(完整版)拉普拉斯变换及其逆变换表
拉普拉斯变换和反变换

F (s)s(s2s 2 1 s 5 )1 5 [1 ss2 s 2 s3 5 ]
L 1 [(s 1 s ) 2 3 4 ] L 1 [(s ( 1 s ) 2 1 )4 ] L 1 [(s 1 4 )2 4 ]
0
s
t
L[ 0
t 0
f(t)dnt]s1nF(s)
第16页
黄河科技学院
控制工程基础
(7)初值定理
lim f(t)lim sF (s)
t 0
s
f(0)lim sF(s) s
(8)终值定理
lim f(t)lim sF (s)
t
s 0
f()lim sF(s)
Fssp1
Ns sp2 .......spn
k1 k2 .........kn
sp1 sp2
spn
其中 k i [F s(s p i)s ]p i
第23页
黄河科技学院
控制工程基础
例
F(s)s2
s1 5s6
解:(1)F(s)的极点
s25s60 s1 2 s2 3
Fs 的原函数;L是表示进行拉氏变换的
符号。
第2页
黄河科技学院
控制工程基础
F(s)L[f(t)]
f(t)L1[F(s)]
拉氏变换是这样一种变换,即在一定的 条件下,它能把一实数域中的实变函数
f t 变换为一个在复数域内与之等价的
复变函数 Fs。
第3页
黄河科技学院
控制工程基础
1)、 典型函数的拉氏变换
式中 L1 表示拉普拉斯反变换的符号
第20页
黄河科技学院
控制工程基础
拉普拉斯变换及反变换.ppt

机械工程控制基础
一、拉普拉斯变换 1. 定义 Laplace 正变换 F (s)
拉普拉斯变换及反变换
1 j st F ( s ) e ds Laplace 反变换 f (t ) j 2j ( t 0)
0
0
— —
表示为:
f (t )e dt
st
F(s)=ℒ[f(t)] f(t)=ℒ -1[F(s)]
df ( t ) 则 ℒ[ ] sF ( s ) f (0 ) dt 2 d f (t ) 2 ] s F ( s ) sf ( 0 ) f ( 0 ) ℒ [ 2 dt
机械工程控制基础
•例3 某动态电路的输入—输出方程为
拉普拉斯变换及反变换
d2 d d r ( t ) a r ( t ) a r ( t ) b e (t ) b0 e (t ) 1 0 1 2 dt dt dt
0
1 sa
机械工程控制基础
3. f (t ) (t ) (单位脉冲函数)
0 (t 0) (t ) (t 0)
δ(t)
拉普拉斯变换及反变换
(t )dt 1
0
t
ℒ [ ( t )]
0
( t )e st dt 0 (t )dt
u(t) t
F(s)=
1 st 0 e dt e 0 s
st
0
1 s
机械工程控制基础
2. f (t ) eat u(t ) (指数函数)
0 (t 0) f (t ) t e (t 0)
(完整版)拉普拉斯变换及其逆变换表.doc

拉普拉斯变换及其反变换表1. 表 A-1 拉氏变换的基本性质1齐次性线性定理叠加性2微分定理一般形式初始条件为0 时L [ af ( t )] aF ( s )L [ f 1 ( t ) f 2 ( t )] F 1 ( s ) F 2 ( s )L [df ( t )sF ( s ) f ( 0 )dt ]d2f 2 ( t )L [dt] s 2 F ( s ) sf ( 0 ) f (0 )L dnf n ( t ) s n F ( s )ns n k f ( k 1 ) ( 0 )kdt 1f ( k 1 ) ( t )d k1 f ( t )dt k 1L [d nf n ( t ) ] s n F ( s )dt一般形式3积分定理L[ f (t )dt] F (s)[f (t )dt]t 0s s2F (s) [ f (t)dt]t 0 [L[ f (t)( dt) ] s2 s2共n个n共 n个nF (s) 1L[ f (t)(dt) ] [s n k 1 s n k 1共n个2f (t )(dt) ]t 0f (t)(dt)n ]t 0初始条件为0 时4延迟定理(或称 t 域平移定理)5衰减定理(或称 s 域平移定理)6终值定理7初值定理8卷积定理L[ f ( t)( dt) n ] F ( s)s nL[ f (t T )1(t T )] e Ts F ( s)L[ f (t )e at ] F ( s a)lim f ( t) lim sF ( s)t s 0lim f (t ) lim sF (s)t 0 stf1(t ) f2 ( )d ]tL[ L[ f1(t) f2 (t )d ] F1 (s)F2 (s)0 02.表 A-2 常用函数的拉氏变换和z 变换表序号1 2 3 4 5 6 7 拉氏变换F(s)111 e Ts1s12s13s1s n 11s a时间函数f(t)δ(t)T (t)(t nT )n 01(t )tt 22t nn!e atZ 变换 F(z)1zz 1zz 1Tz(z 1)2T 2 z(z 1)2(z 1) 3lim( 1) n nzn ( aT)a 0 n! a z ezaTz eaT8 1( s a) 2 te at Tze( z e aT )2aT91011121314as(s a)b a(s a)(s b)s2 2ss2 2(s a)2 2s a(s a)2 211 e ate at e btsin tcos te at sin te at cos t(1 e ) z(z 1)( z e aT )z zz e aT z e bTz sin Tz2 2zcos T 1z( z cos T )z2 2 zcos T 1ze aT sin Tz2 2ze aT cos T e 2 aTz2 ze aT cos Tz2 2ze aT cos T e 2 aTz15 s (1 / T ) ln a a t / Tz a3.用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。
拉普拉斯变换和Z变换常用表格

