氧化脱羧与简单脱羧的区别
第七章生物氧化

3.生物氧化的特点 3.生物氧化的特点
C6H12O6 + 6O2 (2840kJ/mol) 6CO2+6H2O + 能量
生物氧化
反应条件 反应过程 能量释放 CO2生成方式 温 和 (体温、pH近中性) 体温、pH近中性) 近中性 酶促反应 逐步进行 (化学能、热能) 化学能、热能) 有机酸脱羧
体外燃烧
呼 吸 链
AH2
2H(2H++2e)
1 2 O2
H2O
氧化
A ADP+Pi
能量 ATP 磷酸化
偶 联
NADH呼吸链能够产生 呼吸链能够产生3 如:1mol NADH + H+经NADH呼吸链能够产生3 molATP
3.氧化磷酸化偶联部位(重点) 3.氧化磷酸化偶联部位(重点) 氧化磷酸化偶联部位
(P253)
位置: 位置:位于线粒体内 膜上(真核) 膜上(真核),细胞 膜上(原核) 膜上(原核)。
线粒体的结构
呼吸链
二、呼吸链的化学组成成分
脱羧反应

均相络合催化脱羧
以过渡金属为中心构成的络合物, 在均相下进行催化反应脱羧。
脱 羧 反 应 的 现 状
多相催化脱羧
多相催化反应体系由流体主体、催 化剂颗粒和它们之间的滞留层组成。反应 物分子和产物分子通过滞留层的传质,内 扩散到催化剂内表面的反应物分子,进行 包括吸附、表面化学反应和产物分子脱附 的一系列表面化学过程。
脱 羧 反 应 的 现 状
热化学脱羧
羧酸负离子机理
三氯乙酸的钠盐在水中完全离解成负离 子,由于三个氯原子具有强的吸电子作用,使 得碳-碳之间的电子云偏向于有氯取代的碳 一边,这样形成的负碳离子就更加稳定,然后 和质子结合形成氯仿,而羧基负离子上的电 子则转移到碳氧之间而形成二氧化碳。
脱 羧 反 应 的 现 状
其它催化脱羧
杂环胺类 杂环碱
脱 羧 反 应 结 合 0305
α-羰基酸脱羧
α-羰基酸脱羧的反应原理与三氯乙酸类似,在α羰基酸分子中,由于氧原子的吸电子效应,羰基与羧基 间的电子云密度较低,碳-碳键易于断裂,从而发生脱羧 反应。2-羟基戊烷乙酸在浓硫酸下脱羧则遵循脱羧反 应的环状过渡态机理。通过六元环过渡态,首先是醇 羟基形成钅羊盐,然后失水成烯,β,γ-不饱和烯酸经六 元环过渡态失羧。
光-电化学脱羧
催 化 作 用
光化学脱羧
电化学脱羧
脱 羧 反 应 的 现 状
催化脱羧
酶催化脱羧
均相络合催化脱羧 多相催化脱羧 其它催化脱羧
脱 羧 反 应 的 现 状
酶催化脱羧
天然酶:乙酰乳酸脱羧酶、丙酮酸 脱羧酶、OMP脱羧酶等 人工酶:模拟酶又称仿酶,是根据酶的结构、 功能以及催化机制,用化学合成法合成的具 有酶催化活性的人工酶制剂。
第6章 生物氧化习题

