拉普拉斯变换的基本性质、变换及反变换

合集下载

拉普拉斯变换及反变换

拉普拉斯变换及反变换
0
t
重要性质





( t ) f ( t ) dt f ( 0 )
( t ) dt ( t ) dt 1
0

0


L[ ( t )]



(t ) e
st
0
dt ( t ) e


st
dt 1
第7页
黄河科技学院
(5)指数函数
f (t )
控制工程基础
f (t )
(k =const)
0 2 f ( t ) kt 1( t ) 1 2 kt t 2 2 1
0
t0
t
t0
0
t
F ( s ) L [ f ( t )]
( b)
跃函数
坡 函 kt 斜 2 数
0

1
2
e
st
dt
k s
3
F s

的原函数;L是表示进行拉氏变换的 符号。
第2页
黄河科技学院
控制工程基础
F ( s ) L [ f ( t )]
f ( t ) L [ F ( s )]
拉氏变换是这样一种变换,即在一定的 条件下,它能把一实数域中的实变函数 f t 变换为一个在复数域内与之等价的 复变函数 F s 。
控制工程基础
2)当解出s有重根时,对F(s)作因式分解:
F (s) br ( s p1 )
r

b r 1 ( s p1 )
r 1

b1 ( s p1 )
r

a r 1 ( s p r 1 )

拉普拉斯变换

拉普拉斯变换

L[ f (t)] = F1(s) + e F1(s) + e
= F (s)[e 1
−sT
−sT
−2sT
F1(s) + ⋅ ⋅ ⋅
+e
−2sT
+e
−3sT
1 F (s) + ⋅ ⋅ ⋅] = −sT 1 1− e
返 回
上 页
下 页
f(t)
1 L[ f (t)] = F (s) −sT 1 1− e
1 d L[cos ωt] = L (sin( ωt) ω dt s 1 ω = = s 2 − 0 2 2 2 ω s +ω s +ω
返 回 上 页 下 页
(2) f (t) = δ( t)的象函数

1 L[ε (t )] = s dε (t) 1 L[δ (t)] = L[ ] = s − 0 =1 dt s

1 1 1 = ⋅ = 2 s s s
2 s3
L[t ε (t)]= L[2∫ tdt] =
2
t 0
返 回
上 页
下 页
4.延迟性质 4.延迟性质 若: L[ f (t)] = F(s)
则: L[ f (t − t0 )ε (t − t0 )] = e F(s)
−st0
例1 求矩形脉冲的象函数

f (t) = ε (t) − ε (t − T )
二. 拉普拉斯变换的基本性质
1.线性性质 1.线性性质 若 L[ f1(t)] = F (s) , 1
则 L [A f1(t) + A2 f2 (t)] = A L [ f1(t)] + A2L[ f2 (t)] 1 1

拉氏变化及反变换

拉氏变化及反变换
0
t 0
1
2 单位阶跃函数
f (t )
1
0, t 0 1(t ) 1, t 0
0
t
L[1(t )]

0
1 st 1 1(t )e dt e 0 s s
st
3 单位斜坡函数
f (t )
f (t )
0, t 0 f (t ) t, t 0
1 1 1(t ) 1(t T ) T T
L[ f (t )]
1 1 sT 1 e (1 e sT ) Ts Ts Ts
T T f (t ) f1 (t ) f1 (t ) f1 (t ) f1 (t T ) 2 2 4 4 T 4 T 4 2 t 2 (t ) 2 (t ) 2 (t T ) T T 2 T 2 T
1 jt sin t (e e jt ) 2j
st
Hale Waihona Puke e j cos j sin e j cos j sin
L[sin t ] sin t e dt
0
0
1 jt jt st e e e dt 2j
10.像函数的微分性质
设L[ f (t )] F (s)
dF ( s) Ltf (t ) ds
11.像函数的积分性质
设L[ f (t )] F (s)
1 L f (t ) F ( s)ds t s
例 求图示方波和三角波的拉氏变换
方波: f (t ) f1 (t ) f1 (t T )


1 1 1 s 2 2 s j s j s 2

拉氏变换)

