010-+++x x x x 的值是 。
5、张大伯从报社以每份0.4元的价格购进了a 份报纸,以每份0.5元的价格售出了b 份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入 元。
6、计算:=-+-7533x x , )9()35(b a b a -+-= 。
7、计算:)2008642()200953(m m m m m m m m ++++-++++ = 。
8、-d bc a -+2的相反数是 , π-3= ,最大的负整数是 。
9、若多项式7322++x x 的值为10,则多项式7962-+x x 的值为 。
10、若≠+-m y x y x m n 则的六次单项式是关于,,)2(232 ,n = 。
11、已知=++=+-=+22224,142,82b ab a ab b ab a 则 ;=-22b a 。
12、多项式172332+--x x x 是 次 项式,最高次项是 ,常数项是 。
二、选择题(每题3分,共30分)13、下列等式中正确的是( )A 、)25(52x x --=-B 、)3(737+=+a aC 、-)(b a b a --=-D 、)52(52--=-x x14、下面的叙述错误的是( )A 、倍的和的平方的与的意义是2)2(2b a b a +。
B 、222b a b a 与的意义是+的2倍的和C 、3)2(ba 的意义是a 的立方除以2b 的商 D 、b a b a 与的意义是2)(2+的和的平方的2倍15、下列代数式书写正确的是( )A 、48aB 、y x ÷C 、)(y x a +D 、211abc 16、-)(c b a +-变形后的结果是( )A 、-c b a ++B 、-c b a -+C 、-c b a +-D 、-c b a --17、下列说法正确的是( )A 、0不是单项式B 、x 没有系数C 、37x x+是多项式 D 、5xy -是单项式 18、下列各式中,去括号或添括号正确的是( )A 、c b a a c b a a +--=+--2)2(22B 、)123(123-+-+=-+-y x a y x aC 、1253)]12(5[3+--=---x x x x x xD 、-)1()2(12-+--=+--a y x a y x19、代数式,21a a + 43,21,2009,,3,42mn bc a a b a xy -+中单项式的个数是( ) A 、3 B 、4 C 、5 D 、620、若A 和B 都是4次多项式,则A+B 一定是( )A 、8次多项式B 、4次多项式C 、次数不高于4次的整式D 、次数不低于4次的整式 21、已知y x x n m n m 2652与-是同类项,则( )A 、1,2==y xB 、1,3==y xC 、1,23==y x D 、0,3==y x 22、下列计算中正确的是( )A 、156=-a aB 、x x x 1165=-C 、m m m =-2D 、33376x x x =+三、化简下列各题(每题3分,共18分)23、)312(65++-a a 24、b a b a +--)5(225、-32009)214(2)2(++--y x y x 26、-[]12)1(32--+--n m m27、)(4)()(3222222y z z y y x ---+- 28、1}1]1)1([{2222-------x x x x四、化简求值(每题5分,共10分)29、)]21(3)13(2[22222x x x x x x ------- 其中:21=x30、)22()(3)2(2222222b a ab b a ab b a ab -+--- 其中:1,2==b a五、解答题(31、32题各6分,33、34题各7分,共24分)31、已知:;)()(,,0553212=+-m x y x m 满足 2312722a b b a y 与+-)(是同类项,求代数式:)733()9(6222222y xy x y xy m y x +---+-的值。
人教版七年级数学(上)第一章《整式》经典例题及练习含答案

