拉普拉斯变换及反变换表
拉普拉斯变换表

序 号 拉氏变换 E(s)
时间函数 e(t)
1
1
2
1 1 − e−Ts
3
1
s
δ(t)
∞
δT (t) = ∑δ (t − nT ) n=0 1(t )
4
1
t
s2
Z 变换 E(z)
1
z z −1
z z −1
Tz (z − 1) 2
5
1
t2
s3
2
T 2 z(z + 1) 2(z − 1)3
6
1 s n+1
7
1
s+a
8
1 (s + a)2
9
a s(s + a)
10
b−a (s + a)(s + b)
11
ω
s2 +ω2
12
s
s2 +ω2
13
ω (s + a)2 + ω 2
14
s +a (s + a)2 + ω 2
tn n! e −at te −at 1 − e −at e −at − e −bt
sin ωt cos ωt
6 终值定理 7 初值定理
lim f (t) = lim sF (s)
t→∞
s→0
lim f (t) = lim sF (s)
t→0
s→∞
419
8 卷积定理
∫ ∫ L[
t 0
f1(t
−τ )
f2(τ )dτ ]
=
L[
t 0
f1 (t )
f2 (t
−τ )dτ ] =
F1(s)F2 (s)
拉普拉斯变换及反变换.

拉普拉斯变换及反变换1.拉氏变换的基本性质表-1 拉氏变换的基本性质1()([n n k f t dt s s-+=+∑⎰个2.常用函数的拉氏变换和z 变换表表-2 常用函数的拉氏变换和z 变换表3. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。
设)(s F 是s 的有理真分式,即1110111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中,系数n n a a a a ,,...,,110-和011,,,,m m b b b b -都是实常数;n m ,是正整数。
按代数定理可将)(s F 展开为部分分式。
分以下两种情况讨论。
(1)0)(=s A 无重根:这时,F(s)可展开为n 个简单的部分分式之和的形式,即∑=-=-++-++-+-=ni ii n n i i s s c s s c s s c s s c s s c s F 12211)( (1)式中,n s s s ,,,21 是特征方程A(s)=0的根;i c 为待定常数,称为()F s 在i s 处的留数,可按下列两式计算:lim()()ii i s s c s s F s →=- (2)或iss i s A s B c ='=)()( (3)式中,)(s A '为)(s A 对s 的一阶导数。
根据拉氏变换的性质,从式(F-1)可求得原函数为[]⎥⎦⎤⎢⎣⎡-==∑=--n i i i s s c L s F L t f 111)()(=1in s ti i c e =∑ (4)(2)0)(=s A 有重根:设0)(=s A 有r 重根1s ,F(s)可写为())()()()(11n r r s s s s s s s B s F ---=+=nn i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11111111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…,n s 为F(s)的n r -个单根;其中,1+r c ,…,n c 仍按式(F-2)或式(F-3)计算,r c ,1-r c ,…,1c 则按下式计算:)()(lim 11s F s s c r s s r -=→11lim[()()]ir r s s dc s s F s ds-→=-)()(lim !11)()(1s F s s dsd j c r j j s s jr -=→- (5))()(lim )!1(11)1()1(11s F s s dsd r c r r r s s --=--→原函数)(t f 为 [])()(1s F Lt f -=⎥⎦⎤⎢⎣⎡-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L 111111111)()()( t s nr i i t s r r r r ie c e c t c t r c t r c ∑+=---+⎥⎦⎤⎢⎣⎡+++-+-=1122111)!2()!1( (6)。
(完整版)拉普拉斯变换及其逆变换表

拉普拉斯变换及其反变换表3. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。
设)(s F 是s 的有理真分式11n 1n nn11m 1m mmas a s a s a b s b s b s b )s (A )s (B )s (F ++++++++==---- (m n >)式中系数n1n 1a ,a ,...,a ,a-,m1m 1b ,b ,b ,b - 都是实常数;n m ,是正整数。
按代数定理可将)(s F 展开为部分分式。
分以下两种情况讨论。
① 0)(=s A 无重根这时,F(s)可展开为n 个简单的部分分式之和的形式。
∑=-=-++-++-+-=n1i iinnii2211ss cs s c s s c s s c s s c )s (F 式中,Sn 2S 1S ,,, 是特征方程A(s)=0的根。
i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )s (F )s s (lim c is s i-=→或is s i)s (A )s (B c='=式中,)(s A '为)(s A 对s 的一阶导数。
根据拉氏变换的性质,从式(F-1)可求得原函数[]t s n 1i i n 1i i i 11i e c s s cL )s (F L )t (f -==--∑∑=⎥⎦⎤⎢⎣⎡-==② 0)(=s A 有重根设0)(=s A 有r 重根1s ,F(s)可写为())s s ()s s ()s s ()s (B s F n1r r 1---=+=nnii1r 1r 111r 11r r 1rss cs s c s s c )s s (c )s s (c )s s (c -++-++-+-++-+-++-- 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算:)s (F )s s (lim c r1s s r-=→)]s (F )s s ([dsdlim c -=)s (F )s s (dsd lim !j 1c -=)s (F )s s (dsdlim )!1r (1c --=原函数)(t f 为 [])()(1s F L t f -=⎥⎦⎤⎢⎣⎡-++-++-+-++-+-=s s cs s c s s c )s s (c )s s (c )s s (c L e c e c t c t )!2r (c t )!1r (c ∑+⎥⎦⎤⎢⎣⎡+++-+-= (F-6)。
拉普拉斯变换的基本性质、变换及反变换

