优质小学奥数几何图形专题(带答案解析)
小学奥数题库《几何》-直线型-金字塔和沙漏模型-0星题(含解析)

几何-直线型几何-金字塔和沙漏模型-0星题课程目标知识提要金字塔和沙漏模型• 金字塔模型CD CA =CE CB =DEAB • 沙漏模型AB CD =AO DO =BO CO 精选例题金字塔和沙漏模型1. ABCD 是平行四边形,面积为72平方厘米,E 、F 分别为AB 、BC 的中点,那么图中阴影局部的面积为平方厘米.【答案】48【分析】方法一:设G 、H 分别为AD 、DC 的中点,连接GH 、EF 、BD . 可得 S △AED =14S 平行四边形ABCD , 对角线BD 被EF 、AC 、GH 平均分成四段,又OM ∥ EF ,所以 DO:ED =24BD:34BD =2:3, OE:ED =(ED −OD ):ED =(3−2):3=1:3, 所以S △AEO =13×14S 平行四边形ABCD =13×14×72=6(平方厘米), S △ADO =2×S △AEO =12(平方厘米).同理可得S △CFM =6(平方厘米),S △CDM =12(平方厘米).所以S△ABC−S△AEO−S△CFM=36−6−6=24(平方厘米),于是,阴影局部的面积为24+12+12=48(平方厘米).方法二:寻找图中的沙漏,AE:CD=AO:OC=1:2,FC:AD=CM:AM=1:2,因此O,M为AC的三等分点,S△ODM=16S平行四边形ABCD=16×72=12(平方厘米),S△AEO=14S△OCD=14×12×2=6(平方厘米),同理S△FMC=6(平方厘米),所以S阴影=72−12−6−6=48(平方厘米).2. 如图,△ABC中,DE,FG,MN,PQ,BC互相平行,AD=DF=FM=MP=PB,那么S△ADE:S四边形DEGF :S四边形FGNM:S四边形MNQP:S四边形PQCB=.【答案】1:3:5:7:9【分析】设S△ADE=1份,S△ADE:S△AFG=AD2:AF2=1:4,因此S△AFG=4份,进而有S四边形DEGF =3份,同理有S四边形FGNM=5份,S四边形MNQP=7份,S四边形PQCB=9份.所以有S△ADE:S四边形DEGF:S四边形FGNM:S四边形MNQP:S四边形PQCB=1:3:5:7:9.3. 图中的大小正方形的边长均为整数〔厘米〕,它们的面积之和等于52平方厘米,那么阴影局部的面积是平方厘米.【答案】10.8【分析】设大、小正方形的边长分别为m厘米、n厘米〔m>n〕,那么m2+n2=52,所以m<8.假设m⩽5,那么m2+n2<52×2=50<52,不合题意,所以m只能为6或7.检验可知只有m=6、n=4满足题意,所以大、小正方形的边长分别为6厘米和4厘米.根据相似三角形性质,BG:GF=AB:FE=6:4=3:2,而BG+GF=6,得BG=3.6(厘米),所以阴影局部的面积为:1 2×6×3.6=10.8(平方厘米).4. 如图,DE平行BC,假设AD:DB=2:3,那么S△ADE:S△ECB=.【答案】4:15【分析】根据金字塔模型AD:AB=AE:AC=DE:BC=2:(2+3)=2:5,S△ADE:S△ABC= 22:52=4:25,设S △ADE =4份,那么S △ABC =25份,S △BEC =25÷5×3=15份,所以S △ADE :S △ECB =4:15.5. 如图,DE 平行BC ,BO:EO =3:2,那么AD:AB =.【答案】2:3【分析】由沙漏模型得BO:EO =BC:DE =3:2,再由金字塔模型得AD:AB =DE:BC =2:3.6. 梯形ABCD 的面积为12,AB =2CD ,E 为AC 的中点,BE 的延长线与AD 交于F ,四边形CDFE 的面积是.【答案】83【分析】延长BF 、CD 相交于G .由于E 为AC 的中点,根据相似三角形性质,CG =AB =2CD, GD =12GC =12AB, 再根据相似三角形性质,AF:FD =AB:DG =2:1, GF:GB =1:3,而S △ABD :S △BCD =AB:CD =2:1,所以 S △BCD =13S ABCD =13×12=4, S △GBC =2S △BCD =8.又S △GDF S △GBC =12×13=16, S △EBC =12S △GBC , 所以S CDFE =(1−12−16)S △GBC =13S △GBC =83. 7. 如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,且图中两个阴影局部〔甲和乙〕的面积差是5.04,那么S △ABC =.【答案】20.16【分析】由于D ,E 都是中点,那么BC =2DE ,设DE 为1份,那么BC 为2份,根根据梯形中的蝴蝶模型,得到甲是1份,乙是4份,两个翅膀都是2份,由此可推出△ADE 为3份,且每份为5.04÷(4−1)=1.68,所以S △ABC =1.68×(3+1+4+2+2)=20.168. 如图,△ABC 中,DE ,FG ,BC 互相平行,AD =DF =FB ,那么S △ADE :S 四边形DEGF :S 四边形FGCB =.【答案】1:3:5【分析】设S △ADE =1份,根据面积比等于相似比的平方,所以S △ADE :S △AFG =AD 2:AF 2=1:4,S △ADE :S △ABC =AD 2:AB 2=1:9,因此S △AFG =4份,S △ABC =9份,进而有S 四边形DEGF =3份,S 四边形FGCB =5份,所以S △ADE :S 四边形DEGF :S 四边形FGCB =1:3:5.9. 如下列图所示,三角形田地中有两条小路AE 和CF ,交叉处为D .张大伯常走这两条小路,他知道DF =DC ,且AD =2DE .那么两块田地ACF 和CFB 的面积比是.【答案】1:2【分析】方法一:如下列图所示,ACF 和CFB 为同高三角形,所以面积比等于底边比AF:FB . 过F 作BC 的平行线,交AE 于G ,那么因为DF =DC ,所以三角形CED 和FGD 全等,GD =DE .又因为AD =2DE ,所以D 和G 是AE 的三等分点,所以AF:FB =AG:GE =1:2.方法二:如下列图所示,连接BD ,设S △CED =1(份),那么S △ACD =S △ADF =2(份). 设S △BED =x,S △BFD =y ,那么有{x +1=y 2x =y +2,解得{x =3y =4. 所以S △ACF :S △CFB =(2+2):(4+3+1)=1:2.10. 在下列图中,线段AE 、FG 将长方形ABCD 分成了四块;其中两块的面积分别是2平方厘米、11平方厘米,且E 是BC 的中点,O 是AE 的中点.请问长方形ABCD 的面积是平方厘米.【答案】28【分析】如下列图所示,延长AE 、DC 交于点H .由于E 是BC 的中点,由AB ∥CH ,有AE:EH =BE:EC =1:1,由于O 是AE 中点,那么AO:OH =1:3.由AF ∥GH ,有S △AOF :S △GOH =12:32=1:9.所以,S △GOH =2×9=18(平方厘米),那么S △CEH =18−11=7(平方厘米).所以,S 平行四边形ABCD =4S △ABE =4S △CEH =4×7=28(平方厘米).11. 如下列图所示,将边长8厘米和12厘米的两个正方形并放在一起,那么图中阴影三角形的面积是平方厘米.【答案】43.2【分析】给图中标上字母,如下列图.根据沙漏模型OC OF =BC EF =812=23.所以OF =12×32+3=7.2(厘米).S △EFO =7.2×12÷2=43.2(平方厘米). 12. 如图,△ABC 中,AE =14AB ,AD =14AC ,ED 与BC 平行,△EOD 的面积是1平方厘米.那么△AED 的面积是平方厘米.【答案】53 【分析】因为AE =14AB ,AD =14AC ,ED 与BC 平行,根据相似模型可知ED:BC =1:4,EO:OC =1:4,S △COD =4S △EOD =4平方厘米,那么S △CDE =4+1=5平方厘米,又因为S △AED :S △CDE =AD:DC =1:3,所以S △AED =5×13=53(平方厘米).13. 如图,四边形ABCD 和EFGH 都是平行四边形,四边形ABCD 的面积是16,BG:GC =3:1,那么四边形EFGH 的面积=.【答案】3【分析】因为FGHE 为平行四边形,所以EC ∥AG ,所以AGCE 为平行四边形.BG:GC =3:1,那么GC:BC =1:4,所以S 平行四边形AGCE =14×S 平行四边形ABCD =14×16=4.又AE=GC,所以AE:BG=GC:BG=1:3,根据沙漏模型,FG:AF=BG:AE=3:1,所以S平行四边形FGHE =34S平行四边形AGCE=34×4=3.14. 正六边形A1,A2,A3,A4,A5,A6的面积是2009平方厘米,B1,B2,B3,B4,B5,B6分别是正六边形各边的中点.请问下列图中阴影六边形的面积是平方厘米.【答案】1148【分析】方法一:如下左图,连接A1A3,A1G,A6A3,过B6做A6A3的平行线B6E,交A1A3于E.因为空白的面积等于△A2A3G面积的6倍,所以关键求△A2A3G的面积,在△A1A2A3中用燕尾模型时,需要知道A1D,A3D的长度比,根据沙漏模型得A1D=DE,再根据金字塔模型得A1E=A3E,因此A1D:A3D=1:3,在△A1A2A3中,设S△A1A2G =1份,那么S△A2A3G=3份,S△A3A1G =3份,所以S△A2A3G=37S△A1A2A3=37×13×12S正六边形=114S正六边形,因此S阴影=(1−114×6)S正六边形=47×2009=1148(平方厘米).方法二:既然给的图形是特殊的正六边形,且阴影也是正六边形,我们可以用上图的割补思路,把正六边形分割成14个大小形状相同的梯形,其中阴影有8个梯形,所以阴影面积为8 14×2009=1148(平方厘米).15. 如图,三角形ABC的面积为60平方厘米,D、E、F分别为各边的中点,那么阴影局部的面积是平方厘米.【答案】12.5【分析】阴影局部是一个不规那么的四边形,不方便直接求面积,可以将其转化为两个三角形的面积之差.而从图中来看,既可以转化为△BEF与△EMN的面积之差,又可以转化为△BCM 与△CFN的面积之差.〔法一〕如图,连接DE.由于D、E、F分别为各边的中点,那么BDEF为平行四边形,且面积为三角形ABC面积的一半,即30平方厘米;那么△BEF的面积为平行四边形BDEF面积的一半,为15平方厘米.根据几何五大模型中的相似模型,由于DE为三角形ABC的中位线,长度为BC的一半,那么EM:BM=DE:BC=1:2,所以EM=13 EB;EN:FN=DE:FC=1:1,所以EN=12 EF.那么△EMN的面积占△BEF面积的12×13=16,所以阴影局部面积为15×(1−16)=12.5(平方厘米).〔法二〕如图,连接AM.根据燕尾定理,S△ABM:S△BCM=AE:EC=1:1,S△ACM:S△BCM=AD:DB=1:1,所以S△BCO=13S△ABC=13×60=20(平方厘米),而S△BDC=12S△ABC=12×60=30(平方厘米),S △FCN =14S △BDC =7.5(平方厘米), 那么阴影局部面积为20−7.5=12.5(平方厘米).【总结】求三角形的面积,一般有三种方法:〔1〕利用面积公式:底×高÷2;〔2〕利用整体减去局部;〔3〕利用比例和模型.16. 在图中的正方形中,A 、B 、C 分别是ED 、EG 、GF 的中点.请问:三角形CDO 的面积是三角形ABO 面积的几倍?【答案】3倍.【分析】不妨设正方形的边长是2,所以FC =CG =GB =BE =EA =AD =1.又A 、C 分别是所在边的中点,所以AC ∥GE ,即OA ∥BE ,由此可见OA 是△DBE 的中位线,有OA BE =12,所以△OAD 的面积是 12×1÷2=14. △AOB 的面积等于△BAD 的面积减去△AOD 的面积,等于 1×1÷2−14=14. △COD 的面积等于△CAD 的面积减去△AOD 的面积,等于 2×1÷2−14=34. 由此可得,△CDO 的面积是△ABO 面积的3倍.17. 如下图,梯形ABCD 的面积是50,下底长是上底长的1.5倍,阴影三角形的面积是多少?【答案】18.【分析】上底与下底的长度比为2:3,设△OCD 面积是4份,那么△AOD 与△BOC 的面积均为6份,△ABO 的面积为9份,总面积为50,故一份所对应的面积为2,那么△ABO 的面积为18.18. 如图,平行四边形ABCD 的面积是12,DE =13AD,AC 与BE 的交点为F ,那么图中阴影局部面积是多少?【答案】4.4.【分析】AE:BC =2:3,设份数可知ABCD 为30份,△AEF 为4份,阴影局部占11份,面积为4.4.19. 正方形ABCD ,过C 的直线分别交AB 、AD 的延长线于点E 、F ,且AE =10cm ,AF =15cm ,求正方形ABCD 的边长.【答案】6【分析】方法一:此题有两个金字塔模型,根据这两个模型有BC:AF =CE:EF,DC:AE =CF:EF,设正方形的边长为xcm ,所以有 BC AF +DC AE =CE EF +CF EF =1, 即 x 15+x 10=1,x=6,所以正方形的边长为6cm.方法二:或根据一个金字塔模型,列方程即x 10=15−x15,解得x=6.20. 如下图,梯形的面积是48平方厘米,下底是上底的3倍,求阴影局部的面积.【答案】27平方厘米.【分析】上底与下底之比为1:3,由沙漏模型可知四个三角形的面积之比是1:3:3:9,那么阴影局部的面积是48÷(1+3+3+9)×9=27平方厘米.21. 如下列图,D、E、F、G均为各边的三等分点,线段EG和DF把三角形ABC分成四局部,如果四边形FOGC的面积是24平方厘米,求三角形ABC的面积.