人教版七年级数学(上)第一章《整式》经典例题及练习一. 教学内容:整式1. 单项式的有关概念,如何确定单项式的系数和次数;2. 多项式的有关概念,如何确定多项式的系数和次数;3. 什么是整式;4. 分析实际问题中的数量关系,培养用字母表示数量关系以及解决实际问题的能力.二. 知识要点:1. 用字母表示数时,应注意以下几点:(1)加、减、乘、除、乘方等运算符号将数和表示数的字母连接而成的式子是代数式.(2)代数式中出现的乘号一般用“·”或省略不写,例如4乘a写作4a.(3)在代数式中出现除法运算时,一般按分数的写法来写,例如a除以t写作.(4)代数式中大于1的分数系数一般写成假分数,例如2. 单项式(1)如3a,xy,-6m2,-k等,它们都是数与字母的积,像这样的式子叫做单项式. 对于单项式的理解有以下几点需要注意:①单项式反映的或者是数与字母,或者是字母与字母之间的运算关系,且这种运算只能是乘法,而不能含有加减运算,如代数式(x+1)3不是单项式.②字母不能出现在分母里,如不是单项式,因为它是n与m的除法运算.③单独的一个数或一个字母也是单项式,如0,-2,a都是单项式.(2)单项式的系数:是指单项式中的数字因数,如果一个单项式只含有字母因数,它的系数就是1或-1,如m就是1·m,其系数是1;-a2b就是-1·a2b,其系数是-1.(3)单项式的次数:是指一个单项式中所有字母的指数的和. 掌握好这个概念要注意以下几点:①从本质上说,单项式的次数就是单项式中字母因数的个数,如5a3b就是5aaab,有4个字母因数,因此它的次数就是4.②确定单项式的次数时,不要漏掉“1”. 如单项式3x2yz3的次数是2+1+3=6,字母因数的指数为1时,不能认为它没有指数.③单项式的次数只与单项式中的字母因数的指数有关,而不能误加入系数的指数,如单项式-2a3b4c5的次数是字母a、b、c的指数和,即3+4+5=12,而不是2+3+4+5=14.④单独一个非零数字的次数是零.3. 多项式(1)多项式:是指几个单项式的和. 其含义有:①必须由单项式组成;②体现和的运算法则,如3a2+b-5是多项式,(2)多项式的项:是指多项式中的每个单项式. 其中不含字母的项叫做常数项. 要特别注意,多项式的项包括它前面的性质符号(正号或负号).另外,一个多项式化简后含有几项,就叫做几项式. 多项式中的某一项的次数是n,这一项就叫做n次项. 如多项式x3+2xy+x2-x+y-1是六项式,x3的次数是3,叫三次项,2xy、x2的次数都是2,都叫二次项,-x、y的次数都是1,都叫一次项,后面的-1叫常数项.(3)多项式的次数:是指多项式里次数最高的项的次数. 应当注意的是:不要与单项式的次数混淆,而误认为多项式的次数是各项次数之和,如多项式3x4+2y2+1的次数是4,而不是4+2=6,故此多项式叫做四次三项式.4. 单项式与多项式统称为整式.三. 重点难点:1. 重点:单项式和多项式的有关概念.2. 难点:如何确定单项式的次数和系数,如何确定多项式的次数.【典型例题】例1. (1)(2008年宁夏)某市对一段全长1500米的道路进行改造. 原计划每天修x米,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天修路比原计划的2倍还多35米,那么修这条路实际用了__________天.(2)(2008年全国数学竞赛广东初赛)某商店经销一批衬衣,每件进价为a元,零售价比进价高m%,后因市场变化,该商店把零售价调整为原来零售价的n%出售,那么调整后每件衬衣的零售价是()A. a(1+m%)(1-n%)元B. am%(1-n%)元C. a(1+m%)n%元D. a(1+m%·n%)元分析:(1)修这条路实际用的天数等于这条路的全长1500米除以实际每天的工作量,原计划每天修x米,实际施工时,每天比原计划的2倍还多35米,即(2x+35)米. 用1500除以(2x+35)就可以了. (2)每件衬衣进价为a元,零售价比进价高m%,那么零售价就是a(1+m%),后来零售价调整为原来的n%,也就是a(1+m%)n%.评析:用字母表示数时,要注意书写代数式的惯例(数字在前字母在后,乘号省略,如果是除法写成分数的形式,系数是代分数时写成假分数,数字和字母写在括号的前面等)例2. 找出下列代数式中的单项式,并写出各单项式的系数和次数.单独一个数字是单项式,它的次数是0.8a3x的系数是8,次数是4;-1的系数是-1,次数是0.评析:判定一个代数式是否是单项式,关键就是看式子中的数字与字母或字母与字母之间是不是纯粹的乘积关系,如果含有加、减、除的关系,那么它就不是单项式.例3. 请你用代数式表示如图所示的长方体形无盖的纸盒的容积(纸盒厚度忽略不计)和表面积,这些代数式是整式吗?如果是,请你分别指出它们是单项式还是多项式.