拉普拉斯变换的基本性质、变换及反变换t t8 卷积定理L[ [f i(t—l)f2&)dE] =L[ [f i(t)f2(t—l)dl] = F i(s)F2(s)用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。
设F(s)是s 的有理真分式A(s)二0有重根设A(s) = 0有r 重根s ,F(s)可写为F s-(s-s ,)r(s-s ri ) (s-s n )B(s)b m 「4 g b0A(s)n ,n 」a n S - a n 」s 山…“y s - a 。
式中系数a 0, a i ,..., a n J ,a n , b °,b i , b m 」,b m 都是实常数; 将F(s)展开为部分分式。
分以下两种情况讨论。
m,n 是正整数。
按代数定理可①A(s) = 0无重根这时,F(s)可展开为n 个简单的部分分式之和的形式。
i C 2C jC nF(s) 121— s — s i s — S 2s — ss_s nC i(F-1)式中,q,s 2,…,s n 是特征方程 A(s) = 0的根。
C i 为待定常数,称为 可按下式计算:F(s)在S i 处的留数,式中,C =lim (s _sJF (s)S Tic _ B(s) iA(s)s zs iA (s)为A(s)对s 的一阶导数。
根据拉氏变换的性质,从式(4 I l j n C i =L !F (S )】=L 巨一—S — Sj 一 f(t)C in -s it=' Ci e ii =1(F-2)(F-3)F-1 )可求得原函数(F-4)B(s)式中, 其中,& r -(S —S i) (s—s)C if ,s〜) CriS —■S r iG •…©S - s S—S nS i为F(s)的r重根,S r审,…,s n为F(s)的n-r个单根;C r +,…,C n 仍按式(F-2)或(F-3)计算,C r,C rj,…, C i则按下式计算:f(t)为厂c r =lim (s — sj r F(s)T id rC ri =lim [(s -sj F(s)] dss :siC i原函数f (t)二L°〔F(s) I冷冗加(DEi d(7C i _____ . C r i ....(F-5)(s -S i)r 1(s—s i) S —S r*G *…+C nS — S j S —S nt r^ +…+c2t +G e Sit(r-2)! 2 5S i t°e iF-6)欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。
拉氏变换及反变换

2. f (t) eatu(t) (指数函数)
f
(t)
0
(t 0)
et (t 0)
F(s)= ℒ [eat ] eatestdt 0 ℒ [ejt ] 1 s j
1
e(sa)t
sa
0
1 sa
机械工程控制基础
拉普拉斯变换及反变换
3. f (t) (t) (单位脉冲函数)
(t)
t
s0
机械工程控制基础
拉普拉斯变换及反变换
例1
u(t) t0
lim s 1 s s
1
例2 I(s) 5 2 s1 s2
i(0 ) lim s( 5 2 ) lim( 5 2 ) 3 s s 1 s 2 s 1 1/ s 1 2 / s
例3
I (s) ℒ [1 e-t ] 1 1 s s1
Ui(s) H(s) I(s)
I(s)=Ui(s)H(s)= ℒ[ui(t)] H(s)
=ℒ eat (t)
(5)作Laplace反变换得
1 R Ls
s
1
a
1 L
s
1 R
L
零状态响应电流
i(t)= ℒ-1[I(s)]
1
(e a t
Rt
e L )
(t)
L ( R a)
L
机械工程控制基础
拉普拉斯变换及反变换
的
拉
t
1/s2
普 拉
n!
tn
sn+1
1
斯
e-at
s+a
变 换
1
te-at
(s+a)2
表
tne-at
n!
(s+a)n+1
Laplace拉氏变换公式表