【答案】40.5【分析】设三角形以AB为底的高为ℎ,由于FG:AB=2:3,所以ED:FG=1:2;所以三角形OGF以GF为底的高是1 3ℎ×23=29ℎ;又因为三角形CFG以FG为底的高是23ℎ,所以三角形OGF的面积与三角形CGF的面积之比为29ℎ:23ℎ=1:3,所以三角形CFG的面积为24×33+1=18(平方厘米),而三角形CFG的面积占三角形ABC的23×23=49,所以三角形ABC的面积是18÷49=40.5(平方厘米).22. 如下图,正方形ABCD面积为1,E、F分别是BC和DC的中点,DE与BF交于M点,DE与AF 交于N点,那么阴影三角形MFN的面积是多少?【答案】130【分析】如下列图,延长AF、BC交于点G,在沙漏ADNEG中,AD:EG=2:3,所以DN:NE=2:3,故DN=25DE.如下列图,延长BF、AD交于点H,在沙漏DHMBE中,DH:BE=2:1,所以DM:ME=2:1,故ME=13DE.所以NM=(1−25−13)DE=415DE,故S△MFN=415S△DFE=415×12×S△DCE=415×12×14=130.23. 如图,长方形ABCD中,E、F分别为CD、AB边上的点,DE=EC,FB=2AF,求PM:MN:NQ.【答案】7:18:10【分析】如图,过E作AD的平行线交PQ于G.由于E是DC的中点,所以G是PQ的中点.由于DE=EC,FB=2AF,所以AF:DE=2:3,BF:CE=4:3.根据相似性,PM:MG=AM:ME=AF:DE=2:3,GN:NQ=EN:NB=EC:BF=3:4,于是PM=25 PG,MN=35PG+37GQ=3635PG,NQ=47GQ=47PG,所以PM:MN:NQ=25:3635:47=7:18:10.24. 如图,DE平行BC,且AD=2,AB=5,AE=4,求AC的长.【答案】10【分析】由金字塔模型得AD:AB=AE:AC=DE:BC=2:5,所以AC=4÷2×5=10.25. 如图,正方形ABCD中E是BC边的中点,AE与BD相交于F点,三角形DEF的面积是2,那么正方形ABCD的面积是_________.【答案】12【分析】左边梯形ABED,因为E为BC的中点,所以BE:AD=1:2所以BF:FD=1:2又因为三角形DEF的面积是2所以三角形BEF的面积是1,三角形ABF的面积为2,三角形AFD的面积为4而S△BED=S△DEC,所以S△DEC=3S△ABCD=1+2+2+4+3=1226. 如图:MN平行BC,S△MPN:S△BCP=4:9,AM=4cm,求BM的长度.【答案】2cm【分析】在沙漏模型中,因为S△MPN:S△BCP=4:9,所以MN:BC=2:3,在金字塔模型中有:AM:AB=MN:BC=2:3,因为AM=4cm,AB=4÷2×3=6cm,所以BM=6−4=2cm.27. 如图,正方形ABCD的边长是6,E点是BC的中点,求△AOD的面积.【答案】12.【分析】连结DE,因为BE与AD之比是1:2,可如下图设份数,可知△AOD的面积是正方形面积的三分之一,是12.28. 在图中的正方形中,A,B,C分别是所在边的中点,△CDO的面积是△ABO面积的几倍?【答案】3【分析】连接BC,易知OA∥EF,可知OB:OD=AE:AD,且OA:BE=DA:DE=1:2,所以△CDO的面积等于△CBO的面积;由OA=12BE=14AC可得CO=3OA,所以S△CDO=S△CBO=3S△ABO,即△CDO的面积是△ABO面积的3倍.29. 如下列图,正方形ABCD的面积为1,M是CD边的中点,E,F是BC边上的两点,且BE= EF=FC.连接AE,DF分别交BM分别于H,G.求四边形EFGH的面积.【答案】23210【分析】过M点做MQ平行于BC交FD于Q,过E点做EP交BM于P,那么因为M为CD的中点,所以QM:FC=1:2,所以QM:BF=1:4,所以GM:GB=1:4,所以BG:BM=4:5,又因为BF:BC=2:3,所以S△BFG=45×23S△BCM=215,因为E为BC边上三等分点,所以EP:CM=1:3,所以EP:AB=1:6,所以BH:HP=6:1,所以BH:HM=6:15=2:5,所以BH:BM=2:7,又因为GM:GB=1:4,所以BH:BG=5:14,所以S△BEH=514×12S△BFG=142,因此,S 阴=215−142=23210.30. 如图,EF与BC平行,AF:FB=1:2.AE=2,EF=3,那么CE的长度是多少?AC的长度是多少?BC的长度是多少?【答案】4,6,9.【分析】AFFB =AEEC=12,可求出CE=4,AC=6,EFBC=AFAB=13,可求出BC=9.31. 如下图,在正方形ABCD中,E,F分别是BC,CD的中点,正方形ABCD的面积为60平方厘米,求阴影局部的面积.【答案】10平方厘米.【分析】由条件知,BE=AD=1:2,那么BG:GD=1:2,BG=13BD,同理,DF:AB=1:2,那么DH:HB=1:2,DH=13BD,由此可得,GH=13BD,阴影局部面积为60÷2÷3=10平方厘米.32. 如图,将一个边长为2的正方形两边长分别延长1和3,割出图中的阴影局部,求阴影局部的面积是多少?【答案】130【分析】根据相似三角形的对应边成比例有:NF 1+2=3 2+3,EM 2+3=1 1+2,那么NF=59,EM=53,所以S 阴=12×(2−95)×(2−53)=130.33. 如右图,长方形ABCD中,EF=16,FG=9,求AG的长.【答案】15【分析】因为DGGB =AGGE=AG25,且DGGB=FGGA=9AG,所以AG25=9AG即AG2=25×9=225,所以AG=15.34. 下列图中正方形的面积为1,E、F分别为AB、BD的中点,GC=13FC.求阴影局部的面积.【答案】524【分析】题中条件给出的都是比例关系,由此可以初步推断阴影局部的面积要通过比例求解,而图中出现最多的就是三角形,那么首先想到的就是利用相似三角形的性质.阴影局部为三角形,底边为正方形边长的一半,只要求出高,便可求出面积.可以作FH垂直BC于H,GI垂直BC于I.根据相似三角形性质,CI:CH=CG:CF=1:3,又因为CH=HB,所以CI:CB=1:6,即BI:BC=(6−1):6=5:6,所以S△BGE=12×12×56=524.35. 如下图,小高测出家里瓷砖的长为24厘米,宽为10厘米,而且还测出了边上的中间线段均为4厘米,那么中间菱形的面积是多少平方厘米?【答案】64【分析】利用平行线中的线段比例关系来计算.把瓷砖右下角的直角三角形标上字母〔如下图〕,同时过B作BC⊥AG于C,DE⊥FG于E.由于BC与FG平行,所以BC FG =ACAG=214=17,因此BC=17×FG=17×7=1.由于DE与AG平行,所以DE AG =FEFG=27,因此DE=27×AG=27×14=4.由此可得菱形的两条对角线分别为:24−4×2=16(厘米),10−1×2=8(厘米).那么菱形的面积就是16×8÷2=64(平方厘米).36. 如图,线段AB与BC垂直,AD=EC=4,BD=BE=6,那么图中阴影局部面积是多少?【答案】15【分析】解法一:这个图是个对称图形,且各边长度已经给出,不妨连接这个图形的对称轴看看.作辅助线BO,那么图形关于BO对称,有S△ADO=S△CEO,S△DBO=S△EBO,且S△ADO:S△DBO=4:6=2:3.设△ADO的面积为2份,那么△DBO的面积为3份,直角三角形ABE的面积为8份.因为S△ABE=6×10÷2=30,而阴影局部的面积为4份,所以阴影局部的面积为30÷8×4=15.解法二:连接DE、AC.由于AD=EC=4,BD=BE=6,所以DE∥AC,可知DE:AC=BD:BA=6:10=3:5,根据梯形蝴蝶定理,S△DOE:S△DOA:S△COE:S△COA=32:(3×5):(3×5):52=9:15:15:25,所以S阴影:S梯形ADEC=(15+15):(9+15+15+25)=15:32,即S阴影=1532S梯形ADEC;又S梯形ADEC =12×10×10−12×6×6=32,所以S阴影=1532S梯形ADEC=15.37. 如图,长方形ABCD中,E为AD的中点,AF与BE、BD分别交于G、H,OE垂直AD于E,交AF于O,AH=5cm,HF=3cm,求AG.【答案】4013cm【分析】由于AB∥DF,利用相似三角形性质可以得到AB:DF=AH:HF=5:3,又因为E为AD中点,那么有OE:FD=1:2,所以AB:OE=5:32=10:3,利用相似三角形性质可以得到AG:GO=AB:OE=10:3,而AO=12AF=12×(5+3)=4(cm),所以AG=4×1013=4013(cm).38. 如下图,梯形ABCD 的上底AD 长10厘米,下底BC 长15厘米.如果EF 与上、下底平行,那么EF 的长度为多少?【答案】12厘米.【分析】在沙漏ADOBC 中,OA OC =AD BC =23,于是AO AC =25〔如下图〕. 由于EO ∥BC ,因此EO BC=AO AC=25,即EO =25×BC =25×15=6(厘米).同理,OF 也等于6厘米,所以EF =EO +OF =6+6=12(厘米).39. 如下图,三角形ABC 中,DE 与BC 平行,且AD:DB =5:2,求AE:EC 及DE:BC .【答案】5:2,5:7【分析】根据金字塔模型的结论即可直接得出答案.40. 三角形ABC 的面积为a ,AF:FC =2:1,E 是BD 的中点,且EF ∥BC ,交CD 于G ,求阴影局部的面积. 【答案】a18【分析】AF:FC =2:1,且EF ∥BC ,可知EF:BC =AF:AC =2:3,所以EF =23BC ,且S △AEF :S △ABC =4:9.又因为E 是BD 的中点,所以EG 是三角形DBC 的中位线,那么EG =12BC ,EG:EF =12:23=3:4,所以GF:EF =1:4,可得S △CFG :S △AFE =1:8,所以S △CFG :S △ABC =1:18,那么S △CFG =a18.41. 如图,三角形ABC 是一块锐角三角形余料,边BC =120毫米,高AD =80毫米,要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上,这个正方形零件的边长是多少?【答案】48【分析】观察图中有金字塔模型5个,用与边有关系的两个金字塔模型,所以有PN BC =AP AB ,PH AD =BPAB, 设正方形的边长为x 毫米,PN BC +PH AD =AP AB +BPAB=1, 即x 120+x 80=1, 解得x =48即正方形的边长为48毫米.42. 如图,在△ABC 中,有长方形DEFG ,G 、F 在BC 上,D 、E 分别在AB 、AC 上,AH 是△ABC 边BC 的高,交DE 于M ,DG:DE =1:2,BC =12厘米,AH =8厘米,求长方形的长和宽. 【答案】长和宽分别是487厘米,247厘米.【分析】观察图中有金字塔模型5个,用与边有关系的两个金字塔模型,所以DE BC =AD AB ,DG AH =BDAB, 所以有DE BC +DG AH =AD AB +BDAB=1, 设DG =x ,那么DE =2x ,所以有2x 12+x8=1, 解得x =247,2x =487, 因此长方形的长和宽分别是487厘米,247厘米.43. 如下图,在三角形ABC 中,IF 和BC 平行,GD 和AB 平行,HE 和AC 平行.AG:GF:FC =4:3:2,那么AH:HI:IB 和BD:DE:EC 分别是多少?【答案】AH:HI:IB =3:4:2,BD:DE:EC =4:2:3.【分析】〔1〕因为AG:GF:FC =4:3:2,所以AF:FC =7:2. 又因为IF ∥BC ,所以AI:IB =AF:FC =7:2. 因为GD ∥AB ,所以GF:AG =OF:IO =3:4. 由上可得AH:HI:IB =3:4:2.〔2〕因为AG:GF:FC =4:3:2,所以AG:GC =4:5. 又因为GD ∥AB ,所以BD:DC =AG:GC =4:5.因为GF:FC =3:2,IF ∥BC ,所以OD:GO =FC:GF =2:3. 又因为HE ∥AC ,所以DE:EC =OD:GO =2:3. 由上可得BD:DE:EC =4:2:3.44. 图中ABCD 是边长为12cm 的正方形,从G 到正方形顶点C 、D 连成一个三角形,这个三角形在AB 上截得的EF 长度为4cm ,那么三角形GDC 的面积是多少?【答案】108cm 2【分析】做GM 垂直DC 于M ,交AB 于N .因为EF ∥DC ,所以三角形GEF 与三角形GDC 相似,且为EF:DC =4:12=1:3,所以GN:GM =1:3,又因为MN =GM −GN =12,所以GM =18(cm),所以三角形GDC 的面积为12×12×18=108(cm 2). 45. 如图,平行四边形ABCD 的面积是90.E 点是AB 上靠近A 点的三等分点,求阴影局部的面积. 【答案】33.【分析】由沙漏模型知,BE:CD =BO:OD =EO:OC =2:3,设△OBE 的面积为4份,那么△OBC 的面积为6份,△OCD 的面积为9份,△OBC 的面积与△OCD 的面积之和为整个四边形面积的一半,因此四边形的面积为30份,总面积为90,那么一份对应面积为3,阴影局部占了11份,面积为33.46. 如图,直角三角形ABC 中,AB =4,BC =6,又知BE:EC =1:3,求∠CDE 的面积. 【答案】6.75.【分析】由金字塔模型知DE:AB =CE:CB =3:4那么DE=4×34=3又知道CE=6×34=4.5可求出△CDE的面积为3×4.5÷2=6.7547. 如图,D是BC中点,E是CD的中点,F是AC的中点.三角形ABC由①~⑥这6局部组成,其中②比⑤多6平方厘米.那么三角形ABC的面积是多少平方厘米?