第6章生物氧化习题第6章生物氧化习题第六章生物氧化复习测试(一)名词释义1.生物氧化2.α-脱羧3.氧化脱羧4.呼吸链5.氧化磷酸化6.底物水平磷酸化7.p/0比值8.氧化磷酸去耦9氢和电子发射器10。
苹果酸天冬氨酸穿梭机(二)选择题a类问题:1.生物氧化co2的产生是:a、 B.有机酸脱羧是在呼吸链的氧化还原过程中产生的c.碳原子被氧原子氧化d.糖原的合成e.以上都不是2.生物氧化的特点不包括:a.遂步放能b.有酶催化c.常温常压下进行d.能量全部以热能形式释放e.可产生atp3.可兼作需氧脱氢酶和不需氧脱氢酶的辅酶是:a、 nad+b.nadp+c.fadd。
科克。
cytc4。
NADH氧化呼吸链的成分不包括:a.nad+b.coqc.fadd.fe-se.cyt5.以下代谢物经酶去除2h后不能被NADH呼吸链氧化:A.苹果酸B.异柠檬酸C.琥珀酸D.丙酮酸e.A-酮戊二酸6。
丙酮酸转化为乙酸辅酶A的过程如下:a.α-单纯脱酸,b.β-单纯脱酸c.α-氧化脱酸d.β-氧化脱酸e.以上都不是7.以下关于呼吸链的陈述哪项是错误的:A.复合物III和IV由两条呼吸链共享B.它可以抑制cytaa3并阻止电子转移C.氢传输器只传递氢而不传递电子D.cytaa3紧密结合e.atp的产生为氧化磷酸化8.呼吸链中各种细胞色素的电子转移顺序为:A.A→ A3→ B→ C1→ 1/2O2b.b→c1→c→a→a3→1/2o2c.a1→b→c→a→a3→1/2o2d.a→a3→b→c1→a3→1/2o2e .c→c1→b→aa3→1/2o29.电子根据以下公式转移,可以耦合磷酸化:a.cytaa3→ 1/2o2b。
琥珀酸→ FADC。
CoQ→ cytbd。
SH2→ NAD+E.以上都没有10.关于呼吸链组成成分说法错误的是:a.coq通常与蛋白质结合形式存在b.cyta 与cyta3结合牢固c、铁硫蛋白的半胱氨酸硫与铁原子D相连。
生化习题

1、生物氧化CO2 生成方式有那哪几种?
生物体内CO2的生成来源于有机物转变为含羧基化合物的脱羧作用。
脱羧的方式有四种:
(1)直接脱羧基作用:
α-直接脱羧β-直接脱羧
(2)氧化脱羧基作用:
α-氧化脱羧β-氧化脱羧
2、呼吸链中细胞色素有哪几种?其功能是什么?
细胞色素是一类含有血红素辅基的电子传递蛋白质的总称
在生物氧化反应中,其铁离子可为+2价亚铁离子,也可为+3价高铁离子。
通过这种转变而传递电子。
细胞色素为单电子传递体
根据吸收光谱的不同将细胞色素分为a、b、c三类
Cyta: Cytaa3 功能:复合体Cytaa3除了含有铁卟啉外,还含有铜原子。
cyt. aa3可以直接以O2为电子受体。
Cytb: Cytb562 、Cytb566 、Cytb560 功能:作为复合物III的活性部分组成之一
Cytc: Cytc 、c1功能:cytc通过Fe3+«Fe2+的互变起电子传递中间体作用,将电子传递给细胞色素c 氧化酶。
考研科目动物生物化学 第9章 生物氧化

铁硫蛋白 (iron-sulfur protein)
Fe2S2,
Fe4S4 Fe4S4
铁硫蛋白通过Fe3+ 和Fe2+变化起传递电 子的作用。
辅酶Q (CoQ)
辅酶Q又称泛醌(ubiquinone),是 脂溶性化合物。CoQ的功能是作为氢传 递体:
CoQ + 2H
CoQH2
辅酶Q既接受NADH脱氢酶的氢,还接受线 粒体其他脱氢酶(琥珀酸-Q还原酶)脱下的氢。
部位I:NADH和辅酶Q之间 部位II:辅酶Q和cyt-c1之间 部位III: cyt-a 和 O2 之间
(3)氧化磷酸化的偶联机理
① 化学偶联假说(chemical coupling hypothesis)
电子传递和ATP生成的偶联是通过一 系列连续的化学反应形成一个高能共价中 间物,这个中间物随后又裂解将其能量供 给ATP的合成。
NADH:,分子Pi和ADP生成分子 ATP,。
FMN:分子Pi和ADP生成分子ATP,。
(2)氧化磷酸化的偶联部位
当电子从一个氧化还原电位较低的 还原型递体转移到较高电位的氧化型递 体时,就有负自由能变化,即能量的释 放。
△
△
△
推动ADP磷酸化形成ATP所需的 标准自由能大约在
ADP形成ATP的部位
- Ⅲ---
--
延胡索酸 琥珀酸
H2O 1/2O2+2H+
Cyt氧化酶
Cyt还原酶
ADP+Pi
-
催化 F1 ATP
ATP
H+
化学渗透假说的要点是:
A H+和电子的传递体按一定的顺序 排列在线粒体内膜上,氧化磷酸化 作用的进行需有完整的线粒体。
三羧酸循环中脱羧反应和脱氢反应