拉氏变换)
2
1 1 3 1 2 1 1 1 F(s) . . . . 2 (s 1 )2 4 s 1 3 s 12 s 3 1 t 3 t 2 1 3t f(t) te e e 2 4 3 12
常系数线性微分方程的拉普拉斯变换解法
利用拉普拉斯变换可以比较方便地求解常系 数线性微分方程(或方程组)的初值问题,其 基本步骤如下: (1)根据拉普拉斯变换的微分性质和线性 性质,对微分方程(或方程组)两端取拉普拉 斯变换,把微分方程化为象函数的代数方程; (2)从象函数的代数方程中解出象函数; (3)对象函数求拉普拉斯逆变换,求得微分 方程(或方程组)的解.
三 拉氏变换的几个重要定理
(1)线性性质 (2)微分定理
f ( n ) (t ) s n F ( s ) s n 1 f (0) s n 2 f (0) f ( n 1) (0) ℒ
(3)积分定理
(4)实位移定理
(5)复位移定理 (6)初值定理 (7)终值定理
(终值确实存在时)
应用拉氏变换的终值定理求 y ()
注意拉氏变换终值定理的适用条件:
sY ( s) 的极点均处在复平面的左半边。
不满足终值定理的条件。
事实上:
《自动控制原理》国家精品课程
浙江工业大学自动化研究所
9
四 拉氏反变换
(1)反演公式
f (t )
2 j j
1
j
F(s)
12 12 s1 s 3
f(t)
1 t 1 3t e e 2 2
s 2 5s 5 例3 已知 F ( s ) 2 ,求 f ( t ) ? s 4s 3
( s 2 4 s 3) ( s 2 ) s2 F(s) 1 2 解. s 4s 3 ( s 1)( s 3) 1 1 f(t) ( t ) e t e 3 t 2 2

拉普拉斯变换及反变换.

拉普拉斯变换及反变换.

拉普拉斯变换及反变换1.拉氏变换的基本性质表-1 拉氏变换的基本性质1()([n n k f t dt s s-+=+∑⎰个2.常用函数的拉氏变换和z 变换表表-2 常用函数的拉氏变换和z 变换表3. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

设)(s F 是s 的有理真分式,即1110111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中,系数n n a a a a ,,...,,110-和011,,,,m m b b b b -都是实常数;n m ,是正整数。

按代数定理可将)(s F 展开为部分分式。

分以下两种情况讨论。

(1)0)(=s A 无重根:这时,F(s)可展开为n 个简单的部分分式之和的形式,即∑=-=-++-++-+-=ni ii n n i i s s c s s c s s c s s c s s c s F 12211)( (1)式中,n s s s ,,,21 是特征方程A(s)=0的根;i c 为待定常数,称为()F s 在i s 处的留数,可按下列两式计算:lim()()ii i s s c s s F s →=- (2)或iss i s A s B c ='=)()( (3)式中,)(s A '为)(s A 对s 的一阶导数。

根据拉氏变换的性质,从式(F-1)可求得原函数为[]⎥⎦⎤⎢⎣⎡-==∑=--n i i i s s c L s F L t f 111)()(=1in s ti i c e =∑ (4)(2)0)(=s A 有重根:设0)(=s A 有r 重根1s ,F(s)可写为())()()()(11n r r s s s s s s s B s F ---=+=nn i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11111111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…,n s 为F(s)的n r -个单根;其中,1+r c ,…,n c 仍按式(F-2)或式(F-3)计算,r c ,1-r c ,…,1c 则按下式计算:)()(lim 11s F s s c r s s r -=→11lim[()()]ir r s s dc s s F s ds-→=-)()(lim !11)()(1s F s s dsd j c r j j s s jr -=→- (5))()(lim )!1(11)1()1(11s F s s dsd r c r r r s s --=--→原函数)(t f 为 [])()(1s F Lt f -=⎥⎦⎤⎢⎣⎡-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L 111111111)()()( t s nr i i t s r r r r ie c e c t c t r c t r c ∑+=---+⎥⎦⎤⎢⎣⎡+++-+-=1122111)!2()!1( (6)。

函数的拉普拉斯变换与逆变换

函数的拉普拉斯变换与逆变换

函数的拉普拉斯变换与逆变换定义函数f(t)的拉普拉斯变换定义为:F(s)=∫e−st∞f(t)dt其中s是一个复数变量。

性质拉普拉斯变换具有以下性质:1.线性性:对于任意常数a和b,以及函数f(t)和g(t),有:L[af(t)+bg(t)]=aL[f(t)]+bL[g(t)]2.时移性:对于任意常数a,有:L[f(t−a)u(t−a)]=e−as F(s)其中u(t)是单位阶跃函数。

3.微分性:对于任意可导函数f(t),有:L[f′(t)]=sF(s)−f(0)L[f″(t)]=s2F(s)−sf(0)−f′(0)4.积分性:对于任意可积函数f(t),有:L[∫ft0(τ)dτ]=F(s)s5.卷积定理:对于任意两个函数f(t)和g(t),有:L[f(t)∗g(t)]=F(s)G(s)其中∗表示卷积运算。