【答案】48【分析】因为E是DC中点,F为AC中点,有AD=2FE且EF平行于AD,那么四边形ADEF为梯形.在梯形ADEF中有③=④,②×⑤=③×④,②:⑤=AD2:FE2=4.又②−⑤=6,所以⑤=6÷(4−1)=2,②=⑤×4=8,所以②×⑤=④×④=16,而③=④,所以③=④=4,梯形ADEF的面积为②、③、④、⑤四块图形的面积和,为8+4+4+2=18.有△CEF与△ADC的面积比为CE平方与CD平方的比,即为1:4.所以△ADC面积为梯形ADEF面积的44−1=43,即为18×43=24.因为D是BC中点,所以△ABD与△ADC的面积相等,而△ABC的面积为△ABD、△ADC的面积和,即为24+24=48(平方厘米).三角形ABC的面积为48平方厘米.48. 如图,在平行四边形ABCD中,AB=16,AD=10,BE=4,那么FC的长度是多少?【答案】8【分析】图中有一个沙漏,也有金字塔,但我们用沙漏就能解决问题,因为AB平行于CD,所以BF:FC=BE:CD=4:16=1:4,所以FC=10×41+4=8.49. 如下图,边长为8厘米和12厘米的两个正方形并排放在一起,求图中阴影局部的面积.【答案】45平方厘米.【分析】由条件知,GF:BE=12:20=3:5,由沙漏模型知GO:OE=3:5,那么△GOF与△EOF的面积之比也是3:5,△OEF的面积为12×12÷2×58=45平方厘米.50. 如下图,正方形ABCD的边长是6,E点是BC的三等分点.△AOD的面积是多少?【答案】13.5.【分析】由沙漏模型,BE:AD=BO:OD=1:3,△AOB与△AOD等高,面积比为1:3,因此△AOD的面积为6×6÷2×34=13.5.51. 如下图,图中的两个正方形的边长分别是10和6,那么阴影局部的面积是多少?【答案】40013.【分析】AHHG =ADBG=58,那么△ABH与△BGH的面积是10×16÷2×513=40013.52. 如下图,P是三角形ABC内一点,DE平行于AB,FG平行于BC,HI平行于CA,四边形AIPD 的面积是12,四边形PGCH的面积是15,四边形BEPF的面积是20.请问:三角形ABC的面积是多少?【答案】72【分析】当两个平行四边形的高相等时,它们底边的比等于面积比.考虑平行四边形BEPF 和AIPD ,分别以PE 和PD 为底边,它们的高相等,因此它们底边的比等于面积比,即EPPD =S 平行四边形BEPF S 平行四边形AIPD =2012=53.由于IH ∥AC ,所以EH HC=EP PD=53,转化为面积比:得到:S △PEH S 平行四边形PGCH=12×EH HC=12×53=56.而平行四边形PGCH 的面积是15,那么△PEH 的面积是15×56=252.类似的方法可以求出△FPI 和△DPG 的面积分别是8和92,因此这三个小三角形的面积分别是92、8、252,所以大△ABC 的面积就是12+15+20+92+8+252=72.53. 如下图,DE 与BC 平行,AD =4,BD =5,DE =16,那么BC 的长度是多少?【答案】36.【分析】由金字塔模型,AD:AB =DE:BC =4:9,DE =16,那么BC =36.54. 如下图,DE 与BC 平行,AD =4,BD =5,△ADE 的面积为32,那么四边形DECB 面积是多少? 【答案】130.【分析】AD:AB =4:9,那么AE:AC =4:9,△ADE 是△ABC 面积的1681,那么△ABC 的面积是162,四边形DEBC 的面积为130.55. △ABC 中,DE 平行BC ,假设AD:DB =2:3,且S 梯形DBCE 比S △ADE 大8.5 cm 2,求S △ABC . 【答案】12.5cm 2【分析】根据金字塔模型AD:AB =DE:BC =2:(2+3)=2:5,S △ADE :S △ABC =22:52=4:25,设S △ADE =4份,那么S △ABC=25份,S 梯形DBCE =25−4=21份,S 梯形DBCE 比S △ADE 大17份,恰好是8.5 cm 2,所以S △ABC =12.5cm 2.56. 如图,测量小玻璃管口径的量具ABC ,AB 的长为15厘米,AC 被分为60等份.如果小玻璃管口DE 正好对着量具上20等份处〔DE 平行AB 〕,那么小玻璃管口径DE 是多大?【答案】10厘米.【分析】有一个金字塔模型,所以DE:AB =DC:AC ,DE:15=40:60,所以DE =10厘米. 57. 如图,正方形ABCD 的面积是120平方厘米,E 是AB 的中点,F 是BC 的中点,四边形BGHF 的面积是________平方厘米.【答案】14【分析】EG:GC =EB:CD =1:2,所以EG =13EC ,S △EBG =12×12AB ×13BC =112×120=10连接BH ,设S △BGH ="1",那么S △AGH ="2",由燕尾模型知S △DHC ="3",所以S △DGC ="5",又因为S △DGC =4S △EBG =40,所以S △BGH =8,S BGHF =S △DBF −S △DGH =14S ▱ABCD −"2"=30−16=1458. 三角形ADE 的面积为3平方厘米,D 是AB 边的三等分点〔靠近A 点〕,且DE 与BC 平行.请求出三角形OBC 的面积为多少平方厘米?【答案】13.5平方厘米.【分析】由金字塔模型知,AD:AB =DE:BC =1:3,设△ODE 的面积为1份,那么△ODB 的面积为3份,△OEC 的面积为3份,△OBC 的面积为9份,又因为△ADE 与△DEC 等高,可知△ADE 的面积为2份,由此可知△OBC 的面积为3÷2×9=13.5平方厘米.59. 两盏4米高的路灯相距10米,有一个身高1.5米的同学行走在这两盏路灯之间,那么他的两个影子总长度是多少米?【答案】6【分析】根据题意画出如下图的图,延长FE 与AC 交于I ,那么△AEI 和△EFH 以及△CEI 和△EFG 都能组成沙漏三角.不难看出,EI =4−1.5=2.5(米).而在沙漏AIEFH 中,又有AE EH =IE EF =2.51.5=53. 在沙漏ACEGH 中,有ACGH =AEEH =53.由此可知GH =35AC =35×10=6(米),这就是两个影子的总长度.60. 如图,ABCD 是直角梯形,AB =4,AD =5,DE =3,那么梯形ABCD 的面积是多少? 【答案】40【分析】分别计算△AOD,△AOB,△DOC,△BOC 的面积,再求和. 延长EO 交AB 于F 点, 可得DE:BF =DO:OB =3:1,所以S △AOD :S △AOB =3:1; S △DOC :S △BOC =3:1, S △AOD =S △BOC .又因为S △ABD =12×4×5=10,得到S △AOD =34S △ABD =7.5,S △AOB =2.5,S △BOC =7.5, S △DOC =3S △BOC =3×7.5=22.5.所以S 梯形ABCD =7.5+2.5+7.5+22.5=40.61. 如图,O 是矩形一条对角线的中点,图中已经标出两个三角形的面积为3和4,那么阴影局部的一块直角三角形的面积是多少? 【答案】258 【分析】连接OB , 由可得 S △OEB =4−3=1, 所以 OE:EA =1:3,可以得到CE:CA =5:8,由三角形相似可得阴影局部面积为8×(58)2=258.62. 如下列图所示,三角形AEF 、三角形BDF 、三角形BCD 都是正三角形,其中AE:BD =1:3,三角形AEF 的面积是1.求阴影局部的面积.【答案】15【分析】S △AEF :S △BDF =AE 2:BD 2=1:9,△AEF 面积是1,那么S △BDF =S △BDC =9,因为△AEF 与△ACE 的高之比是1:7,所以S △ACE =7,因为AD 与BC 平行,所以S △ABC =S △BCD =9,所以S △ABC :S △AEC =BI:IE =9:7.假设BE 为16份,那么BI =9,IE =7,又知道BF:FE =3:1,所以BF =12,FE =4,所以IF =3,S △AEF :S △AIF =FE:FI =4:3,所以S △AIF =0.75,又有S △AIF :S △BCI =AF 2:BC 2=1:9,所以S △BCI =6.75,于是可求阴影局部面积是(0.75+6.75)×2=15.63. 如图,在长方形ABCD 中,AB =6厘米,AD =2厘米,AE =EF =FB ,求阴影局部的面积. 【答案】3.5平方厘米【分析】连接DE 、FC ,在梯形CDEF 中,由梯形根本结论知:EF:DC =EO:OC =1:3,S 长ABCD =6×2=12由一半模型得所以S △DEC =6又EO:OC =1:3,S △DEO =6×14=1.5〔平方厘米〕又S △ADE =2×2÷2=2〔平方厘米〕所以S 阴=2+1.5=3.5〔平方厘米〕 64. 如下图,平行四边形ABED 与平行四边形AFCD 的面积都是30平方厘米.其中AF 垂直于ED于O ,AO 、OD 、AD 分别长3、4、5厘米.求三角形OEF 的面积和周长.【答案】面积为13.5平方厘米,周长为18厘米. 【分析】平行四边形ABED 的面积等于AO ×DE =3×DE =30,由此可以求得DE =10,OE =6.平行四边形AFCD 的面积等于DO ×AF =4×AF =30,由此可以求得AF =7.5,OF =4.5.那么△OEF 的面积等于EO ×OF ÷2=6×4.5÷2=27÷2=13.5(平方厘米).由沙漏模型得AO:OF =AD:EF =2:3,那么EF =7.5.所以△OEF 的周长为4.5+6+7.5=18(厘米).65. 如下图,三角形ABC 的面积为1平方厘米,D 、E 分别是AB 、AC 边的中点.求三角形OBC 的面积.【答案】13平方厘米.【分析】由D 、E 分别是AB 、AC 边的中点,可知DE 与BC 平行,且DE =12BC . 如下列图所示,沙漏DEOBC 中,有OD OC =OE OB =DE BC =12. 把线段的比例关系转化为面积的比例关系,得到S △BOD =2S △DOE ,S △COE =2S △DOE ,S △BOC =2S △COE =4S △DOE ,那么梯形DECB 的面积就是(1+2+2+4)×S △DOE =9S △DOE .由于△ABC 的面积为1平方厘米,那么△ADE 的面积是14平方厘米.而梯形DECB 的面积是1−14=34(平方厘米).因此S △DOE =19×S 梯形BCDE =19×34=112(平方厘米), 从而S △BOC =4S △DOE =4×112=13(平方厘米). 66. 如下图,O 是长方形ABCD 一条对角线的中点,图中已经标出两个三角形的面积3和4,那么阴影直角三角形的面积是多少? 【答案】318【分析】由S △AOD =4可知S △BCD =12×S 长方形ABCD =12×4×S △AOD =8.而△CDF 与△CDB 从C 出发的高相同,那么DFDB =S△CDF S △CDB=58.由于EF ∥CD ,把线段的比例转移到BC 上,那么有CE BC =DF DB =38,从而得到BE BC =1−38=58,所以阴影△BEF 的面积是△BCF 面积的58.于是阴影三角形的面积是58×S △BCF =58×(S △BCD −S △CDF )=58×(8−3)=258. 67. 如图,三角形PDM 的面积是8平方厘米,长方形ABCD 的长是6厘米,宽是4厘米,M 是BC 的中点,那么三角形APD 的面积是平方厘米.【答案】8【分析】此题在矩形内连接三点构成一个三角形,而且其中一点是矩形某一条边的中点,一般需要通过这一点做垂线.取AD 的中点N ,连接MN ,设MN 交PD 于K .那么三角形PDM 被分成两个三角形,而且这两个三角形有公共的底边MK ,可知三角形PDM 的面积等于12×MK ×BC =8(平方厘米), 所以MK =83(厘米),那么NK =4−83=43(厘米).因为NK 是三角形APD 的中位线,所以AP =2×NK =83(厘米),所以三角形APD 的面积为12×83×6=8(平方厘米). 68. 长方形ABCD 的面积为70厘米,E 是AD 的中点,F 、G 是BC 边上的三等分点,求阴影△EHO 的面积是多少平方厘米?【答案】3 【分析】因为E 是AD 的中点,F 、G 是BC 边上的三等分点,由此可以说明如果把长方形的长分成6份的话,那么ED =AD =3(份)、BF =FG =GC =2(份),在图形中找到沙漏EDOBG :有ED:BG =3:4,所以OD:BO =3:4,相当于把BD 分成7份〔3+4〕,同理也可以在图中再次找到沙漏EDHBF ,ED:BF =3:2,由此可以推出:HD:BH =3:2,相当于把BD 分成5份〔3+2〕,那么我们就可以把BD 分成35份〔5和7的最小公倍数〕其中OD 占15份,BH 占14份,HO 占6份,连接EB 那么可知△BED 的面积为70÷4=352,在BD 为底的三角形中HO 占6份,那么面积为:352×635=3(平方厘米). 69. 如下图,平行四边形ABCD 的面积是1,E 、F 是AB 、AD 的中点,BF 交EC 于M ,求△BMG 的面积. 【答案】130【分析】解法一:由题意可得,E 、F 是AB 、AD 的中点,得EF ∥BD ,而FD:BC =FH:HC =1:2, EB:CD =BG:GD =1:2.所以CH:CF =GH:EF =2:3,并得G 、H 是BD 的三等分点,可得BG =GH ,所以BG:EF =BM:MF =2:3,所以BM =25BF,S △BFD =12S △ABD =12×12S 平行四边形ABCD =14;又因为BG =13BD,所以S △BMG =13×25×S △BFD =13×25×14=130.解法二:延长CE 交DA 于I ,如下列图, 可得,AI:BC =AE:EB =1:1,从而可以确定M 的点的位置,BM:MF =BC:IF =2:3,BM =25BF,BG =13BD可得S △BMG =25×13S △BDF =25×13×14S 平行四边形ABCD =130.70. 边长为8厘米和12厘米的两个正方形并放在一起,那么图中阴影三角形的面积是多少平方厘米?。