分析:容积是长×宽×高,表面积(无盖)是五个面的面积,在分辨它们是不是整式,是单项式还是多项式时,牵牵把握住概念,根据概念判断.解:纸盒的容积为abc;表面积为ab+2bc+2ac(或ab+ac+bc+ac+bc). 它们都是整式;abc是单项式,ab+2bc+2ac(或ab+ac+bc+ac+bc)是多项式.评析:①本题是综合考查本节知识的实际问题,作用有二:一是将本节所学知识直接应用到具体问题的分析和解答中,既巩固了知识,又强化了对知识的应用意识;二是将几何图形与代数有机结合起来,有利于综合解决问题能力的提高. ②本题解答关键:长方体的体积公式和表面积公式.故只剩下-2x2a+1y2的次数是7,即2a+1+2=7,则a=2.解:2评析:本题考查对多项式的次数概念的理解. 多项式的次数是由次数最高的项的次数决定的.例5. 把代数式2a2c3和a3x2的共同点填写在下列横线上.例如:都是整式.(1)都是____________________;(2)都是____________________.分析:观察两式,共同点有:(1)都是五次式;(2)都含有字母a.解:(1)五次式;(2)都含有字母a.评析:主要观察单项式的特征.例6. 如果多项式x4-(a-1)x3+5x2-(b+3)x-1不含x3和x项,求a、b的值.分析:多项式不含x3和x项,则x3和x项的系数就是0. 根据这两项的系数等于0就可以求出a和b 的值了.解:因为多项式不含x3项,所以其系数-(a-1)=0,所以a=1.因为多项式也不含x项,所以其系数-(b+3)=0,所以b=-3.答:a的值是1,b的值是-3.评析:多项式不含某项,则某项的系数为0.【方法总结】1. “用字母表示数”是代数学的基础,这种符号化的表示方法随着学习的深入会逐渐加深数学抽象化的程度,我们要体会这种抽象化,它更接近数学的本质,也是有效地解决数学问题的工具.2. 在学习多项式的时候,要注意和单项式的概念进行比较,通过比较两者之间的相同点和不同点,掌握两个概念之间的联系与区别,突出概念的本质,帮助我们理解多项式的概念.【模拟试题】(答题时间:40分钟)一. 选择题1. 在代数式中单项式共有()A. 2个B. 4个C. 6个D. 8个*2. 下列说法不正确的是()C. 6x2-3x+1的项是6x2,-3x,1D. 2πR+2πR2是三次二项式3. 下列整式中是多项式的是()4. 下列说法正确的是()A. 单项式a的指数是零B. 单项式a的系数是零C. 24x3是7次单项式D. -1是单项式5. 组成多项式2x2-x-3的单项式是下列几组中的()A. 2x2,x,3B. 2x2,-x,-3C. 2x2,x,-3D. 2x2,-x,3*7. 下列说法正确的是()B. 单项式a的系数为0,次数为2C. 单项式-5×102m2n2的系数为-5,次数为58. 下列单项式中的次数与其他三个单项式次数不同的是()**9. (2007年华杯初赛)如果一个多项式的各项的次数都相同,则称该多项式为齐次多项式. 例如:x3+2xy2+2xyz+y3是3次齐次多项式. 若x m+2y2+3xy3z2是齐次多项式,则m等于()A. 1B. 2C. 3D. 4二. 填空题1. (2007年云南)一台电视机的原价为a元,降价4%后的价格为__________元.三. 解答题*1. 下列代数式中哪些是单项式,并指出其系数和次数.2. 说出下列多项式是几次几项式:(1)a3-ab+b3(2)3a-3a2b+b2a-1(3)3xy2-4x3y+12(4)9x4-16x2y2+25y2+4xy-1四. 综合提高题**3. 一个关于字母a、b的多项式,除常数项外,其余各项的次数都是3,这个多项式最多有几项?试写出一个符合这种要求的多项式,若a、b满足︱a+b︱+(b-1)2=0,求你写出的多项式的值.【试题答案】一. 选择题1. B2. D3. B4. D5. B6. C7. D8. B9. B二. 填空题三. 解答题2. (1)三次三项式(2)三次四项式(3)四次三项式(4)四次五项式四. 综合提高题1. 由题意可知m+2+1=8,∴m=52. (1)四次六项式,最高次项是-3x3y,最高次项系数是-3,常数项是1(2)三次三项式,最高次项是y3,最高次项系数是1,常数项是-0.53. 最多有5项(可以含有a3,b3,a2b,ab2),如a3+a2b+ab2+b3+1(答案不唯一). 因为︱a+b ︱+(b-1)2=0,所以b=1,a=-1,所以原式=-1+1-1+1+1=1。
(完整)七年级数学整式单元测试题