三羧酸循环中的脱羧反应和脱氢反应一、引言三羧酸循环(TCA循环)是生物体内一种非常重要的代谢途径,它在细胞呼吸中发挥着至关重要的作用。
在三羧酸循环中,脱羧反应和脱氢反应是两个核心步骤,它们负责将乙酰辅酶A氧化成二氧化碳和水,并产生大量还原型辅酶NADH和FADH2。
这两种辅酶又很大程度上参与了线粒体内细胞呼吸链的工作。
本文将就三羧酸循环中的脱羧反应和脱氢反应展开全面的评估,并从浅入深地探讨这一主题。
二、脱羧反应(一)脱羧反应的定义和作用脱羧反应是三羧酸循环中的一种重要反应,它主要发生在异丙酰辅酶A脱羧酶作用下。
在这一反应中,乙酰辅酶A经过一系列酶催化作用,失去两个碳原子,生成丙酮酸。
这是三羧酸循环中的第一步脱羧反应,也是将有机物氧化为二氧化碳的关键步骤。
(二)脱羧反应的化学方程式和催化酶脱羧反应的化学方程式如下:乙酰辅酶A + GDP + Pi + NAD+ →羧基-辅酰胺 + CoA + NADH + CO2 + GTP脱羧反应主要由异丙酰辅酶A脱羧酶催化。
(三)脱羧反应的生物学意义脱羧反应将乙酰辅酶A氧化成丙酮酸的也产生了两分子还原型辅酶NADH。
这些还原型辅酶又可以进入线粒体内的细胞呼吸链,产生更多的三磷酸腺苷(ATP),为细胞提供充足的能量。
三、脱氢反应(一)脱氢反应的定义和作用脱氢反应是三羧酸循环中的另一个重要反应,它主要包括4个脱氢酶作用。
这些脱氢反应将丙酮酸、柠檬酸等有机酸氧化成了辅酰胺、嘌呤核苷酸二磷酸酶和α-麦角甾酮。
这是三羧酸循环中的另一关键步骤,也是细胞呼吸链所需的还原剂NADH和FADH2的主要生成途径。
(二)脱氢反应的化学方程式和催化酶脱氢反应的化学方程式如下:A酶-乙酰辅酶A + NAD+ ⇒ A酶-辅酰胺 + NADH + CO2脱氢反应主要由乳酸脱氢酶、苹果酸脱氢酶、橙酸脱氢酶和莽草酸脱氢酶催化。
(三)脱氢反应的生物学意义脱氢反应将有机酸氧化成了辅酰胺、嘌呤核苷酸二磷酸酶和α-麦角甾酮,产生了很多还原型辅酶NADH和FADH2。
生物化学第八章 生物氧化

1 O2 2
H2O
实测得FADH2呼吸链: P/O~ 2
FADH2
线粒体是真核细胞的一种细胞器,是生物氧化和能 量转换的主要场所。是组织细胞的“发电厂”。 线粒体内,外膜的化学组成有显著的区别; 外膜:磷脂,胆固醇含量高,蛋白质含量低 内外膜间隙:腺苷酸激酶,核苷酸激酶等 内膜:有些脱氢酶,氧化呼吸链有关的酶, ATP 合成酶 基质: 催化糖有氧分解,脂肪酸氧化,氨基酸分 解和蛋白质生物合成的酶
3
二、生物氧化的一般过程
主要解决三个问题:
1.代谢物中C如何在酶催化下生成CO2;
2.细胞如何利用O2将代谢物中的H氧化成H2O;
3.氧化产生的自由能怎样被收集、转换和储存。
4
生物氧化的三个阶段
脂肪 多糖 蛋白质
大分子降解 成基本结构 单位
脂肪酸、甘油
葡萄糖、 其它单糖
氨基酸
乙酰CoA
小分子化合物 分解成共同的 中间产物(如 丙酮酸、乙酰 CoA等)
31
2. 高能化合物
生化反应中,在水解时或基团转移反应中可释
放出大量自由能( >20 千焦 / 摩尔)的化合物称为 高能化合物。
32
高 能 化 合 物 类 型
33
3. ATP的特点
在 pH=7 环 境 中 , ATP 分子中的三个磷 酸基团完全解离成带 4个负电荷的离子形 式 ( ATP4-), 具 有 较大势能,加之水解 产物稳定,因而水解 自由能很大( ΔG°′= -30.5千焦/摩尔)。
34
4.ATP的特殊作用
在机体的能量代谢中, ATP 就好像能量通币, 高能化合物虽有多种,只有 ATP 可为一切生 理机能与生物合成反应提供能量; ATP是细胞内磷酸基团转移的中间载体
生物化学第六章生物氧化