小学数学竞赛《几何图形》专题训练30题含答

小学数学竞赛《几何图形》专题训练30题含答一、单选题1.同同按照一定的规律摆出了下面的四幅图。
如果按照这个规律继续摆,第5幅图用()根小棒。
A.23B.31C.352.一种长方形屏幕长与宽的比是16:9,下面几种规格屏幕合格的()A.长1.6米,宽1米B.长45米,宽920米C.长1.2米,宽80厘米D.以上都不对3.下图中,平行线间梯形A,B的面积相等,梯形B的下底是()cm。
A.5B.3C.3.3D.无法确定4.一条()长8cm。
A.直线B.线段C.射线5.下面哪一组的4根小棒能刚好拼成一个长方形?()A.B.C.D.二、填空题6.最大的—位数是,最小的两位数是,它们的和是.7.一块圆柱形橡皮泥,底面积是9平方厘米,高是6厘米。
把它捏成底面积是9平方厘米的圆锥形,高是厘米、如果捏成高是6厘米的圆锥形,底面积是平方厘米。
8.看图填空有个长方形.有个梯形.9.一个大三角形剪成两个小三角形,每个小三角形的内角和是度。
10.根据百位数表填数。
11.如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,将腰CD以D为中心逆时针旋转90°至ED,连接AE、CE,则ΔADE的面积是。
12.数图形。
上图中有个正方体,个圆柱体,个球体。
13.把这个物体放到地面上,观察并填空。
是由个小正方体拼成的。
如果把这个图形的表面涂上绿色,不涂色的有个小正方体、一个面涂绿色的有个小正方体、有2个面涂绿色的有个小正方体、有3个面涂绿色的有个小正方体、有4个面涂绿色的有个小正方体、有5个面涂红色的有个小正方体。
14.观察用完全相同的正方体木块摆出的模型,把观察角度和图结合起来.①从前向后看是②从上向下看是③从左向右看是A.B.C.三、作图题15.按要求用一条线段把下面的图形分成两个图形。
①②③16.下面的长方形中,共有28个小方格,其中有4个小方格中分别写了“我”“爱”“数”“学”四个字,请你把这个长方形沿着格线剪成大小相等的四块,而且每块中要有1个字。
小学奥数几何题100道及答案(完整版)

小学奥数几何题100道及答案(完整版)题目1:一个正方形的边长是5 厘米,它的面积是多少平方厘米?解题方法:正方形面积= 边长×边长,即5×5 = 25(平方厘米)答案:25 平方厘米题目2:一个长方形的长是8 分米,宽是6 分米,它的周长是多少分米?解题方法:长方形周长= (长+ 宽)×2,即(8 + 6)×2 = 28(分米)答案:28 分米题目3:一个三角形的底是10 厘米,高是6 厘米,它的面积是多少平方厘米?解题方法:三角形面积= 底×高÷2,即10×6÷2 = 30(平方厘米)答案:30 平方厘米题目4:一个平行四边形的底是12 米,高是8 米,它的面积是多少平方米?解题方法:平行四边形面积= 底×高,即12×8 = 96(平方米)答案:96 平方米题目5:一个梯形的上底是 4 厘米,下底是6 厘米,高是5 厘米,它的面积是多少平方厘米?解题方法:梯形面积= (上底+ 下底)×高÷2,即(4 + 6)×5÷2 = 25(平方厘米)答案:25 平方厘米题目6:一个圆的半径是3 厘米,它的面积是多少平方厘米?解题方法:圆的面积= π×半径²,即3.14×3²= 28.26(平方厘米)答案:28.26 平方厘米题目7:一个半圆的半径是 4 分米,它的周长是多少分米?解题方法:半圆的周长= 圆周长的一半+ 直径,即3.14×4×2÷2 + 4×2 = 20.56(分米)答案:20.56 分米题目8:一个长方体的长、宽、高分别是5 厘米、4 厘米、3 厘米,它的表面积是多少平方厘米?解题方法:长方体表面积= (长×宽+ 长×高+ 宽×高)×2,即(5×4 + 5×3 + 4×3)×2 = 94(平方厘米)答案:94 平方厘米题目9:一个正方体的棱长是6 分米,它的体积是多少立方分米?解题方法:正方体体积= 棱长³,即6³= 216(立方分米)答案:216 立方分米题目10:一个圆柱的底面半径是2 厘米,高是5 厘米,它的侧面积是多少平方厘米?解题方法:圆柱侧面积= 底面周长×高,底面周长= 2×3.14×2,即2×3.14×2×5 = 62.8(平方厘米)答案:62.8 平方厘米题目11:一个圆锥的底面半径是3 厘米,高是4 厘米,它的体积是多少立方厘米?解题方法:圆锥体积= 1/3×底面积×高,底面积= 3.14×3²,即1/3×3.14×3²×4 = 37.68(立方厘米)答案:37.68 立方厘米题目12:两个边长为4 厘米的正方形拼成一个长方形,长方形的长和宽分别是多少?面积是多少?解题方法:长方形的长为8 厘米,宽为4 厘米,面积= 8×4 = 32(平方厘米)答案:长8 厘米,宽4 厘米,面积32 平方厘米题目13:一个三角形的面积是18 平方厘米,底是6 厘米,高是多少厘米?解题方法:高= 面积×2÷底,即18×2÷6 = 6(厘米)答案:6 厘米题目14:一个平行四边形的面积是24 平方米,底是 4 米,高是多少米?解题方法:高= 面积÷底,即24÷4 = 6(米)答案:6 米题目15:一个梯形的面积是30 平方分米,上底是5 分米,下底是7 分米,高是多少分米?解题方法:高= 面积×2÷(上底+ 下底),即30×2÷(5 + 7)= 5(分米)答案:5 分米题目16:一个圆环,外圆半径是5 厘米,内圆半径是 3 厘米,圆环的面积是多少平方厘米?解题方法:圆环面积= 外圆面积-内圆面积,即 3.14×(5²- 3²)= 50.24(平方厘米)答案:50.24 平方厘米题目17:一个长方体的棱长总和是48 厘米,长、宽、高的比是3:2:1,长方体的体积是多少立方厘米?解题方法:一条长、宽、高的和为48÷4 = 12 厘米,长为6 厘米,宽为4 厘米,高为2 厘米,体积= 6×4×2 = 48(立方厘米)答案:48 立方厘米题目18:一个正方体的表面积是54 平方分米,它的一个面的面积是多少平方分米?解题方法:一个面的面积= 表面积÷6,即54÷6 = 9(平方分米)答案:9 平方分米题目19:一个圆柱的底面直径是4 分米,高是3 分米,它的表面积是多少平方分米?解题方法:底面积= 3.14×(4÷2)²= 12.56 平方分米,侧面积= 3.14×4×3 = 37.68 平方分米,表面积= 2×12.56 + 37.68 = 62.8(平方分米)答案:62.8 平方分米题目20:一个圆锥的底面周长是18.84 分米,高是5 分米,它的体积是多少立方分米?解题方法:底面半径= 18.84÷3.14÷2 = 3 分米,体积= 1/3×3.14×3²×5 = 47.1(立方分米)答案:47.1 立方分米题目21:一个长方体的水箱,长 5 分米,宽4 分米,高 3 分米,里面装满水,把水倒入一个棱长为5 分米的正方体水箱,水深多少分米?解题方法:水的体积= 5×4×3 = 60 立方分米,正方体水箱底面积= 5×5 = 25 平方分米,水深= 60÷25 = 2.4 分米答案:2.4 分米题目22:一块长方形的铁皮,长8 分米,宽6 分米,从四个角各切掉一个边长为1 分米的正方形,然后做成一个无盖的盒子,这个盒子的容积是多少立方分米?解题方法:盒子长6 分米,宽4 分米,高1 分米,容积= 6×4×1 = 24(立方分米)答案:24 立方分米题目23:一个圆柱的体积是60 立方厘米,底面积是12 平方厘米,高是多少厘米?解题方法:高= 体积÷底面积,即60÷12 = 5(厘米)答案:5 厘米题目24:一个圆锥和一个圆柱等底等高,圆柱的体积是27 立方分米,圆锥的体积是多少立方分米?解题方法:等底等高的圆锥体积是圆柱体积的1/3,即27×1/3 = 9(立方分米)答案:9 立方分米题目25:把一个棱长为 6 厘米的正方体铁块熔铸成一个底面积为36 平方厘米的圆柱体,这个圆柱体的高是多少厘米?解题方法:正方体体积= 6³= 216 立方厘米,圆柱体的高= 体积÷底面积,即216÷36 = 6(厘米)答案:6 厘米题目26:一个直角三角形的两条直角边分别是3 厘米和4 厘米,斜边是5 厘米,这个三角形的面积是多少平方厘米?解题方法:直角三角形面积= 两条直角边乘积的一半,即3×4÷2 = 6(平方厘米)答案:6 平方厘米题目27:一个等腰三角形的周长是20 厘米,其中一条腰长8 厘米,底边长多少厘米?解题方法:等腰三角形两腰相等,所以底边长= 周长-腰长×2,即20 - 8×2 = 4(厘米)答案:4 厘米题目28:一个扇形的圆心角是90°,半径是6 厘米,这个扇形的面积是多少平方厘米?解题方法:扇形面积= 圆心角÷360°×圆的面积,即90÷360×3.14×6²= 28.26(平方厘米)答案:28.26 平方厘米题目29:一个长方体的底面是边长为5 厘米的正方形,高是8 厘米,这个长方体的体积是多少立方厘米?解题方法:长方体体积= 底面积×高,底面积= 5×5 = 25 平方厘米,体积= 25×8 = 200(立方厘米)答案:200 立方厘米题目30:一个圆柱的底面周长是18.84 厘米,高是10 厘米,它的体积是多少立方厘米?解题方法:底面半径= 18.84÷3.14÷2 = 3 厘米,体积= 3.14×3²×10 = 282.6(立方厘米)答案:282.6 立方厘米题目31:一个圆锥的底面直径是8 厘米,高是6 厘米,它的体积是多少立方厘米?解题方法:底面半径= 8÷2 = 4 厘米,体积= 1/3×3.14×4²×6 = 100.48(立方厘米)答案:100.48 立方厘米题目32:把一个棱长为8 厘米的正方体木块削成一个最大的圆柱,这个圆柱的体积是多少立方厘米?解题方法:圆柱的底面直径和高都是8 厘米,体积= 3.14×(8÷2)²×8 = 401.92(立方厘米)答案:401.92 立方厘米题目33:一个长方体玻璃缸,从里面量长4 分米,宽 3 分米,高5 分米,缸内水深2.5 分米。
小学奥数题库《几何》-曲线型-圆环-2星题(含解析)

几何-曲线型几何-圆环-2星题课程目标知识提要圆环•概述圆环是由两个半径不相等的同心圆构成的,大圆面积比小圆面积多的部分就是圆环。
•面积公式S=πR2−πr2=π(R2−r2)精选例题圆环1. 如下图所示,已知圆环的面积是141.3平方厘米,那么阴影部分的面积是平方厘米.(π取3.14)【答案】45【分析】设大圆半径为R,小圆半径为r,则圆环面积为π(R2−r2)=141.3(平方厘米),所以阴影部分面积为R2−r2=141.3÷3.14=45(平方厘米).2. 如下图所示,有10个同心圆,任意两个相邻的同心圆半径之差等于里面最小圆的半径.如果射击时命中最里面的小圆得10环,命中最外面的圆环得1环.得1环圆环的面积是10环圆面积的倍.【答案】19【分析】1环、2环、10环的外圈的圆的半径值比为10:9:1,面积比为100:81:1,1环面积是10面积的(100−81)÷1=19倍.3. 如下图所示,大正方形的面积是400平方厘米,则圆环的面积是平方厘米.(π取3.14)【答案】157平方厘米【分析】将小正方形转45∘,如下图所示,可以看出大正方形的面积是小正方形面积的两倍,所以大圆面积是小圆面积的两倍.因为大正方形面积是400平方厘米,所以大圆面积为314平方厘米,小圆面积为157平方厘米,圆环面积为314−157=157(平方厘米).4. 如图,大正方形的面积是400平方厘米,则圆环面积是平方厘米.(π取3.14)【答案】157【分析】如图所示,由大正方形的面积为400平方厘米知AB=20(厘米).取圆心O,AB中点M,连接OM交小正方形于点E,连接OB交大圆于点F.于是MB=OM=OF=10(厘米),易知△OEF为等腰直角三角形,所以2OE2=OF2=100(平方厘米),于是OE2=50(平方厘米),所以圆环的面积为π⋅OM2−π⋅OE2=π×102−π×50=50π≈157(平方厘米).5. 两个半径不等的同心圆,内圆半径3cm,外圆直径8cm,圆环面积是多少?【答案】21.98平方厘米.【分析】注意外圆的直径是8cm,半径应是4cm,那么圆环的面积是π×4×4—π×3×3=21.98(平方厘米).6. 在直径为6米的圆形花坛的外面,围绕着一条宽1米的环形小路,这条小路的面积是多少?【答案】21.98平方米.【分析】此题相当于知道小圆直径和环宽,求圆环的面积.小圆半径3米,大圆半径4米,圆环的面积是21.98平方米.7. 大圆半径为R,小圆半径为r,两个同心圆构成一个环形.以圆心O为顶点,半径R为边长作一个正方形:再以O为顶点,以r为边长作一个小正方形.图中阴影部分的面积为50平方厘米,求环形面积.(圆周率取3.14)【答案】157平方厘米【分析】环形的面积应该用大圆的面积减去小圆的面积,但分别求出两个圆的面积显然不可能.题中已知阴影部分的面积,也就是R2−r2=50平方厘米,那么环形的面积为:πR2−πr2=π(R2−r2)=π×50=157(平方厘米).8. 图中阴影部分的面积为50平方厘米,求环形面积.(π取3.14)【答案】157平方厘米【分析】环形的面积应该用大圆的面积减去小圆的面积,但分别求出两个圆的面积显然不可能.题中已知阴影部分的面积,也就是R2−r2=50平方厘米,那么环形的面积为:πR2−πr2=π(R2−r2)=π×50=157(平方厘米).9. 奥运会的会徽是五环图,一个五环图是由内圆直径为6厘米,外圆直径为8厘米的五个环组成,其中两两相交的小曲边四边形(阴影部分)的面积都相等,已知五个圆环盖住的面积是77.1平方厘米,求每个小曲边四边形的面积.(π=3.14)【答案】 4.1平方厘米.