(完整)七年级数学整式单元测试题本文为《七年级数学整式单元测试题》。
第一节选择题(共10小题,每小题2分,共计20分)1. 若a = -3,b = 5,则ab的值为()。
A. 8B. -8C. 15D. -152. 已知整式 f(x) = 2x² - 3x + 4 ,则 f(-1)的值为()。
A. -1B. 9C. 7D. -93. 若整式 P(x) = 3x³ - 2x² + 5x + 1 ,则 P(0)的值为()。
A. 1B. 0C. -1D. -54. 若 m = 2 ,则整式 2m² - 3m - 1 的值为()。
A. 1B. -1C. 5D. -55. 设整式 f(x) = 2x³ + 4x² - x + 1 ,则 f(1) + f(-1)的值为()。
A. 1B. 4C. 0D. -26. 若整式 \(g(x) = 4x^4 - 3x^2 + 7\),则 g(-1)的值为()。
A. -14B. 4C. 14D. -47. 已知整式 P(x) = x³ - 2x² - x + 4 ,则 P(3)的值为()。
A. -2B. 2C. 4D. 88. 若整式 \(f(x) = 2x^3 - 4\),则 f(2)的值为()。
A. 2B. 0C. 8D. -49. 设整式 \(P(x) = 3x^3 + 2x^2 - 5x - 2\),则 P(-1)的值为()。
A. -8B. 0C. 8D. 210. 若 a = -1 ,b = 2 ,则 \(ab^2\)的值为()。
A. -2B. -4C. 4D. 8第二节填空题(共5小题,每小题4分,共计20分)11. 设整式 \(f(x) = 3x^3 + 4x^2 - 2x + 1\) ,则 \(f(-2)\)的值为\underline{~~~~-3~~~~}。
12. 若 \(m = -2\) ,则整式 \(3m^2 + 4m + 1\) 的值为\underline{~~~~-3~~~~}。
整式章节测试题(综合)

整式章节测试题(综合)座位号考生注意:1.本卷共3页,满分100分.考试形式为闭卷,考试时间为60分钟.2.请将解题步骤及答案写在答题卡上(选择题、填空题直接写答案),所有内容写在试卷上均为无效!题号 一 二 三总分 1 2 3 4 得分一、 选择题(每小题3分,共30分) 1. 下列说法中正确的是( ) A. 5不是单项式 B a bc .3没有系数C x .41-不是整式 D x y z.26-+不是整式2. 下列多项式中,按x 升幂排列的是( ) A x y xy y .32223++ B y x x y x y .4223362-+-C xy x y x y .232244-++D x x y x y .--+3812333496521322324.若多项式为八次四项式,则正整数的值ab a b a b ma b m m +-+- 为( ) A. 2B. 3C. 4D. 5()()4.21432a xb x x ax bc x a b c +--+-+++为的二次二项式,则的值为()A B C D ....--2112 5842342610.多项式是()x x y z x -++A. 八次四项式B. 十次四项式C. 七次四项式D. 六次四项式()()6222222.化简的结果是()a ab b a b -+--+A a abB a ab ..3322--C a abD a ab ..2322++()72047632.a b c a b ab ÷-÷的结果是()得分 评卷人A a b cB a b ..--553355C a bD a b ..555552- ()()8.已知的乘积式中不含的一次项,则,满足()x a x b x a b ++A a bB aC a bD b ....===-=00 9.把代数式 322363x x y xy -+分解因式,结果正确的是A .(3)(3)x x y x y +-B .223(2)x x xy y -+ C .2(3)x x y - D .23()x x y - ()10562.已知,,则的值是()a b ab a b +=-=-A. 13B. 25C. -1D. 1二、 填空题(每小题3分,共30分)1325.长为,宽为的长方形的面积为。
整式单元测试卷(含答案)