(还原剂) (氧化剂)
可写成 A2+ B3+
A3+
B2+
2019/11/23
生物化学教研室
9
第三节 生成ATP的氧化体系
一、呼吸链的概念
代谢物脱下的成对氢原子(2H)通过多种酶和辅酶所 催化的连锁反应逐步传递,最终与氧结合生成水。由 于此过程与细胞呼吸有关,所以将传递链称为呼吸链, 也叫电子传递呼吸链。
氧化酶,而其它均为不需氧脱氢酶。其中a与 a3很难分开,常写为aa3。
在微粒体中主要为细胞色素b5、p450。p450作用 与aa3类似 。
2019/11/23
生物化学教研室
19
细胞色素的结构
2019/11/23
生物化学教研室
20
呼吸链复合体
人线粒体呼吸链通过上述5大类成分形成4个复合体。
2019/11/23
P/O比值:每消耗1摩尔原子氧所消耗的无机磷 原子的摩尔数。
2019/11/23
生物化学教研室
39
2、氧化磷酸化的偶联机制
内模胞浆侧
化 学 渗 透 学 说内膜基侧2019/11/23
生物化学教研室
40
ATP合酶(复合体Ⅴ)
由F1和F0组成。 F1 在线粒体内膜基质 侧形成颗粒状突起, 催化ATP的生成。 F膜0镶中嵌。在当线H+粒顺体浓内度 梯度经回流时,γ 亚基发生旋转,3个 β 亚基构象变化, 由紧密结合型变为 开放型,释放ATP。
根据呼吸链各组分的标准氧化还原电位测定(电位越 低越容易失去电子)、利用呼吸链特异性的阻断剂测 定其氧化和还原状态的吸收光谱及离体线粒体各组分 的氧化顺序等实验,确定了呼吸链各组分的排列顺序, 并发现体内存在两条主要的呼吸链。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于脱羧反应:丙酮酸脱氢酶系与丙酮酸脱羧酶参与的两种反应的区别
由丙酮酸脱氢酶系催化进行的丙酮酸催化反应是一种特殊的脱羧方式,即氧化脱羧,它与普通的脱羧反应,即普通脱羧有所不同。
氧化脱羧反应由丙酮酸脱氢酶系催化进行,此酶系包含3种不同的酶:丙酮酸脱氢酶(E1)、二氢硫辛酰胺乙酰转移酶(E2)、二氢硫辛酰胺脱氢酶(E3),以及6种辅助因子:焦磷酸硫胺素(TPP)、硫辛酰胺、辅酶A(COA)、黄素腺嘌呤二核苷酸(FAD)、烟酰胺腺嘌呤二核苷酸(NAD+)以及镁离子。
在反应中E1参与丙酮酸的脱羧反应,之后由TPP将反应后的乙酰基连接,乙酰基的羰基与tpp噻唑环上的碳负离子羰基发生加成反应变为羟乙基:
之后经E2催化,tpp将羟乙基送至硫辛酰胺之上,并被其重新氧化成为乙酰基,产生硫酯键,此时的化合物即乙酰二氢硫辛酰胺:
再经E2催化,乙酰基转移,形成乙酰COA:
以上的所有反应只有脱羧反应,并没有涉及H的移动,而丙酮酸脱氢酶系真正的脱氢效果在下一步反应中才体现:
失去了乙酰基的乙酰二氢硫辛酰胺,即二氢硫辛酰胺需要重新氧化为硫辛酰胺再次参与反应,这时需要E3参与催化反应,将二氢硫辛酰胺脱去的氢传递给FAD,使其成为FADH2,而FADH2与NAD+反应,生成NADH和H+:
综上所述在氧化脱氢反应中,既有氧化反应进行,又有脱氢效应进行。
对于简单脱羧反应,此反应参与的酶为丙酮酸脱羧酶,与氧化脱羧不同,在反应过程中,丙酮酸直接与tpp的噻唑环连接,丙酮酸上的羧基在连接之后脱去,生成二氧化碳。
之后羟乙基与tpp分离,生成乙醛。