Laplace拉氏变换公式表1. 常数变换:对于常数C,其拉普拉斯变换为C/s,其中s是复数频率。
2. 幂函数变换:对于幂函数t^n,其中n为实数,其拉普拉斯变换为n!/s^(n+1)。
3. 指数函数变换:对于指数函数e^(at),其中a为实数,其拉普拉斯变换为1/(sa)。
4. 正弦函数变换:对于正弦函数sin(at),其中a为实数,其拉普拉斯变换为a/(s^2+a^2)。
5. 余弦函数变换:对于余弦函数cos(at),其中a为实数,其拉普拉斯变换为s/(s^2+a^2)。
6. 双曲正弦函数变换:对于双曲正弦函数sinh(at),其中a为实数,其拉普拉斯变换为a/(s^2a^2)。
7. 双曲余弦函数变换:对于双曲余弦函数cosh(at),其中a为实数,其拉普拉斯变换为s/(s^2a^2)。
8. 指数衰减正弦函数变换:对于指数衰减正弦函数e^(at)sin(bt),其中a和b为实数,其拉普拉斯变换为b/(s+a)^2+b^2。
9. 指数衰减余弦函数变换:对于指数衰减余弦函数e^(at)cos(bt),其中a和b为实数,其拉普拉斯变换为s+a)/(s+a)^2+b^2。
10. 指数增长正弦函数变换:对于指数增长正弦函数e^(at)sin(bt),其中a和b为实数,其拉普拉斯变换为b/(sa)^2+b^2。
Laplace拉氏变换公式表11. 幂函数与指数函数的乘积变换:对于函数t^n e^(at),其中n为实数,a为实数,其拉普拉斯变换为n!/(sa)^(n+1)。
12. 幂函数与正弦函数的乘积变换:对于函数t^n sin(at),其中n为实数,a为实数,其拉普拉斯变换可以通过分部积分法得到。
13. 幂函数与余弦函数的乘积变换:对于函数t^n cos(at),其中n为实数,a为实数,其拉普拉斯变换可以通过分部积分法得到。
14. 指数函数与正弦函数的乘积变换:对于函数e^(at) sin(bt),其中a和b为实数,其拉普拉斯变换为b/(sa)^2+b^2。
拉氏变换表

附录A 拉普拉斯变换及反变换1.表A-1 拉氏变换的基本性质__________________________________________________2.表A-2 常用函数的拉氏变换和z变换表____________________________________________________________________________________________________3. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。
设)(s F 是s 的有理真分式1110111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。
按代数定理可将)(s F 展开为部分分式。
分以下两种情况讨论。
① 0)(=s A 无重根这时,F(s)可展开为n 个简单的部分分式之和的形式。
∑=-=-++-++-+-=ni ii n n i i s s c s s c s s c s s c s s c s F 12211)( (F-1)式中,n s s s ,,,21 是特征方程A(s)=0的根。
i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i-=→ (F-2)或iss i s A s B c ='=)()( (F-3)式中,)(s A '为)(s A 对s 的一阶导数。
根据拉氏变换的性质,从式(F-1)可求得原函数[]⎥⎦⎤⎢⎣⎡-==∑=--n i i i s s c L s F L t f 111)()(=ts n i i ie c -=∑1(F-4)②0)(=s A 有重根设0)(=s A 有r 重根1s ,F(s)可写为())()()()(11n r rs s s s s s s B s F ---=+__________________________________________________=nn i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11111111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算:)()(lim 11s F s s c r s s r -=→)]()([lim111s F s s dsdc r s s r -=→-)()(lim !11)()(1s F s s dsd j c r j j s s jr -=→- (F-5))()(lim )!1(11)1()1(11s F s s dsd r c r r r s s --=--→原函数)(t f 为 [])()(1s F Lt f -=⎥⎦⎤⎢⎣⎡-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L 111111111)()()( t s nr i i t s r r r r ie c e c t c t r c t r c ∑+=---+⎥⎦⎤⎢⎣⎡+++-+-=1122111)!2()!1( (F-6)。
拉普拉斯变换及其逆变换表

n
F ( s)
L[ f (t )dt ]
一般形式 3 积分定理
L[ f (t )(dt ) 2 ]
共n个
2 F ( s ) [ f (t )dt ]t 0 [ f (t )(dt ) ]t 0 s2 s2 s
共n个 F ( s) n 1 n L[ f (t )(dt ) ] n n k 1 [ f (t )(dt ) n ]t 0 s k 1 s
B( s ) b s b s b s b F (s ) A(s ) a s a s a s a
m m 1 m m 1 1 n n 1 n n 1 1 0
0
(n m)
式中系数 a
0
, a ,..., a , a , b , b ,b , b 都是实常数; m, n 是正整数。按
1(t )
z z 1
1 s2
1 s3
t
t2 2
Tz ( z 1) 2
T 2 z ( z 1) 2( z 1) 3
1 s n 1
1 sa
tn n!
lim
( 1) n n z ( ) n a 0 n! a z e aT
z z e aT
e at te
at
拉普拉斯变换及其反变换表表a1拉氏变换的基本性质1线性定理齐次性叠加性2微分定理一般形式初始条件为0时3积分定理一般形式初始条件为0时4延迟定理或称域平移定理5衰减定理或称域平移定理6终值定理7初值定理8卷积定理2
拉普拉斯变换及其反变换表
1.表 A-1 拉氏变换的基本性质
1 线性定理 齐次性 叠加性
c c t t c t c e c e (r 2)! (r 1)!