整式单元测试卷(含答案)整式单元测试卷时间:60分钟,满分100分班级:__________ 姓名:__________ 学号:__________ 得分:__________一、填空题(每空3分,共39分)1.单项式 -xy^2/3 的系数是 -1.2.多项式 -3xy+5x^3y-2x^2y^3+5 是 4 次多项式。
3.把多项式 1-2x^3+5xy^2-3x^2y 按 x 的降幂排列是 -2x^3-3x^2y+5xy^2+1.4.若 x=3.2,y=6.8,则 x^2+2xy+y^2=82.56.5.计算:(-a)^3*(a^2b^3)^2=-a^7b^6.6.计算:-5a^5b^3c/15a^4b=-1/3a^1b^2c。
7.多项式 x^2+kx+36 是另一个多项式的平方,则 k= -6.8.代数式 3x+2y 的值是 -3,则 2+9x+6y 的值是 -25.9.如果 (2x+2y+1)(2x+2y-1)=63,则 x+y 的值为 2.10.若 a+b=1,a-b=2015,则 a^2-b^2=-8064.11.计算:(4x^3+4x)/(x^2+1)=4x。
二、选择题(每空3分,共18分)12.在代数式 x^2+5,-1,x^2-3x+2,π,5/2x,x+1 中,正式有 4 个。
答案:B。
13.单项式。
的系数和次数分别是 -2,3.答案:D。
14.已知2xy和-xy^2是同类项,则式子 1-2m 的值是 -2m^2.答案:D。
15.一个多项式与 x^2-2x+1 的和是 3x-2,则这个多项式为x^2-5x+3.答案:A。
16.原产量 n 吨,增产 30%之后的产量应为 (1+30%)n 吨。
答案:B。
17.下列计算正确的是 a^3*(-3a^2)=-3a^5.答案:B。
三、简答题(每题4分,共24分)18.(a^2)^3*(a^2)^4/(a^2)^5=a^6*a^8/a^10=a^14/a^10=a^4.答案:a^4.19.多项式 2x^3-3x^2+5x-1 的值在 x=2 时为 13.答案:13.20.若 a+b=4,ab=3,则 a^2+b^2=10.解法:(a+b)^2=a^2+2ab+b^2,代入 a+b=4 和 ab=3,得到a^2+b^2=10.答案:10.21.若 x+y=2,xy=1,则 x^2+y^2=2.解法:(x+y)^2=x^2+2xy+y^2,代入 x+y=2 和 xy=1,得到x^2+y^2=2.答案:2.22.若 a/b=2/3,b/c=4/5,则 a/c=8/15.解法:a/c=(a/b)*(b/c)=(2/3)*(4/5)=8/15.答案:8/15.23.若 (x+1)(x+2)(x+3)=30,则 x^3+6x^2+11x+6=0.解法:展开 (x+1)(x+2)(x+3)=30,得到 x^3+6x^2+11x+6=0. 答案:0.19.$(x-y+9)(x+y-9)$20.$\frac{(3x+4y)^2-3x(3x+4y)}{-4y}$21.因式分解:$1+x+x(1+x)$22.因式分解:$x-2xy-1+y-z$23.因式分解:$2(x-5y-2)(x-5y-4)$24.$x+y=-6$,$xy=9$25.$y=4$26.原式$=(a-b)+(b-c)=a-c$,因为$a-c=0$,所以$a=b=c$,即$\triangle ABC$是等边三角形。
初中数学人教版(五四制)六年级下册第八章 整式的加减8.1 整式-章节测试习题

章节测试题1.【题文】关于x、y的多项式(m﹣2)+(n+3)xy2+3xy﹣5.(1)若原多项式是五次多项式,求m、n的值;(2)若原多项式是五次四项式,求m、n的值.【答案】(1)m=﹣2、n为任意实数;(2)m=﹣2,n≠﹣3.【分析】(1)根据多项式的次数的定义求得m、n的值即可;(2)根据多项式的次数和项数的定义求得两个未知数的值或取值范围即可.【解答】解:(1)∵关于x、y的多项式(m﹣2)+(n+3)xy2+3xy﹣5是五次多项式,∴,解得:m=﹣2,∴原多项式是五次多项式,m=﹣2、n为任意实数;(2)∵关于x、y的多项式(m﹣2)+(n+3)xy2+3xy﹣5为五次四项式,∴,解得:m=-2,n≠-3,∴原多项式是五次四项式,m=﹣2,n≠﹣3.2.【题文】(1)已知代数式:4x﹣4xy+y2﹣x2y3.①将代数式按照y的次数降幂排列;②当x=2,y=﹣1时,求该代数式的值.(2)已知:关于xyz的代数式﹣(m+3)x2y|m+1|z+(2m﹣n)x2y+5为五次二项式,求|m﹣n|的值.【答案】(1)①﹣x2y3+y2﹣4xy+4x;②21;(2)1.