【分析】⑴每个圆环的面积为:π×42−π×32=7π=21.98(平方厘米)⑵五个圆环的面积和为:21.98×5=109.9(平方厘米)⑶八个阴影的面积为:109.9−77.1=32.8(平方厘米)⑷每个阴影的面积为:32.8÷8=4.1(平方厘米)10. 已知与小圆相切的线段长度是10厘米,那么图中圆环的面积是多少?【答案】 25π 平方厘米【分析】连接 OC 、OB ,则 OC ⊥AB ,在直角三角形 OBC 中,OB 2−OC 2=BC 2=(12AB)2=25, 图中圆环的面积为πR 2−πr 2=π(R 2−r 2)=π×(OB 2−OC 2)=25π(平方厘米).11. 图为一卷紧绕成的牛皮纸,纸卷直径为 20 厘米,中间有一直径为 6 厘米的卷轴.已知纸的厚度为 0.4 毫米,问:这卷纸展开后大约有多长?【答案】71.4米.【分析】将这卷纸展开后,它的侧面可以近似的看成一个长方形,它的长度就等于面积除以宽.这里的宽就是纸的厚度,而面积就是一个圆环的面积.因此,纸的长度≈纸卷侧面积纸的厚度≈3.14×102−3.14×320.04=3.14×(100−9)0.04=7143.5(厘米)所以,这卷纸展开后大约71.4米.12. 图中阴影部分的面积是25cm2,求圆环的面积.【答案】157cm2.【分析】设大圆半径为R,小圆半径为r,依题有R 22−r22=25,即R2−r2=50.则圆环面积为:πR2−πr2=π(R2−r2)=50π=157(cm2).13. 如图所示,在两个同心圆上有一条两端点都在大圆上的线段与小圆相切,其长度为10厘米.求阴影部分的面积.(π取3.14)【答案】78.5平方厘米.【分析】如图所示,从圆心连结其中一个端点,长度为大圆半径,再从圆心向线段作垂线,长度为小圆半径,图中的三角形为直角三角形,由勾股定理可得R2−r2=52=25,所以图中阴影部分面积为πR2−πr2=π×(R2−r2)=25π=78.5(平方厘米).14. 图中阴影部分的面积是25平方厘米,求圆环的面积.(π取3.14)【答案】157平方厘米.【分析】记大圆半径为R,小圆半径为r,那么圆环的面积为π(R2−r2),只要能够求出R2−r2即可.阴影部分是两个等腰直角三角形的面积差,等于12(R2−r2),所以R2−r2=2×25=50(厘米).由此可得圆环面积等于50×3.14=157(平方厘米).15. 如图,厚度为0.25毫米的铜版纸被卷成一个空心圆柱(纸卷得很紧,没有空隙),它的外直径是180厘米,内直径是50厘米.这卷铜版纸的总长是多少米?【答案】9388.6【分析】卷在一起时铜版纸的横截面的面积为π×(1802)2−π×(502)2=7475π(平方厘米),如果将其展开,展开后横截面的面积不变,形状为一个长方形,宽为0.25毫米(即0.025厘米),所以长为7475π÷0.025=938860(厘米)=9388.6(米).所以这卷铜版纸的总长是9388.6米.16. 如图,有一卷紧紧缠绕在一起的塑料薄膜,薄膜的直径是20厘米,中间有一直径为8厘米的卷轴,已知薄膜的厚度为0.04厘米,则薄膜展开后的面积是多少平方米?(π取3.14)【答案】 65.94【分析】 卷纸问题:依据体积不变原则求解,缠绕在一起时塑料薄膜的体积为:[π×(202)2−π×(82)2]×100=8400π(立方厘米)薄膜展开后为一个长方形,体积保持不变,而厚度为 0.04 厘米,所以薄膜展开后的面积为8400π÷0.04=659400(平方厘米)=65.94(平方米).17. 如图,有一卷紧紧缠绕在一起的塑料薄膜,薄膜的直径为 20 厘米,中间有一直径为 8 厘米的卷轴,已知薄膜的厚度为 0.04 厘米,则薄膜展开后的面积是多少平方米?【答案】 65.94 平方米.【分析】 缠绕在一起时塑料薄膜的体积为:[π×(202)2−π×(82)2]×100=8400π(立方厘米), 薄膜展开后为一个长方体,体积保持不变,而厚度为 0.04 厘米,所以薄膜展开后的面积为8400π÷0.04=659400(平方厘米)=65.94(平方米).另解:也可以先求出展开后薄膜的长度,再求其面积.由于展开前后薄膜的侧面的面积不变,展开前为π×(202)2−π×(82)2=84π(平方厘米),展开后为一个长方形,宽为0.04厘米,所以长为84π÷0.04=6594(厘米),所以展开后薄膜的面积为6594×100=659400(平方厘米)=65.94(平方米).。
3 小学奥数——几何图形 试题及解析

小学奥数——几何图形一.选择题(共50小题)1.图中的八边形是将大长方形纸片剪去一个小长方形得到.则至少需要知道()条线段的长度,才可以计算出这个八边形的周长.A.4B.3C.5D.102.如图中阴影部分是正方形,最大长方形的周长是()厘米.A.22B.26C.36D.无法确定3.如图,由6个边长为3厘米的小正方形拼成的图形,它的周长是()厘米.A.36B.39C.42D.454.把一个直径是4厘米的圆分成两个完全相等的半圆,这两个半圆的周长之和是()A.12.56厘米B.16.56厘米C.20.56厘米D.24.56厘米5.如图,有8条线段,至少要分别测量编号为()的三条线段的长度,才能求出这个图形的周长.A.①②⑤B.①②③C.①②⑦D.②③⑦6.如图,是一个台阶的侧面(线段AC,BC,AB的长依次为5米、12米、13米)要在台阶上面铺上红地毯,且上下各多铺出两米,需要地毯的长度是()米.A.17B.18C.20D.217.如图,正方形被一条曲线分成了A、B两部分,下面第()种说法不正确?A.如果a b>,那么A的周长大于B的周长B.如果a b<,那么A的周长小于B的周长C.如果a b=,那么A的周长等于B的周长D.不管a、b哪个大,A、B的周长总是相等8.如图是用3个长8厘米、宽3厘米的长方形拼成的,这个图形的周长是()A.66厘米B.48厘米C.45厘米9.图中多边形每相邻两条边都互相垂直,若要计算起其周长,那么至少要知道()边长.A.6B.5C.4D.310.一个长方形花园长是30米,宽是10米,沿着花园走两圈,共走了()A.45米B.90米C.160米D.200米11.把如图的长方形用一条曲线分成甲、乙两个图形,甲图与乙图的周长相比,()A.甲图的长B.乙图的长C.甲图与乙图同样长12.如图,在由11⨯的正方形组成的网格中写有2015四个数字(阴影部分),其边线要么是水平或竖直的直线段,要么是连接11⨯的正方形相邻两边中点的线段,或者是11⨯的正方形的对角线,则图中2015四个数字(阴影部分)的面积是()A.47B.1472C.48D.148213.如图中,正八边形ABCDEFGH的面积为1,其中有两个正方形ACEG和PQRS.那么正八边形中阴影部分的面积()A.12B.23C.35D.5814.如图,大正方形的边长为14,小正方形的边长为10,阴影部分的面积之和是( )A.25B.40C.49D.5015.大、中、小三个正方形,边长都是整数厘米,小正方形的周长比中正方形的边长小,把这两个正方形放在大正方形上(如图),大正方形露出的部分的面积是10平方厘米(图中阴影部分).那么,大正方形的面积是( )平方厘米.A.25B.36C.49D.6416.如图,大正六边形内部有7个完全一样的小正六边形,已知阴影部分的面积是180平方厘米.那么大正六边形的面积是( )平方厘米.A.240B.270C.300D.36017.如图所示,在58 的方格中,阴影部分的面积为237cm .则非阴影部分的面积为( 2)cm .A.43B.74C.80D.11118.图中,将两个正方形放在一起,大、小正方形的边长分别为0l,6,则图中阴影部分面积为()A.42B.40C.38D.3619.下图中,四边形ABCD都是边长为1的正方形,E、F、G、H分别是AB、BC、CD、DA的中点,如果左图中阴影部分与右图中阴影部分的面积之比是最简分数mn,那么,m n的值等于()A.5B.7C.8D.1220.有5个长方形,它们的长和宽都是整数,且5个长和5个宽恰好是1~10这10个整数;现在用这5个长方形拼成1个大正方形,那么,大正方形面积的最小值为()A.169B.144C.121D.10021.一个梯形的上底增加2厘米,下底减少2厘米,高不变,它的面积与原面积相比()A.变大了B.变小了C.不变D.高不知道,所以无法比较22.已知图中正方形的两个顶点正好是两个等腰直角三角形斜边上的中点,小等腰直角三角形与正方形中的圆面积相等,请问正方形中的阴影面积与大等腰直角三角形面积的比值A.13B.12C.1D.3223.如图,梯形ABCD 中,//AB DC ,90ADC BCD ∠+∠=︒,且2DC AB =,分别以DA 、AB 、BC 为边向梯形外作正方形,其面积分别为1S ,2S ,3S ,则1S ,2S ,3S 之间的关系是下列选项中的( )A.123S S S +>;B.132S S S +=;C.132S S S +<;D.无法确定.24.小王将一些同样大小的正三角形纸片摆放在桌上.第一次放1张纸片;第二次在这个小正三角形纸片四周再放三张纸片;第三次在第二次摆好的图形四周再摆放纸片;⋯摆放要求是:每次摆放的每张纸片必须和上一次摆放的纸片至少有一条边重合,且纸片之间除边之外,无重合(见图).第20次摆放后,该图形共用了正三角形纸片( )张.A.571B.572C.573D.57425.在88⨯网格的所有方格中放入黑白两种围棋子,每个方格放一枚棋子,要求每行中的白色棋子的数目互不相同,每列中的白色棋子的数目相等,那么这个88⨯网格中共有( )枚黑色棋子.A.42B.32C.22D.1226.在66⨯网格的所有方格中放入围棋子,每个方格放1枚棋子,要求每行中的白色棋子的数目互不相等,每列中的白色棋子的数目都相等,那么这个66⨯网格中共有( )枚黑A.18B.14C.12D.1027.一块木板上有13枚钉子(如图1所示).用橡皮筋套住其中的几枚钉子,可以构成三角形,正方形,梯形等等(如图2).请回答:可以构成()个正方形.A.9B.10C.11D.1228.在如图中,一共能数出()个含有“☆”的长方形.A.8B.10C.12D.1429.如图,木板上有10根钉子,任意相邻的两根钉子距离都相等,以这些钉子为顶点,用橡皮筋可套出()个正三角形.A.6B.10C.13D.1530.以平面上任意4个点为顶点的三角形中,钝角三角形最多有()个.A.5B.2C.4D.331.图中,有()个三角形.A.13B.15C.14D.1632.图中共有()个三角形.A.10B.9C.19D.1833.两个小三角形不重叠放置可以拼成一个大三角形,那么这个大三角形不可能由()拼成.A.两个锐角三角形B.两个直角三角形C.两个钝角三角形D.一个锐角三角形和一个钝角三角形34.将长方形ABCD对角线平均分成12段,连接成如图,长方形ABCD内部空白部分面积总和是10平方厘米,那么阴影部分面积总和是()平方厘米.A.14B.16C.18D.2035.在桌面上,将一个边长为1 的正六边形纸片与一个边长为1的正三角形纸片拼接,要求无重叠,且拼接的边完全重合,则得到的新图形的边数为()A.8B.7C.6D.536.用210个大小相同的正方形拼成一个长方形,不同的拼法有()种.A.2B.4C.6D.837.一个长方形由15个小正方形拼成,如图所示,若这个长方形的周长是64cm,则它的面)cm.积为(2A.960B.256C.240D.12838.如图,每条边都相等,每个角都是直角,则根据信息,求下图的面积为()平方厘米.A.16B.20C.24D.3239.如图,四边形ABCD为长方形,四边形CDEF为平行四边形.下面四种说法中正确的是()A.甲的面积比乙的面积大B.甲的面积比乙的面积小C.只有当丙、丁两部分面积相等时,甲、乙两部分面积才相等D.甲、乙两部分面积总是相等的,与丙、丁两部分面积的大小无关40.如图,正方形ABCD的边长是10厘米,长方形EFGH的长为8厘米,宽为5厘米.则阴影部分的甲与阴影部分乙面积的差是()平方厘米.A.40B.50C.60D.8041.如图,线段BE将长方形ABCD分成M、N两个部分,如果M部分比N部分的面积小80l 平方厘米,那么AE的长是()A.24厘米B.21厘米C.20厘米D.14厘米42.如图,一个33的正方形网格,如果小正方形边长是1,那么阴影部分的面积是()A.5B.4C.3D.243.如图所示,四边形BCDE 为平行四边形,AOE ∆的面积为6,求BOC ∆的面积.( )A.3B.4C.5D.644.如图,M 为平行四边形ABCD 的边BC 上的一点,且:2:3BM MC =,已知三角形CMN的面积为245cm ,则平行四边形ABCD 的面积为( 2)cm .A.30B.45C.90D.10045.如图,长方形ABCD 中的AE 、AF 、AG 、AH 四条线段把此长方形面积五等分,又长方形长20厘米、宽12厘米,那么三角形AFG 的面积AFG S ∆等于( )平方厘米.A.41.2B.43.2C.43.1D.42.346.在等腰梯形ABCD 中,AB 平行于CD ,6AB =,14CD =,AEC ∠是直角,CE CB =,则2AE 等于( )A.84B.80C.75D.6447.下面的四个图形中,第()幅图只有2条对称轴.A. B.C. D.48.下面图形中,恰有2条对称轴()A. B. C. D.49.在如图的阴影三角形中,不能由右图中的阴影三角形经过旋转、平移得到的是图()中的三角形.A. B.C. D.50.在下面的阴影三角形中,不能由图中的阴影三角形经过旋转、平移得到的是图()中的三角形.A. B. C. D.参考答案与试题解析一.选择题(共50小题)1.图中的八边形是将大长方形纸片剪去一个小长方形得到.则至少需要知道()条线段的长度,才可以计算出这个八边形的周长.A.4B.3C.5D.10【解析】如上图,把线段①平移到②的位置可以组成一个大长方形,大长方形的4条边,对边相等,所以只需知道相邻两条边的长度,③=④,所以只需知道1条线段的长度,所以求八边形的周长需要知道:213+=条线段的长度.