拉普拉斯变换和z 变换常用表格1.拉氏变换的基本性质附表1 拉氏变换的基本性质1()1()([n n k F s f t dt s s−+=+∑⎰个2.常用函数的拉氏变换和z变换表附表2 常用函数的拉氏变换和z变换表3. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。
设)(s F 是s 的有理真分式,即1110111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==−−−− (m n >) 式中,系数n n a a a a ,,...,,110−和011,,,,m m b b b b −都是实常数;n m ,是正整数。
按代数定理可将)(s F 展开为部分分式。
分以下两种情况讨论。
(1)0)(=s A 无重根:这时,F(s)可展开为n 个简单的部分分式之和的形式,即∑=−=−++−++−+−=ni ii n n i i s s c s s c s s c s s c s s c s F 12211)( (F-1)式中,n s s s ,,,21 是特征方程A(s)=0的根;i c 为待定常数,称为()F s 在i s 处的留数,可按下列两式计算:lim()()ii i s s c s s F s →=− (F-2)或iss is A s B c ='=)()( (F-3)式中,)(s A '为)(s A 对s 的一阶导数。
根据拉氏变换的性质,从式(F-1)可求得原函数为[]⎥⎦⎤⎢⎣⎡−==∑=−−n i i i s s c L s F L t f 111)()(=1in s ti i c e =∑ (F-4) (2)0)(=s A 有重根:设0)(=s A 有r 重根1s ,F(s)可写为())()()()(11n r rs s s s s s s B s F −−−=+ =nn i i r r r r r r s s c s s c s s c s s c s s c s s c −++−++−+−++−+−++−− 11111111)()()(式中,1s 为F(s)的r 重根,1+r s ,…,n s 为F(s)的n r −个单根;其中,1+r c ,…,n c 仍按式(F-2)或式(F-3)计算,r c ,1−r c ,…,1c 则按下式计算:)()(lim 11s F s s c r s s r −=→11lim[()()]ir r s s dc s s F s ds−→=−)()(lim !11)()(1s F s s dsd j c r j j s s jr −=→− (F-5))()(lim )!1(11)1()1(11s F s s dsd r c r r r s s −−=−−→原函数)(t f 为 [])()(1s F Lt f −=⎥⎦⎤⎢⎣⎡−++−++−+−++−+−=++−−−n n i i r r r r r r s s c s s c s s c s s c s s c s s c L 111111111)()()( t s nr i i t s r r r r ie c e c t c t r c t r c ∑+=−−−+⎥⎦⎤⎢⎣⎡+++−+−=1122111)!2()!1( (F-6)。
拉普拉斯逆变换