【分析】(1)①按照字母y的次数从高到低进行排列即可;②把x、y的值代入进行求值即可;(2)根据多项式的次数和项数的定义即可求得m、n的值,然后再代入进行求值即可.【解答】解:(1)已知代数式:4x﹣4xy+y2﹣x2y3,①将代数式按照y的次数降幂排列为﹣x2y3+y2﹣4xy+4x;②当x=2,y=﹣1时,4x﹣4xy+y2﹣x2y3=8+8+1+4=21;(2)∵关于xyz的代数式-(m+3)x2y|m+1|z+(2m﹣n)x2y+5为五次二项式,∴,解得,∴|m﹣n|=|1﹣2|=1.3.【题文】单项式x2y m与多项式x2y2+x3y4+的次数相同,求m的值.【答案】5【分析】根据单项式的次数与多项式的次数分别求出单项式的次数与多项式的次数,根据次数相同列出方程,解方程即可得.【解答】解:∵单项式x2y m与多项式x2y2+x3y4+的次数相同,∴2+m=7,解得m=5.故m的值是5.4.【题文】将多项式按字母x的降幂排列.【答案】【分析】先分别求出各单项式里x的次数,再按x的降幂排列,即把x按从高次到低次排列.【解答】解:多项式的项为:,所以按字母x的降幂排列为:.5.【题文】观察下列一串单项式的特点:xy,﹣2x2y,4x3y,﹣8x4y,16x5y,…(1)按此规律写出第9个单项式;(2)试猜想第n个单项式为多少?它的系数和次数分别是多少?【答案】(1)256x9y;(2)(﹣1)n+12n﹣1x n y,它的系数是(﹣1)n+12n﹣1,次数是n+1.【分析】(1)通过观察可得:n为偶数时,单项式的系数为负数,x的指数为n 时,系数的绝对值是2n-1,由此即可解答本题;(2)先根据已知确定出第n个单项式,然后再根据单项式的系数是指单项式的数字因数,次数是所有字母指数的和解答即可.【解答】解:(1)∵当n=1时,xy,当n=2时,﹣2x2y,当n=3时,4x3y,当n=4时,﹣8x4y,当n=5时,16x5y,∴第9个单项式是29﹣1x9y,即256x9y;(2)∵n为偶数时,单项式的系数为负数,x的指数为n时,系数为2n﹣1,单项式为-2n﹣1x n y,当n为奇数时的单项式为2n﹣1x n y,所以第n个单项式为(﹣1)n+12n﹣1x n y,它的系数是(﹣1)n+12n﹣1,次数是n+1.6.【题文】指出下列多项式的项和次数,并说明它们是几次几项式:(1)x4-x2-x;(2)-3a2-3b2+1;(3)-2x6+x5y2-x2y5-1.【答案】见解析【分析】(1)找到最高次项,进而找到相应的次数;有几个单项式就是几项式;(2)找到最高次项,进而找到相应的次数;有几个单项式就是几项式;(3)找到最高次项,进而找到相应的次数;有几个单项式就是几项式.【解答】解:(1)x4-x2-x的项是x4,-x2,-x,次数是4,是四次三项式(2)-3a2-3b2+1的项是-3a2,-3b2,1,次数是2,是二次三项式(3)-2x6+x5y2-x2y5-1的项是-2x6,x5y2,-x2y5,-1,次数是7,是七次四项式7.【题文】观察下列代数式:-x,2x2,-3x3,4x4,A,B,…,-19x19,…并解答后面的问题.(1)所缺的代数式A是___,B是____;(2)试写出第2 015个和第2 016个代数式;(3)试写出第n个和第(n+1)个代数式.(n是正整数)【答案】(1)-5x5,6x6(2)第2 015个代数式是-2 015x2 015.第2 016个代数式是2 016x2 016;(3)第n个代数式为(-1)n nx n,第(n+1)个代数式是(-1)n+1(n+1)x n+1.【分析】(1)观察每个单项式的系数与x的指数,不看符号,都是从1开始的自然数,符号为奇数位置是负,偶数位置是正,根据这一规律可得:A和B分别是-5x5,6x6, (2)根据规律第2 015个代数式是-2 015x2 015,第2 016个代数式是2 016x2 016, (3)根据规律可得: 第n个代数式为(-1)n nx n和第(n+1)个代数式是(-1)n+1(n+1)x n+1.试题解析:【解答】解:(1)-5x5 6x6(2)第2 015个代数式是-2 015x2 015.第2 016个代数式是2 016x2 016;(3)第n个代数式为(-1)n nx n,第(n+1)个代数式是(-1)n+1(n+1)x n+1.8.【题文】观察下列单项式:-x,2x2,-3x3,…,-19x19,20x20,….(1)你能发现它们的排列规律吗?(2)根据你发现的规律,写出第101个和第102个单项式;(3)请写出第n个单项式.