故选:B.2.如图中阴影部分是正方形,最大长方形的周长是()厘米.A.22B.26C.36D.无法确定【解析】+⨯=(94)226答:最大长方形的周长是26厘米.3.如图,由6个边长为3厘米的小正方形拼成的图形,它的周长是()厘米.A.36B.39C.42D.45【解析】3412⨯=(厘米)326⨯=(厘米)+⨯+(126)26366=+=(厘米)42答:它的周长是42厘米.故选:C.4.把一个直径是4厘米的圆分成两个完全相等的半圆,这两个半圆的周长之和是()A.12.56厘米B.16.56厘米C.20.56厘米D.24.56厘米【解析】(3.14424)2⨯÷+⨯=+⨯(6.284)210.282=⨯=(厘米)20.56答:这两个半圆周长之和是20.56厘米.故选:C.5.如图,有8条线段,至少要分别测量编号为()的三条线段的长度,才能求出这个图形的周长.A.①②⑤B.①②③C.①②⑦D.②③⑦【解析】由图形可知,④+⑥的线段补给⑧所在的长方形边的虚线部分,⑦-⑤等长线段的补给③所在边的虚线部分,这样就构成了一个完整的长方形,原图形的周长就是答长方形的周长2+个⑤的线段总长,所以图形的周长只要知道①②⑤即可求得.故选:A.6.如图,是一个台阶的侧面(线段AC,BC,AB的长依次为5米、12米、13米)要在台阶上面铺上红地毯,且上下各多铺出两米,需要地毯的长度是()米.A.17B.18C.20D.21【解析】12522++⨯=++1254=(米)21答:需要地毯的长度是21米.故选:D.7.如图,正方形被一条曲线分成了A、B两部分,下面第()种说法不正确?A.如果a b>,那么A的周长大于B的周长B.如果a b<,那么A的周长小于B的周长C.如果a b=,那么A的周长等于B的周长D.不管a、b哪个大,A、B的周长总是相等【解析】A的周长=曲线长+正方形边长2b a⨯+-B的周长=曲线长+正方形边长2a b⨯+-所以A、B、C选项都是正确的,错误的是D.8.如图是用3个长8厘米、宽3厘米的长方形拼成的,这个图形的周长是()A.66厘米B.48厘米C.45厘米【解析】8631⨯-⨯483=-=(厘米)45答:这个图形的周长是45厘米.故选:C.9.图中多边形每相邻两条边都互相垂直,若要计算起其周长,那么至少要知道()边长.A.6B.5C.4D.3【解析】根据题干分析可得:这个图形的横着的边长之和是:2b;竖着的边长之和是:22+;a c所以这个图形的周长是:2222()++=++,故计算这个图形的周长至少需要知道3a b c a b c条边,故选:D.10.一个长方形花园长是30米,宽是10米,沿着花园走两圈,共走了()A.45米B.90米C.160米D.200米【解析】(3010)22160+⨯⨯=(米)故选:C.11.把如图的长方形用一条曲线分成甲、乙两个图形,甲图与乙图的周长相比,()A.甲图的长B.乙图的长C.甲图与乙图同样长【解析】因为,甲图形的周长是:AB BC AC++,乙图形的周长是:DC AD AC++,而AB CD=,AD BC=,所以,甲、乙两个图形的周长相等;故选:C.12.如图,在由11⨯的正方形组成的网格中写有2015四个数字(阴影部分),其边线要么是水平或竖直的直线段,要么是连接11⨯的正方形相邻两边中点的线段,或者是11⨯的正方形的对角线,则图中2015四个数字(阴影部分)的面积是()A.47B.1472C.48D.1482【解析】据分析可知:将小三角形移到空白处补全完整正方形,共47.5个,所以阴影部分的面积是1 472;故选:B.13.如图中,正八边形ABCDEFGH的面积为1,其中有两个正方形ACEG和PQRS.那么正八边形中阴影部分的面积()A.12B.23C.35D.58【解析】根据分析,将图中阴影部分进行等积变形,由图不难发现,阴影部分和空白部分的面积刚好相等,正八边形中阴影部分的面积占:1 2故选:A.14.如图,大正方形的边长为14,小正方形的边长为10,阴影部分的面积之和是()A.25B.40C.49D.50【解析】根据分析,如下图所示,图①逆时针旋转90︒,阴影部分可拼成一等腰直角三角形,214449S=÷=故选:C.15.大、中、小三个正方形,边长都是整数厘米,小正方形的周长比中正方形的边长小,把这两个正方形放在大正方形上(如图),大正方形露出的部分的面积是10平方厘米(图中阴影部分).那么,大正方形的面积是()平方厘米.A.25B.36C.49D.64【解析】根据分析,一条阴影部分的面积为1025÷=平方厘米.因为都是整数,所以只能为15⨯.故,大正方形面积(15)(15)6636=+⨯+=⨯=平方厘米.故选:B.16.如图,大正六边形内部有7个完全一样的小正六边形,已知阴影部分的面积是180平方厘米.那么大正六边形的面积是()平方厘米.A.240B.270C.300D.360【解析】如图所示,将图分割成面积相等的小正三角形,显然,图中的空白部分的面积和等于3个小正六边形.而阴影部分由6个小正六边形组成,所以,大正六边形是由9个小正六边形组成的.一个小正六边形的面积为:180630÷=(平方厘米),大正六边形的面积为:309270⨯=(平方厘米),故选:B.17.如图所示,在58⨯的方格中,阴影部分的面积为237cm .则非阴影部分的面积为( 2)cm .A.43B.74C.80D.111【解析】如图,阴影部分占了18.5个格,面积为237cm , 每格的面积是:23718.52()cm ÷=;非阴影就分占21.5格,其面积是:221.5243()cm ⨯=; 答:则非阴影部分的面积为243cm ; 故选:A .18.图中,将两个正方形放在一起,大、小正方形的边长分别为0l ,6,则图中阴影部分面积为( )A.42B.40C.38D.36【解析】1010666(106)210102⨯+⨯-⨯+÷-⨯÷ 100364850=+--38=答:阴影部分的面积是38.故选:C.19.下图中,四边形ABCD都是边长为1的正方形,E、F、G、H分别是AB、BC、CD、DA的中点,如果左图中阴影部分与右图中阴影部分的面积之比是最简分数mn,那么,m n+的值等于()A.5B.7C.8D.12【解析】由以上可知,两个阴影面积比为11:3:2 23=,325+=.故选:A.20.有5个长方形,它们的长和宽都是整数,且5个长和5个宽恰好是1~10这10个整数;现在用这5个长方形拼成1个大正方形,那么,大正方形面积的最小值为()A.169B.144C.121D.100【解析】如图所示,,于是可得:正方形的边长为11,则其面积为1111121⨯=.答:大正方形面积的最小值为121.故选:C.21.一个梯形的上底增加2厘米,下底减少2厘米,高不变,它的面积与原面积相比( ) A.变大了 B.变小了C.不变D.高不知道,所以无法比较【解析】因为梯形的面积=(上底+下底)⨯高2÷,若“上底增加2厘米,下底减少2厘米,高不变”则(上底+下底)的和不变,且高不变, 所以梯形的面积不变. 故选:C .22.已知图中正方形的两个顶点正好是两个等腰直角三角形斜边上的中点,小等腰直角三角形与正方形中的圆面积相等,请问正方形中的阴影面积与大等腰直角三角形面积的比值是( )A.13B.12C.1D.32【解析】设小等腰三角形的边长是a ,大等腰三角形的边长为b , 2a 2b 则正方形的面积是22222222()(222a b a b a b ++=+=小等腰三角形与大等腰三角形的面积和:2222222a b a b ++=又因小等腰直角三角形与正方形中的圆面积相等,所以正方形中的阴影面积与大等腰直角三角形面积相等. 所以它们的比值是1. 故选:C .23.如图,梯形ABCD 中,//AB DC ,90ADC BCD ∠+∠=︒,且2DC AB =,分别以DA 、AB 、BC 为边向梯形外作正方形,其面积分别为1S ,2S ,3S ,则1S ,2S ,3S 之间的关系是下列选项中的( )A.123S S S +>;B.132S S S +=;C.132S S S +<;D.无法确定.【解析】过点A 作//AE BC 交CD 于点E ,因为//AB DC ,所以四边形AECB 是平行四边形,所以AB CE =,BC AE =,BCD AED ∠=∠, 因为90ADC BCD ∠+∠=︒,2DC AB =, 所以AB DE =,90ADC AED ∠+∠=︒, 所以90DAE ∠=︒那么222AD AE DE +=,因为21S AD =,222S AB DE ==,223S BC AE ==, 所以213S S S =+. 故选:B .24.小王将一些同样大小的正三角形纸片摆放在桌上.第一次放1张纸片;第二次在这个小正三角形纸片四周再放三张纸片;第三次在第二次摆好的图形四周再摆放纸片;⋯摆放要求是:每次摆放的每张纸片必须和上一次摆放的纸片至少有一条边重合,且纸片之间除边之外,无重合(见图).第20次摆放后,该图形共用了正三角形纸片( )张.A.571B.572C.573D.574【解析】根据分析可得,第20次摆放后,该图形共用:++++⋯+⨯-13693(201)=++++⋯+136957=+⨯-÷+(357)(201)21=+5701=(个)571答:第20次摆放后,该图形共用了正三角形纸片571张.故选:A.25.在88⨯网格的所有方格中放入黑白两种围棋子,每个方格放一枚棋子,要求每行中的白色棋子的数目互不相同,每列中的白色棋子的数目相等,那么这个88⨯网格中共有( )枚黑色棋子.A.42B.32C.22D.12【解析】由分析得+++++++=(枚)0123567832⨯-=(枚)883232故选:B.26.在66⨯网格的所有方格中放入围棋子,每个方格放1枚棋子,要求每行中的白色棋子的数目互不相等,每列中的白色棋子的数目都相等,那么这个66⨯网格中共有()枚黑色围棋子.A.18B.14C.12D.10【解析】每行的数目可以为0~6个,每列都相等,所以一定是6的倍数,++++++=,012345621如果去掉3,那么剩下的数:21318-=正好是6的倍数,所以,白棋子有18个,则,黑色围棋子有:661818⨯-=(个)故选:A.27.一块木板上有13枚钉子(如图1所示).用橡皮筋套住其中的几枚钉子,可以构成三角形,正方形,梯形等等(如图2).请回答:可以构成()个正方形.A.9B.10C.11D.12【解析】第一种正方形有5个,第二种正方形有4个,第三个正方形有1个,第四种正方形有1个,共11个.故选:C.28.在如图中,一共能数出()个含有“☆”的长方形.A.8B.10C.12D.14【解析】根据分析可得,共有:6612+=(个);答:图中,一共能数出12个含有“☆”的长方形.故选:C.29.如图,木板上有10根钉子,任意相邻的两根钉子距离都相等,以这些钉子为顶点,用橡皮筋可套出()个正三角形.A.6B.10C.13D.15【解析】单个的三角形有9个,4个三角形组成的大三角形3个,最外面的最大的三角形1个,共有:93113++=(个)答:用橡皮筋可套出13个正三角形. 故选:C .30.以平面上任意4个点为顶点的三角形中,钝角三角形最多有( )个. A.5B.2C.4D.3【解析】如图,平面上任意4点构成了4个钝角三角形: ABC ∆、ABD ∆、ACD ∆、BCD ∆,所以以平面上任意4个点为顶点的三角形中,钝角三角形最多有4个. 故选:C .31.图中,有( )个三角形.A.13B.15C.14D.16【解析】由题意,由一个小三角形构成的,有6个; 由两个小三角形构成的,有3个; 由三个小三角形构成的,有6个; 大三角形1个,所以三角形的个数为636116+++=个, 故选:D .32.图中共有( )个三角形.A.10B.9C.19D.18【解析】根据题干分析可得:88218++=(个),答:图中一共有18个三角形.故选:D.33.两个小三角形不重叠放置可以拼成一个大三角形,那么这个大三角形不可能由()拼成.A.两个锐角三角形B.两个直角三角形C.两个钝角三角形D.一个锐角三角形和一个钝角三角形【解析】因为拼在一起的两个小三角形一定有两条边共线,这时能组成一个平角,A、因为两个锐角的和小于180度,所以,两个锐角三角形不可能拼成一个大三角形;B、因为9090180︒+︒=︒,所以两个直角三角形能拼成一个大三角形;C、因为钝角+锐角有可能等于180︒,所以两个钝角三角形可能拼成一个大三角形;D、因为钝角+锐角有可能等于180︒,所以两个钝角三角形可能拼成一个大三角形;故选:A.34.将长方形ABCD对角线平均分成12段,连接成如图,长方形ABCD内部空白部分面积总和是10平方厘米,那么阴影部分面积总和是()平方厘米.A.14B.16C.18D.20【解析】设把中间最小的空白长方形的面积看作单位1ab=,那么与它相邻的阴影部分的面积就是2233a b ab ab⨯-==,同理,相邻的空白部分的面积就是55ab=,依此规律,面积依次下去为7,9,11,则空白部分的面积总和是15915++=,而实际空白部分面积总和是10平方厘米,可得单位1的实际面积是210153÷=(平方厘米);那么阴影部分面积总和是:371121++=,则实际面积是:221143⨯=(平方厘米);答:阴影部分面积总和是14平方厘米.故选:A.35.在桌面上,将一个边长为1 的正六边形纸片与一个边长为1的正三角形纸片拼接,要求无重叠,且拼接的边完全重合,则得到的新图形的边数为()A.8B.7C.6D.5【解析】180(62)6︒⨯-÷18046=︒⨯÷120=︒180660︒÷=︒12060180︒+︒=︒所以,拼接后的图形是:6345+-=(条)答:得到的新图形的边数为5.故选:D.36.用210个大小相同的正方形拼成一个长方形,不同的拼法有()种.A.2B.4C.6D.8【解析】2102357=⨯⨯⨯因数的总个数:(11)(11)(11)(11)16+⨯+⨯+⨯+=(个)不同的拼法有:1628÷=(种)答:不同的拼法有8种.故选:D.37.