拉普拉斯逆变换对于单边拉普拉斯变换,由式(8.1-9)知,象函数F(s)的拉普拉斯逆变换为⎪⎩⎪⎨⎧><=⎰∞+∞-j 0)(210,0)(σσj stt ds e s F j t t f ,π (8.3-1)上述积分应在收敛域内进行,若选常数0σσ>[0σ为)(s F 的收敛坐标],则积分路线是横坐标为σ,平行于与纵坐标轴的直线。
实用中,常设法将积分路线变为适当的闭合路径,应用复变函数中的留数定理求得原函数。
若F(s)是s 的有理分式,可将F(s)展开为部分分式,然后求得其原函数。
若直接利用拉普拉斯逆变换表(见附录五),将更为简便。
如果象函数F(s)是s 的有理分式,它可写为1110111F(s)a s a s a s b s b s b s b n n n m m m m ++++++++=---- (8.3-2)式中各系数),,1,0(),,,1,0(a i m j b n i j ==均为实数,为简便且不失一般性,设1=n a 。
若n m ≥,可用多项式除法将象函数F(s)分解为有理多项式)(s P 与有理真分式之和,即 )()()()(s A s B s P s F += (8.3-3)式中)(s B 的幂次小于)(s A 的幂次。
例如6116332261161531258)(23223234+++++++=+++++++=s s s s s s s s s s s s s s F由于)(]1[1t δ=-£,)(]['1t s δ=-£,…,故上面多项式)(s P 的拉普拉斯逆变换由冲激函数及其各阶导数组成,容易求得。
下面主要讨论象函数为有理真分式的情形。
一、查表法附录五是适用于求拉普拉斯逆变换的表,下面举例说明它的用法。
例8.3-1 求2352)(2+++=s s s s F 得原函数)(t f 。
解 )(s F 分母多项式0)(=s A 的根为2,121-=-=s s ,故)(s F 可写为 )2)(1(522352)(2+++=+++=s s s s s s s F由附录五查得,编号为2-12的象函数与本例)(s F 相同,其中2,1,5,201====βαb b 。
(完整版)典型常见函数拉氏变换表

t 0
s
lim f (t) lim sF (s)
t
s0
L
d dt
f
(t)
SF(s)
f
(0)
L
d
2f dt
(t
2
)
S 2F(s)
Sf (0)
f
(0)
f (0 ) lim f (t) lim sF (s)
t 0
s
lim f (t) lim sF (s)
t
s0
Lf (t)g(t)= F sGs
18
1
t n 1-2
e -nt sinn 1-2
1 e -nt sin(n 1-2 t-
) 1-2
19
=
arctan
1-2
1
s2+2ns+n2
s
s2+2ns+n2
典型时间函数的拉普拉斯变换
序号
原函数 f(t) (t >0)
1- 1 e -nt sin(n 1-2 t +
) 1-2
20
1-2
= arctan
典型常见函数 拉氏变换表
典型常见函数拉氏变换表
序号 1
原函数 f(t) (t >0)
1 (单位阶跃函数)
象函数 F(s)=L[f(t)]
1 s
2
(t) (单位脉冲函数)
1
3
K (常数)
K s
4
t (单位斜坡函数)
1 s2
典型常见时间函数拉氏变换表
序号 5 6 7 8
原函数 f(t) (t >0)
t n (n=1, 2, …) e -at
拉普拉斯逆变换

即得
1 2π j
j
F
(
s)
e
st
d
j
s
n k 1
Res [
F (s)est ,
sk
].
(返回)
18
第九章 拉普拉斯变换
§9.3 Laplace 逆变换 文档仅供参考,如有不当之处,请联系改正。
附:将实系数真分式 F (s) P(s) / Q(s) 化为部分分式
1. Q(s) 含单重一阶因子旳情况 若 Q(s) 含单重一阶因子 (s a) , 即 Q(s) (s a)Q1(s) ,
第九章 拉普拉斯变换
解 措施二 利用留数法求解
(1) s1 2, s2 1 分别为 F (s) 旳一阶与二阶极点,
Res[ F (s)est,
2]
1 (s 1)2
est
s2
e2t,
Res[ F (s)est, 1] ( est ) et t et.
s 2 s1
(2) f (t ) Res[ F (s)est, 2 ] Res[ F (s)est, 1]
上面讨论了 Q(s) 含单重和多重一阶因子旳情况,假如是 在复数范围内进行分解,这两种情况已经够了。
但假如仅在实数范围内进行分解,这两种情况还不够。
因为实系数多项式旳复零点总是互为共轭地成对出现旳, 即假如复数 z a jb 为 Q(s) 旳零点,那么它旳共轭复数 z a jb 也必为 Q(s) 旳零点。 所以,Q(s)必具有(实旳) 二阶因子 (s z)(s z ) (s a)2 b2 .
(1) s1 3 , s2,3 1 2i 为 F (s) 旳一阶极点,
Res[ F (s)est, 3 ] 2e3t,
拉普拉斯变换及其逆变换表