【答案】(1)奇数项系数为负,偶数项系数为正,系数的绝对值和字母的指数都等于项数(2)-101x101,102x102(3)(-1)n nx n【分析】本题考查了单项式,找出符号,系数,指数和项数之间的规律是解题的关键.【解答】解:奇数项系数为负,偶数项系数为正,系数的绝对值和字母的指数都等于项数..9.【题文】判断下列各式是否是单项式,是单项式的写出系数和次数:(1)x4;(2) ;(3)-5×102m2n3;(4) ;(5)2a-3;(6) .【答案】见解析.【分析】表示数或字母的积的式子叫做单项式.【解答】解:是单项式,系数是,次数是是单项式,系数是,次数是是单项式,系数是次数是是单项式,系数是,次数是不是单项式.不是单项式.10.【题文】已知代数式ax5+bx3+3x+c,当x=0时,该代数式的值为1.(1)求c的值;(2)当x=1时,该代数式的值为﹣1,求(a+b)3的值.【答案】(1)1;(2)﹣125.【分析】(1)把x=0代入代数式即可得到c的值;(2)把x=1代入代数式整理得到a+b,然后代入代数式进行计算即可.【解答】解:(1)把x=0代入代数式,得到c=1;(2)把x=1代入代数式,得到a+b+3+c=﹣1,∴a+b=﹣5,∴(a+b)3=(﹣5)3=﹣125.11.【答题】图1是一个三角形,分别连接这个三角形三边的中点得到图2;再分别连接图2中间小三角形的中点,得到图3.(若三角形中含有其它三角形则不记入)按上面方法继续下去,第20个图有______个三角形;第n个图中有______个三角形.(用n的代数式表示结论)【答案】77 4n﹣3【分析】第一个图形三角形的个数为1,第二个图形三角形的个数为1+4=5,第三个图形三角形的个数为1+4+4=9个,由此得出后面的图形比前一个图形增加了4个三角形,依此类推即可求解.【解答】解:图1有1个三角形;图2有5个三角形;图3有9个三角形;…依此类推,第20个图有1+(20﹣1)×4=77个三角形;第n个图中有4(n﹣1)+1=4n﹣3个三角形.故答案为:77;4n﹣3.方法总结:此题考查图形的变化规律,解题的关键是求出几个图形中三角形的个数,从而求出规律,利用规律,解决问题.12.【答题】观察如图图形的构成规律,依照此规律,第100个图形中共有______个“•”.【答案】10101【分析】本题主要考查了规律型:图形的变化类,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.【解答】解:由图形可知:n=1时,“•”的个数为:1×2+1=3;n=2时,“•”的个数为:2×3+1=7;n=3时,“•”的个数为:3×4+1=13;n=4时,“•”的个数为:4×5+1=21;所以n=n时,“•”的个数为:n(n+1)+1;当n=100时,“•”的个数为:100×(100+1)+1=10101.故答案为:10101.13.【答题】﹣的次数是______,系数是______.【答案】 5 -【分析】单项式中的数字因数就是单项式的系数,单项式中所有字母的指数的和就是单项式的次数.【解答】解:的次数是:3+2=5,系数是:故答案为:.14.【答题】多项式2a2﹣3a+4是a的______次______项式.【答案】二,三【分析】根据多项式的次数和系数解答即可.【解答】多项式2a2-3a+4最高次项2a2的次数为二,有三项.故答案为:二,三.15.【答题】已知多项式2+3x4﹣5xy2﹣4x2y+6x.将其按x的降幂排列为______.【答案】3x4﹣4x2y﹣5xy2+6x+2【分析】根据多项式的降幂排列解答即可.【解答】解:按x的降幂排列为:3x4﹣4x2y﹣5xy2+6x+2.故答案为:3x4﹣4x2y﹣5xy2+6x+2.16.【答题】如图,观察下列图形中三角形个数变化规律,那么第n个图形中一共有______个三角形(用含字母n的代数式表示).【答案】4n﹣3【分析】根据题意找出规律用字母表示即可.【解答】第1个图形中一共有1个三角形,第2个图形中一共有1+4=5个三角形,第3个图形中一共有1+4+4=9个三角形,第4个图形中一共有1+4+4+4=13个三角形,…,第n个图形中三角形的个数是1+4(n﹣1)=4n﹣3.故答案为4n﹣3.17.【答题】如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第(是大于0的整数)个图形需要黑色棋子的个数是______ .