一个长方形由15个小正方形拼成,如图所示,若这个长方形的周长是64cm,则它的面积为(2)cm.A.960B.256C.240D.128【解析】64[(53)2]÷+⨯=÷6416=(厘米)4⨯⨯=(平方厘米)4415240答:它的面积为2240cm.故选:C.38.如图,每条边都相等,每个角都是直角,则根据信息,求下图的面积为()平方厘米.A.16B.20C.24D.32【解析】如右图进行分割,把图形分成了8个边长是2厘米的小正方形⨯⨯=(平方厘米)22832答:这个图形的面积是32平方厘米.故选:D.39.如图,四边形ABCD为长方形,四边形CDEF为平行四边形.下面四种说法中正确的是()A.甲的面积比乙的面积大B.甲的面积比乙的面积小C.只有当丙、丁两部分面积相等时,甲、乙两部分面积才相等D.甲、乙两部分面积总是相等的,与丙、丁两部分面积的大小无关【解析】四边形ABCD为长方形,所以BC AD=,AB CD=,因为四边形CDEF为平行四边形,所以CD EF=,=,所以AB EF两边同时加上BE,所以BF AE=;根据等底等高的三角形的面积相等,所以得出三角形CBF的面积=三角形DAE的面积,则:三角形CBF的面积-丁的面积=三角形DAE的面积-丁的面积,所以甲、乙两部分面积总是相等,与与丙、丁两部分面积的大小无关;故选:D.40.如图,正方形ABCD的边长是10厘米,长方形EFGH的长为8厘米,宽为5厘米.则阴影部分的甲与阴影部分乙面积的差是()平方厘米.A.40B.50C.60D.80【解析】⨯-⨯=(平方厘米)10108560故选:C.41.如图,线段BE将长方形ABCD分成M、N两个部分,如果M部分比N部分的面积小80l 平方厘米,那么AE的长是()A.24厘米B.21厘米C.20厘米D.14厘米【解析】设N部分的面积为x,那么M部分的面积为180x-,+-=⨯(180)3020x xx-=2180600x=+2600180x=2780x=;390N部分的面积是390平方厘米.设梯形的上底为y,1y+⨯⨯=(30)203902y+=10300390y=1090y=;9AE=-=(厘米);30921故选:B.42.如图,一个33⨯的正方形网格,如果小正方形边长是1,那么阴影部分的面积是()A.5B.4C.3D.2【解析】通过观察可知,阴影部分的面积=长是3宽是1的长方形的面积-中间边长是1的正方形的面积.⨯-⨯=31112故选:D.43.如图所示,四边形BCDE为平行四边形,AOE∆的面积.()∆的面积为6,求BOCA.3B.4C.5D.6【解析】连接BD,因为,//BE CD ,OB OB =,所以,BOC ∆的面积等于BOD ∆的面积,又因为,//DE AC ,AB AB =,所以,ABE ∆的面积等于ABD ∆的面积,又因为,ABO ∆是ABE ∆和ABD ∆的公共部分,所以,BOD ∆的面积等于AOE ∆的面积,即,BOD ∆的面积AOE =∆的面积6=.答:BOC ∆的面积是6.故选:D .44.如图,M 为平行四边形ABCD 的边BC 上的一点,且:2:3BM MC =,已知三角形CMN的面积为245cm ,则平行四边形ABCD 的面积为( 2)cm .A.30B.45C.90D.100【解析】如图,连接AC .Q 四边形ABCD 是平行四边形,//AD BN ∴,ADM NCM ∴∆∆∽,∴24()9ADM MNC S DM S CM ∆∆==, 45MNC S ∆=Q ,20ADM S ∆∴=,:3:2CM DM =Q ,30ACM S ∆∴=,50ADC S ∆∴=,2100ADC ABCD S S ∆∴==平行四边形,故选:D .45.如图,长方形ABCD 中的AE 、AF 、AG 、AH 四条线段把此长方形面积五等分,又长方形长20厘米、宽12厘米,那么三角形AFG 的面积AFG S ∆等于( )平方厘米.A.41.2B.43.2C.43.1D.42.3【解析】由题意可知2012485ABE AEF AGH ADH AFCG S S S S S ∆∆∆∆⨯======四边形, BE EF ∴=,DH HG =,Q 1482BE AB =g g , 8BE EF ∴==,20164CF =-=,Q 1482DH AD =g g , 4.8DH HG ∴==, 2.4CG =,14 2.4 4.82FGC S ∆∴=⨯⨯=, 48 4.843.2AFG S ∆∴=-=,故选:B .46.在等腰梯形ABCD 中,AB 平行于CD ,6AB =,14CD =,AEC ∠是直角,CE CB =,则2AE 等于( )A.84B.80C.75D.64【解析】如图,连接AC ,过点A 作AF CD ⊥于点F ,过点B 作BG CD ⊥于点G ,则AF BG =,6AB FG ==,4DF CG ==.在直角AFC ∆中,22222210100AC AF FC AF AF =+=+=+,在直角BGC ∆中,222222416BC BG GC AF AF =+=+=+,又CE CB =Q ,90AEC ∠=︒,22222100(16)84AE AC EC AF AF ∴=-=+-+=,即284AE =.故选:A .47.下面的四个图形中,第( )幅图只有2条对称轴. A. B. C. D.【解析】如果沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线叫做这个图形的对称轴.观察易知,符合题意的是C.故选:C.48.下面图形中,恰有2条对称轴()A. B. C. D.【解析】根据轴对称图形的定义,可得:A有4条对称轴,B没有对称轴,C有2条对称轴,D有1条对称轴.故选:C.49.在如图的阴影三角形中,不能由右图中的阴影三角形经过旋转、平移得到的是图()中的三角形.A. B.C. D.【解析】根据分析,可以逆向思维,可以将题中的阴影三角形经过旋转、平移,长直角边旋转和短直角边旋转后得到的图形,不难看出,只有A选项是不可能出现的.图中图中①、②、③三边应为顺时针关系,A不合要求.故选:A.50.在下面的阴影三角形中,不能由图中的阴影三角形经过旋转、平移得到的是图()中的三角形.A. B. C. D.【解析】解析:由图可知:A、C、D都可由原三角形经过旋转和平移得到,而B选项必须经过对称才能与原三角形重合,故选:B.。
小学奥数:几何图形的认识.专项练习及答案解析

本讲知识点属于几何模块的第一讲,属于起步内容,难度并不大.要求学生认识各种基本平面图形和立体图形;了解简单的几何图形简拼和立体图形展开;看懂立体图形的示意图,锻炼一定的空间想象能力.几何图形的定义:1、几何图形主要分为点、线、面、体等,他们是构成中最基本的要素.(1)点:用笔在纸上画一个点,可以画大些,也可以画小些.点在纸上占一个位置.(2)线段:沿着直尺把两点用笔连起来,就能画出一条线段.线段有两个端点.(3)射线:从一点出发,沿着直尺画出去,就能画出一条射线.射线有一个端点,另一端延伸的很远很远,没有尽头.(4)直线:沿着直尺用笔可以画出直线.直线没有端点,可以向两边无限延伸(5)两条直线相交: 两条直线相交,只有一个交点.(6)两条直线平行:两条直线平行,没有交点,无论延伸多远都不相交.(7)角:角是由从一点引出的两条射线构成的.这点叫角的顶点,射线叫点的边.(8)角分为锐角、直角和钝角三种:直角的两边互相垂直,三角板有一个角就是这样的直角.教室里天花板上的角都是直角. 锐角比直角小,钝角比直角大.(9)三角形:三角形有三条边,三个角,三个顶点.边边顶点直角锐角钝角知识点拨(10)直角三角形:直角三角形是一种特殊的三角形,它有一个角是直角.它的三条边中有两条叫直角边,一条叫斜边.(11)等腰三角形:等腰三角形也是一种特殊的三角形,它有两条边一样长(相等),相等的两条边叫”腰”,另外的一条边叫”底”.(12)等腰直角三角形:等腰直角三角形既是直角三角形,又是等腰三角形.(13)等边三角形:等边三角形的三条边一样长(相等),三个角也一样大(相等).(14)四边形:四边形有四条边,内部有四个角.(15)长方形:长方形的两组对边分别平行且相等,四个角也都是直角.(16)正方形:正方形的四条边都相等,四个角都是直角.(17)平行四边形:平行四边形的两组对边分别平行而且相等,两组对角分别相等.顶角顶角边边角角角顶角边直角边斜边直角边腰腰底直角边直角边斜边腰腰底边边边角角角(18)等腰梯形:等腰梯形是一种特殊的四边形,它的上下两边平行,左右两边相等.平行的两边分别叫上底和下底,相等的两边叫腰.(19)菱形:菱形的四条边都相等,对角分别相等.(20)圆:圆是个很美的图形.圆中心的一点叫圆心,圆心到圆上一点的连线叫圆的半径,过圆心连接圆上两点的连线叫圆的直径.直径把圆分成相等的两部分,每一部分都叫半圆.(21)扇形:(22)长方体:长方体有六个面,十二条棱,八个顶点.长方体的面一般是长方形,也可能有两个面是正方形.互相垂直的三条棱分别叫做长方体的长、宽、高.(23)正方体:正方体有六个面,十二条棱,八个顶点.正方体的每个面都是同样大的正方形,所以它的十二条棱长都相等.(24)圆柱:圆柱的两个底面是完全相同的圆.(25)圆锥:圆锥的底面是圆.(26)棱柱:这个棱柱的上下底面是三角形.它有三条互相平行的棱,叫三棱柱. 腰腰下底上底半径直径半圆直径弧半径半径高宽长底面底面(27)棱锥:这个棱锥的底面是四边形.它有四条棱斜着立起来,所以叫四棱锥.底面(28)三棱锥:因为三棱锥有四个面,所以通常又叫”四面体”.三棱锥的每一个面都是三角形.(29)球体,简称球:球有球心,球心到球面上一点的连线叫球的半径.例题精讲模块一、几何图形的认识【例 1】请看下图,共有个圆圈。
3 小学奥数——几何图形 试题及解析

3 小学奥数——几何图形试题及解析小学奥数——几何图形试题及解析一、选择题1. 下列各图形中,几何图形的个数最多的是:A. 正方形B. 矩形C. 三角形D. 长方形解析:该题考察学生对几何图形的辨识和计数能力。
正方形有4条边,矩形也有4条边,三角形有3条边,而长方形同样也有4条边。
因此,答案为D,长方形。
2. 以下哪个几何图形不是多边形?A. 正方形B. 圆形C. 五边形D. 六边形解析:多边形是一个有多个直线边的封闭图形。
正方形有4个边,五边形有5个边,六边形有6个边。
但圆形是一个由无限多个点组成的,边是由连续曲线组成的,因此圆形不是多边形。
答案为B,圆形。
二、填空题1. 三角形的内角和是____度。
解析:三角形的内角和是180度。
2. 矩形的对角线互相垂直且长度相等。
解析:矩形的对角线互相垂直且长度相等。
三、解答题1. 已知一个四边形的两个相邻内角分别是50度和100度,另外两个内角分别是多少度?解析:由四边形的内角和为360度可知两个未知角分别为360度 -50度 - 100度 = 210度。
因此,另外两个内角分别是210度。
2. 一个凸多边形的内角和是1620度,它有几个内角?解析:设凸多边形有n个内角。
由凸多边形的内角和为 (n-2) × 180度,可以得到 n × 180度 = 1620度。
解得 n = 9。
因此,该凸多边形有9个内角。
3. 如图所示,在正方形ABCD中,连接AC和BD两条对角线,交于点O。
若AD的长度为12cm,求AC的长度。
解析:由于正方形的对角线相等且互相垂直,可知AO和OC互相垂直,且AO = OC。
根据勾股定理,可以得到 AD^2 = AO^2 + OD^2,解得AO = OD = (12/√2)cm,而AC = AO + OC = 2AO = 2 × (12/√2)cm = 12√2 cm。
因此,AC的长度为12√2cm。
总结:通过以上的几何图形试题和解析,我们可以看到几何图形的基本概念和性质在小学奥数中起着重要的作用。
(典型)小学数学应用题《奥数立体几何》试题附答案解析

(典型)小学数学应用题《奥数立体几何》试题附答案解析1、一个正方体木块的表面积是8平方厘米,若将木块截成体积相等的8个小正方体.问每个小正方体的表面积是多少平方厘米?8÷6÷4×6=2平方厘米2、一个正方体木块的表面积是96平方厘米,如果把它锯成8个体积相等的小正方体要块(如图),每个小正方体的表面积是______平方厘米一个面96÷6=16(平方厘米)小正方体面积16÷4=4(平方厘米)4×6=24平方厘米3、一个长方体的宽和高相等,并且都等于长的一半(如图).将这个长方体切成12个小长方体,这些小长方体的表面积之和为600平方分米.求这个大长方体的体积.4、设长方体侧面积为1平方分米,它表面积为1×2+1×2×4=10平方分米切成12个小长方体后新增表面积(1×3+1×2×2)×2=14平方分米600÷(10+14)=25平方分米25=52大长方体的体积.25×(5×2)=250(立方分米)5、从一个长方体上截下一个体积是32立方厘米的小长方体,剩下部分正好是一个棱长为4厘米的正方体。