拉普拉斯变换及其反变换表1. 表A-1 拉氏变换的基本性质1 L [ af ( t )] aF ( s )齐次性线性定理L [ f 1 ( t ) f 2 ( t )] F 1 ( s ) F 2 ( s ) 叠加性L [ df ( t )]sF ( s ) f ( 0 )L [ ddt2 f ( t )dt 2] s 2 F ( s ) sf ( 0 ) f (0 )L d n f ( t ) ndt ns n F ( s ) s n k f ( k 1 ) ( 0 )k 1f ( k 1 ) ( t ) d k 1 fdt( t )k 12 微分定理一般形式初始条件为0 时L [ d n f ( t )dt n] s n F ( s )L[ f (t )dt ]F ( s)s [ f (t )dt ]t 0s[ 2L[ f ( t)( dt ) ] 2 F ( s)s 2f (t) d t ]t 0s[2f (t )(dt ) ]t 0s共n个共n个L[ f (t)(dt )n ] F ( s)s nnk 1 s1n k 1[ f (t)(dt ) n ] t 0一般形式共n个3 积分定理初始条件为0 时L[ f ( t)( dt) n ]F ( s)s nTs4 延迟定理(或称t 域平移定理)L[ f (t T)1(t T )] e F ( s)精品资料精品资料5衰减定理(或称 s 域平移定理)L[ f (t )eat] F ( s a)6终值定理lim f ( t )lim tssF ( s)lim f (t ) lim sF(s)7初值定理t 0 s8卷积定理tL[ f 1( t) f 2 ( ) d ]tL[ f 1( t ) f 2 ( t) d ]F 1 (s) F 2 ( s )2. 表 A-2 常用函数的拉氏变换和 z 变换表序号拉氏变换 F(s)时间函数 f(t)Z 变 换 F(z)1 1δ(t)11 2 1 eTsT( t)(t nT )zn 0z 1 1 1(t )z sz 11 4 s2tTz ( z 1)21 t 5 s32T 2z(z 1) 2( z 1)1 t n6 n 1lim( 1) z n ( aT ) sn!a 0n!a z e17 s aeatzz e1 atTze 8 ( s a) 2tea at( z e(1 eaT )2aT) z9s(s a)1 e(z 1)( z 2 3n)3 naTaT e aT精品资料2m m 1n 1b aat btz z 10(s11a)(s b)e esin tz eaTz ebTz sin T s2 2z22 z cos T 1scos tz( z cos T )12 s2z 2 2 zcos T 1atzeaTsin T13 (s a)2 2e sin t z22 ze aTcos T e2 aTs a14 22e atcos tz2zeaTcos T( s 15s a)1 (1 / T ) ln aat / Tz22zeaTz z acos T e2 aT3.用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拉普拉斯变换及其反变换表
3. 用查表法进行拉氏反变换
用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。
设)(s F 是s 的有理真分式
1
1
n 1
n n
n
1
1
m 1
m m
m
a
s a s a s a b s b s b s b )s (A )s (B )s (F ++++++++==---- (m n >)
式中系数n
1
n 1
a ,a ,...,a ,a
-,m
1
m 1
b ,b ,b ,b - 都是实常数;n m ,是正整数。
按
代数定理可将)(s F 展开为部分分式。
分以下两种情况讨论。
① 0)(=s A 无重根
这时,F(s)可展开为n 个简单的部分分式之和的形式。
∑
=-=-++-++-+-=n
1
i i
i
n
n
i
i
2
2
1
1
s
s c
s s c s s c s s c s s c )s (F 式中,Sn 2S 1S ,,, 是特征方程A(s)=0的根。
i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )s (F )s s (lim c i
s s i
-=→
或
i
s s i
)
s (A )
s (B c
='=
式中,)(s A '为)(s A 对s 的一阶导数。
根据拉氏变换的性质,从式(F-1)可求得原函数
[]t s n 1
i i n 1i i i 11i e c s s c
L )s (F L )t (f -==--∑∑=⎥⎦⎤⎢⎣⎡-==
② 0)(=s A 有重根
设0)(=s A 有r 重根1s ,F(s)可写为
())
s s ()s s ()s s ()
s (B s F n
1
r r 1
---=
+
=
n
n
i
i
1
r 1
r 1
1
1
r 1
1
r r 1
r
s
s c
s s c s s c )s s (c )s s (c )s s (c -+
+-++-+-++-+-++-- 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;
其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算:
)s (F )s s (lim c r
1
s s r
-=→
)]s (F )s s ([ds
d
lim c -=
)s (F )s s (ds
d lim !j 1c -=
)s (F )s s (ds
d
lim )!1r (1c --=
原函数)(t f 为 [])()(1s F L t f -=
⎥⎦
⎤
⎢⎣⎡-+
+-++-+-++-+-=s s c
s s c s s c )s s (c )
s s (c )s s (c L e c e c t c t )!2r (c t )!1r (c ∑+⎥⎦
⎤⎢⎣⎡+++-+-= (F-6)。