(1) (2) (3) (4)【答案】n2+2n【分析】本题考查了归纳推理的运用,解题时注意图形中有重复的点,即多边形的顶点.【解答】解:第1个图形是三角形,有3条边,每条边上有2个点,重复了3个点,需要黑色棋子2×3-3个;第2个图形是四边形,有4条边,每条边上有3个点,重复了4个点,需要黑色棋子3×4-4个;第3个图形是五边形,有5条边,每条边上有4个点,重复了5个点,需要黑色棋子4×5-5个;按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)-(n+2)=n(n+2);故答案为:n(n+2).18.【答题】多项式是______次______项式.【答案】三, 三【分析】根据多项式的概念解答即可.【解答】解:是三次三项式.故答案为:三,三.19.【答题】若整式x n﹣2﹣5x+2是关于x的三次三项式,那么n=______.【答案】5【分析】根据多项式的概念解答即可.【解答】由于整式x n﹣2﹣5x+2是关于x的三次三项式,所以n﹣2=5,解得:n=5,故答案为:5.20.【答题】单项式﹣a的系数是______.【答案】﹣1【分析】根据单项式的系数解答即可.【解答】﹣a=-1×a,故答案为﹣1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式章节测试题精选
一、选择题
1、下列各组中,不是同类项的是( )
A 、2235.0ab b a 与
B 、y x y x 2222-与
C 、3
15与 D 、m m x x 32--与 2、若七个连续整数中间的一个数为n ,则这七个数的和为( )
A 、0
B 、7n
C 、-7n
D 、无法确定
3、下列去括号错误的共有( )
①c ab c b a +=++)(;②d c b a d c b a +--=-+-)(;③c b a c b a -+=-+2)(2;④b a a b a a b a a +-=+--+---222)]([
A 、1个
B 、2个
C 、3个
D 、4个
4、计算:)](2[n m m n m ----等于( )
A 、n 2-
B 、m 2
C 、n m 24-
D 、m n 22-
5、式子223b a -与22b a +的差是( )
A 、22a
B 、2222b a -
C 、24a
D 、2224b a -
6、减去m 3-等于5352--m m 的式子是( )
A 、)1(52-m
B 、5652--m m
C 、)1(52+m
D 、)565(2-+-m m
7.在下列代数式:21ab ,2b a +,ab 2+b+1,x 3+y
2,x 3+ x 2-3中,多项式有( ) A .2个 B .3个 C .4个 D5个
8.多项式-23m 2-n 2是( ) A .二次二项式 B .三次二项式 C .四次二项式 D 五次二项式
二、填空题
1、若
4243b a b a m n 与是同类项,则m =____,n =____。
2、若4)13(22+-=+--a a A a a ,则A =_____。
3、去括号:__________)(32________;)2(2=-+-=-+-d c b a y x
4、已知:_______2,3,2=-+=-=-c b a c b c
a 则 5、a 、
b 、
c 的位置如图所示,=--++--
b c c a b a _____。
三、解答题
1、去括号并合并同类项 (1) )32(3)5(y x y x --+-; (2) )32(2[)3(1yz x x xy +-+--
2、计算
(1))32(3)23(4)(5b a b a b a -+--+ (2))377()5(322222a b ab b ab a a ---+--
3、化简求值
①2),45()54(3223-=--++-x x x x x 其中
②43,32),12121()3232(==+----
y x xy x y xy 其中
4、试用含x 的多项式表示如图所示中阴影部分的面积。
5、已知222222324,c b a B c b a A ++-=-+=,且A +B +C =0。
求(1)多项式C 。
(2)若3,1,1=-==c b a ,求A +B 的值。
6、三个队植树,第一队种a 棵,第二队种的比第一队种的树的2倍还多8棵,第三队种的比第二队种的树的一半少6棵,问三个队共种多少棵树?并求当100=a 棵时,三个队种树的总棵数。