问:原来这个长方体的表面积是多少?截面积:4×4=16(平方厘米);截下来的长度:32÷16=2(厘米);4+2=6(厘米);原长宽高分别是4厘米,4厘米和6厘米;表面积为:2(4×4+4×6×2)=128(平方厘米)答:原长方体的表面积是128平方厘米.6、一个长方体形状的木块,长8分米,宽4分米,高2分米,把它锯成若干个小正方体,然后再拼成一个大正方体,求这个大正方体的表面积=______(单位是平方分米).题意,可以拼出边长为4分米的大正方体,其表面积为:4×4×6=96(平方分米),答:这个大正方体的表面积为96平方分米7、一个正方体被切成24个大小形状一模一样的小长方体(如图),这些小长方体的表面积之和为162平方厘米.请问:原正方体的体积是多少?一个正方体被切成24个大小形状一模一样的小长方体,则需要切6次,共增加12个大正方体的面,一个面的面积:162÷(12+6)=9(平方厘米),因为3×3=9,所以可知大正方体的棱长是3厘米,大正方体的体积:3×3×3=27(立方厘米),答:原正方体的体积是27立方厘米.8、一个边长为60厘米的正方形伯片,剪去四个角后,剩下部分可以拼成一个无盖长方体,问所得长方体容积最大多少当长=宽=高时;容积最大;此时;长=宽=高=60÷3=20;此时体积=20×20×20=8000立方厘米9、一块长方形铁皮长60厘米,宽40厘米,如图,从四个角上剪去边长是10厘米的正方形,然后做成盒子,这个盒子的容积是多少升?盒子的长是: 60-10×2=40(厘米),盒子的宽是: 40-10×2=20(厘米),盒子的高是: 10厘米,盒子的容积: 40×20×10=8000(立方厘米),8000立方厘米=8立方分米=8升;答:这个盒子的容积是8升.10、右图是由120块小立方体构成的4×5×6的立方体,如果将其表面涂成红色,那么其中一面、二面三面被涂成红色的小立方体各有多少块?三面红色的小立方体位于长方体的8个顶点,共8个;二面红色的立方体位于长方体的12条边,每边的个数是原边长-2,(因为要去掉2个顶点),一共有4×((6-2)+(5-2)+(4-2))=36个;一面被涂色的立方体是长方体表面剩余的立方体,每个表面的数量是原边长-2的矩形面积,一共有2×[(2×3)+(3×4)+(4×2)]=52个11、如图所示是一个由小立方体构成的塔,请你数一数共有______块.由图可得:(1)第二层小立方体有:1+3=4(块);第三层小立方体有:4+5=9(块);第四层小立方体有:9+7=16(块);(2)把各层小立方体的个数加起来求和得: 1+4+9+16=30(块)答:图中共有小立方体30块.12、在一个表面涂满了红色的正方体,在他的每个面上都等距离的切三刀.三个面图有红色的小正方体有几个?两个面涂有红色的小正方体有几个?一个面涂有红色的小正方体有几个?没有涂到红色的小正方体有几个?三个面红的,就是8个顶点,所以是8个两个面红的,就是12条棱上了,每条有2个,一共12×2=24个一个面红的,就是6个面上的,每个面有4个,一共6×4=24个没涂到红色的就是心里的,2×2×2=8个13、有 6个相同的棱长分别是3厘米、4厘米、5厘米的长方体,把它们的某画面染上红色,使得有的长方体只有1个面是红色,有的长方体恰有2个面是红色的,有的长方体恰有3个面是红色的,有的长方体恰有4个面是红色的,有的长方体恰有5个面是红色的,还有一个长方体6个面都是红色的,染色后把所有长方体分割成棱长为1厘米的小正方体.分割完毕后,恰有一面是红色的小正方体,最多有多少个?解答:一面涂红色有:4×5=20个两面涂红色有:20×2=40个(选择对面)三面涂红色有:40-4=36个(选择4×5两面和3×4一面)四面涂红色有:36-4=32个(选择4×5两面和3×4两面)五面涂红色有:32-5=27个六面涂红色有:27-5=22个一共有:20+40+36+32+27+22=177个13、用棱长是1厘米的立方块拼成如图所示的立体图形,问该图形的表面积是多少平方厘米?上下面:9×2=18cm²左右面:7×2=14cm²前后面:7×2=14cm²14、如图,一个正方体形状的木块,棱长l米,沿水平方向将它锯成3片,每片又锯成4长条,每条又锯成5小块,共得到大大小小的长方体60块.那么,这60块长方体表面积的和是多少平方米?水平切两刀,增加4个面,竖直切三刀,增加6个面,另外一个维度方向切四刀,增加8个面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-01-06小学数学试卷姓名:__________ 班级:__________考号:__________*注意事项:1、填写答题卡的内容用2B铅笔填写2、提前xx分钟收取答题卡一、单选题(共6题;共0分)1.小亮有五块积木(如图)请问他再加上下列哪块积木就能拼成一个4×4×4的正方体?(注:这些积木都不能再分拆)正确答案是()A.B.C.D.2.仔细观察如图,如果四只小蚂蚁分别沿着右图中的四个图形走一圈,图()的小蚂蚁走的路程最短.B.C.D.3.下面由4个边长为1厘米的正方形摆成的图形中,()的周长最短.A.B.C.D.4.如图所示3个图形中,每个小正方形都一样大,那么()图形的周长最长.A.B.C.5.将如图折叠成正方体后,应是()B.C.D.6.图中,有()个三角形。
A.3B.5C.6二、填空题(共4题;共0分)7.中共有________个三角形,中共有________个长方形。
8.我会数。
(8分)________________9.有________个正方形。
10.数数下面图形各有多少个小方块?________个 ________个________个三、解答题(共50题;共0分)11.图所示,摆放小正方体。
(1)当摆到第七层时一共有________个小正方体。
(2)当摆到第层时一共有________个小正方体。
12.先找出这组图形的规律,再按规律在括号里填上合适的数。
13.计算下面各图形的面积。
14.在下面的正方形中画一个最大的圆。
15.找规律填数。
16.李奶奶病了,她到那个医院更近一些?17.看图回答(1)请你画一条从蘑菇房到小木屋最近的路。
(2)请你画一条从蘑菇房通向小河最近的路。
18.先把下面的图形分成几个三角形?再求出它们的内角和。
19.你知道他们为什么要这样测量吗?20.求阴影部分面积(单位:厘米)21.数一数图中共有三角形多少个?22.下面两个图形阴影部分的面积相等吗?为什么?23.你能想办法求出这个多边形的内角和吗?24.行1千米需要多长时间?把出行方式和相应的时间连接起来。
25.一边做题,一边总结规律.有1个三角形有1+2个三角形有1+2+3 个三角形(1)有1+2+3+________个三角形有1+2+3+4+________个三角形(2)你能总结出什么规律?26.找规律。
下面各图形的内角和是180°的几倍?这个倍数同图形边数有什么关系?你能应用这一关系求出十边形的内角和吗?27.小明家住在A处,小亮家住在B处,估计一下,小明家到小亮家走哪条路更近些,为什么?(如图)28.如下图,请帮助小猫想一想,它去捉老鼠走哪条路更近,为什么?29.贝贝想测量一个瓶子的容积,瓶身呈圆柱形,如下图,她先将容积是1.2升的牛奶瓶中装满水,然后将水注入此瓶中,当瓶正放时瓶内水高15厘米,当瓶倒放时空着的部分高2.5厘米。
你能根据这些信息求出瓶子的容积吗30.数一数图中共有几个小长方体?31.如图,数一数下面的三个图形中分别有多少个三角形.32.一共有几个正方形?33.图中,以点A,B,C,D,E,F,G,H为端点的线段有多少条?34.数一数,图中有几个正方形,几个长方形?几个三角形,几个圆?35.数一数,图中有几个苹果,几个梨,几个草莓,几个葡萄,几个香蕉?36.如图是一个由25种不同颜色的小正方形组成的大正方形.数数看,它共有多少个不同的正方形?37.用四条直线分别画出交点数是1、3、5个的图形.(如图是交点数为4个的图形).4条直线最多能有几个交点?38.如图1共有多少个长方形,图2中有多少个长方形?39.如图,直线l上有100个点,它们和直线外的点A一共可以构成多少个三角形?40.填出下面题中所缺的数.41.量出需要的数据(取整毫米),计算各图的面积.42.请你将下面的三个图形,分别割补成学过的长方形或正方形.43.“将军饮马”问题古希腊亚历山大城里有一位著名的学者,名字叫海伦。
有一天,一位将军风尘仆仆地从远处而来,向他请教一个问题。
如下图所示,这位将军要从驻地A出发,到河边饮马,然后再去远处的堡垒B,应该怎么走路线最近呢?44.数线段.45.数一数有多少个三角形有多少个平行四边形有多少个梯形?46.如图是由若干个小正方体组成的,阴影部分是空缺的通道,则这两个立体图形分别由多少个小正方体组成.47.图中的小格子都是正方形,则图中一共有多少个正方形?48.在下面方格纸中(每小格边长为1厘米),共有多少个边长为5厘米的小正方形?49.如图的一堵墙究竟缺了几块砖?50.数一数,图中各有几个角?51.以如图中格点为顶点共可连出多少个面积为2的三角形?(相邻两个格点的距离为1)52.图中,你能数出多少个梯形?53.算一算,机器人能从桥下穿过吗?54.下面两个图形的周长相等吗?求出它们的周长.55.有两只蚂蚁同时从A点到B点,一只走路线①,另一只走路线②,它们的速度相同,问它们谁先到达B点(如图).56.小红上学走哪条路最近?根据什么?57.下面哪个图形的面积大?哪个图形的周长长?58.已知:如图,在矩形ABCD中,对角线AC与BD相交于点O,BE⊥AC于E,CF⊥BD于F,请你判断BE 与CF的大小关系,并说明你的理由.59.火柴棒可以摆正方形。
用火柴棒可以摆出几何图形,做这种游戏要头脑灵活。
用火柴棒可以构成各种直线图形,如果再移动火柴棒的位置,那么又能使一种图形变成另一种图形,千变万化,很锻炼人的大脑。
现在给出24根相同的火柴棒,不许折,全部用上,可以摆成几个相等的正方形呢?60.把54厘米、9厘米、145厘米、1米80厘米按从短到长的顺序排列.答案部分第 1 题:【答案】B【考点】组合图形的计数【解析】【解答】解:他再加上B项中的积木,就可以拼成一个4×4×4的正方体。
故答案为:B。
【分析】因为要平成一个4×4×4的正方体,所以这个正方体的每一个面上都是4×4=16个正方体,把第三块积木竖着摆在第一块积木的最左边的一列,这样左面的面和后面的面都是16个正方体,再把这个第二个积木放在第三块积木的右边,这样下面的面也是16个正方体,这样最上面一层只剩3×3=9个正方体小块了,把最后两块积木方成第一行两个正方体,第二行三个正方体的形式,这样选的积木是B。
第 2 题:【答案】A【考点】长度比较【解析】【解答】解:根据分析可得,把最里面的正方形的一条边长看作一条直线段,相对应的其它三个图形的部分都看作两点间的曲线,根据“两点间直线段最短”可以得出最里面的正方形的周长最短,即,图A的小蚂蚁走的路程最.故选:A.【分析】根据周长的意义,绕图形一周的长度及图形的周长,把最里面的正方形的一条边长看作一条直线段,相对应的其它三个图形的部分都看作两点间的曲线,根据“两点间直线段最短”可以得出最里面的正方形的周长最短;据此解答即可.第 3 题:【答案】 D【考点】长度比较【解析】【解答】解:A、周长是:(3+2)×2=10(厘米),B、周长是:(4+1)×2=10(厘米),C、周长是:(3+2)×2=10(厘米),D、周长是:2×8=8(厘米),10厘米>8厘米,所以D的周长最短,故选:D.【分析】根据周长的定义知道,围成一个图形的所有边长的总和,就是该图形的周长,所以把A、B、C、D四个图形的周长分别求出,再比较即可得出答案.第 4 题:【答案】C【考点】长度比较【解析】【解答】解:A、这个图形的周长等于长4、宽2的长方形的周长:(4+2)×2=12;B、这个图形的周长就等于边长是3的正方形的周长:3×4=12;C、这个图形的周长等于长4、宽2的长方形的周长与两条长1的小线段的长度之和:(4+2)×2+2=14;所以周长最长的是C.故选:C.【分析】根据图形的周长计算方法,分别计算出三个选项中图形的周长,即可选择.第 5 题:【答案】C【考点】图形的拆拼(切拼)【解析】【解答】解:如图,根据分析,折叠成正方体后是图形C;故选:C.【分析】如图,根据正方体展开图的11种特征,属于“1 4 1”结构,折成正方体后,A、B、H三点重合,C、F、G三点重合,D、E两点重合,I、J两点重合,不会出现三个相邻的颜色,图A和图D出现三相邻的白色正方形,不可能,同样图B出现三个相邻的绿色正方形,也不可能,因此,只能是图C.第 6 题:【答案】C【考点】组合图形的计数【解析】【解答】解:3+2+1=6(个)故答案为:C。
【分析】单独的三角形有3个,两个三角形组成的三角形有2个,三个三角形组成的三角形有1个。
由此计算三角形的个数即可。
第7 题:【答案】3;3【考点】组合图形的计数【解析】【解答】解:中共有3个三角形,中共有3个个长方形。
故答案为:3;3。
【分析】第一个图中,小三角形有2个,加上外面大三角形一共有3个三角形;第二个图中,小长方形有2个,加上外面大长方形一共有3个长方形。
第8 题:【答案】10;5【考点】平面图形的切拼,组合图形的计数【解析】【解答】解:第一幅图中有10个三角形,第二幅图中有5个三角形。
故答案为:10;5。
【分析】第一幅图中小三角形能够数出4个,两个小三角形组合能够数出3个,三个小三角形组合能够数出2个,四个小三角形组合能够数出1个,所以一共有10个三角形;第一幅图中小三角形有4个,外面大三角形有1个,一共有5个小三角形。
第9 题:【答案】5【考点】组合图形的计数【解析】【解答】解:共有5个正方形。
故答案为:5。
【分析】小正方形有4个,四个小正方形组成的大正方形有1个,共5个正方形。
第10 题:【答案】13;10;10【考点】组合图形的计数【解析】【解答】13个;10个;10个.故答案为:13;10;10.【分析】根据题意可知,分层数一数每层有几个小方块,然后相加即可.第11 题:【答案】(1)91(2)2n2-n【考点】组合图形的计数【解析】【解答】(1)根据分析可知,当图形有七层时,第七层的个数为:(4×6+1),此时总的正方形个数为:1+(4×1+1)+(4×2+1)+(4×3+1)+(4×4+1)+(4×5+1)+(4×6+1)=91.(2)根据分析可知,当摆到第层时一共有:n+=2n2-n(个).故答案为:(1)91;(2)2n2-n.【分析】(1)观察图可知,图1中只有一层,有(4×0+1)个正方形;图2中有两层,在图1的基础上增加了一层,第二层有(4×1+1)个;图3中有三层,在图2的基础上增加了一层,第三层有(4×2+1),依此类推当图形有七层时总的正方形的个数;(2)观察上面的图形变化,可以类推出规律:当有n层时,总的正方体个数=2n2-n,据此解答.第12 题:【答案】19【考点】数阵图中找规律的问题【解析】【分析】从图中的前两个图形中可以观察到:大三角形中最上面的两个小三角形中数字的和与大三角形中间的数字和最下面的小三角形中数字的和相等,据此作答即可。