应用拉普拉斯变换在许多领域都有应用,包括:1.微分方程的求解:拉普拉斯变换可以将微分方程转化为代数方程,从而更容易求解。

2.信号处理:拉普拉斯变换可以用于分析和处理信号。

3. 控制理论:拉普拉斯变换可以用于分析和设计控制系统。

4. 电路分析:拉普拉斯变换可以用于分析和设计电路。

逆拉普拉斯变换拉普拉斯变换的逆变换定义为:f (t )=12πi ∫e st γ+i∞γ−i∞F (s )ds 其中 γ 是一个大于所有 F (s ) 的奇点实部的常数。

性质逆拉普拉斯变换具有以下性质:1. 线性性:对于任意常数 a 和 b ,以及函数 f (t ) 和 g (t ),有:L −1[aF (s )+bG (s )]=aL −1[F (s )]+bL −1[G (s )]2. 时移性:对于任意常数 a ,有:L −1[e as F (s )]=f (t −a )u (t −a )3. 微分性:对于任意可导函数 F (s ),有:L −1[sF (s )]=f′(t )L −1[s 2F (s )]=f″(t )4. 积分性:对于任意可积函数 F (s ),有:L −1[F (s )s ]=∫f t 0(τ)dτ 5. 卷积定理:对于任意两个函数 F (s ) 和 G (s ),有:L −1[F (s )G (s )]=f (t )∗g (t )应用逆拉普拉斯变换在许多领域都有应用,包括:1. 微分方程的求解:逆拉普拉斯变换可以将代数方程转化为微分方程,从而更容易求解。

(完整版)拉普拉斯变换及其逆变换表

(完整版)拉普拉斯变换及其逆变换表

拉普拉斯变换及其反变换表3. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

设)(s F 是s 的有理真分式11n 1n nn11m 1m mmas a s a s a b s b s b s b )s (A )s (B )s (F ++++++++==---- (m n >)式中系数n1n 1a ,a ,...,a ,a-,m1m 1b ,b ,b ,b - 都是实常数;n m ,是正整数。

按代数定理可将)(s F 展开为部分分式。

分以下两种情况讨论。

① 0)(=s A 无重根这时,F(s)可展开为n 个简单的部分分式之和的形式。

∑=-=-++-++-+-=n1i iinnii2211ss cs s c s s c s s c s s c )s (F 式中,Sn 2S 1S ,,, 是特征方程A(s)=0的根。

i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )s (F )s s (lim c is s i-=→或is s i)s (A )s (B c='=式中,)(s A '为)(s A 对s 的一阶导数。

根据拉氏变换的性质,从式(F-1)可求得原函数[]t s n 1i i n 1i i i 11i e c s s cL )s (F L )t (f -==--∑∑=⎥⎦⎤⎢⎣⎡-==② 0)(=s A 有重根设0)(=s A 有r 重根1s ,F(s)可写为())s s ()s s ()s s ()s (B s F n1r r 1---=+=nnii1r 1r 111r 11r r 1rss cs s c s s c )s s (c )s s (c )s s (c -++-++-+-++-+-++-- 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算:)s (F )s s (lim c r1s s r-=→)]s (F )s s ([dsdlim c -=)s (F )s s (dsd lim !j 1c -=)s (F )s s (dsdlim )!1r (1c --=原函数)(t f 为 [])()(1s F L t f -=⎥⎦⎤⎢⎣⎡-++-++-+-++-+-=s s cs s c s s c )s s (c )s s (c )s s (c L e c e c t c t )!2r (c t )!1r (c ∑+⎥⎦⎤⎢⎣⎡+++-+-= (F-6)。

拉普拉斯变换表

拉普拉斯变换表

附录A 拉普拉斯变换及反变换1.表A-1 拉氏变换的基本性质4198 卷积定理)()(])()([])()([21021021s F s F d t f t f L d f t f L tt =−=−∫∫τττττ2.表A-2 常用函数的拉氏变换和z 变换表4203. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。

设是的有理真分式)(s F s 01110111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==−−−−L L () m n >式中系数,都是实常数;是正整数。

按代数定理可将展开为部分分式。

分以下两种情况讨论。

n n a a a a ,,...,,110−m m b b b b ,,,110−L n m ,)(s F ① 无重根0)(=s A 这时,F(s)可展开为n 个简单的部分分式之和的形式。

∑=−=−++−++−+−=ni ii n n i i s s c s s c s s c s s c s s c s F 12211)(L L (F-1)式中,是特征方程A(s)=0的根。

为待定常数,称为F(s)在处的留数,可按下式计算: n s s s ,,,21L i c i s (F-2))()(lim s F s s c i s s i i−=→或iss i s A s B c =′=)()( (F-3)式中,为对)(s A ′)(s A s 的一阶导数。

根据拉氏变换的性质,从式(F-1)可求得原函数[]⎥⎦⎤⎢⎣⎡−==∑=−−n i i i s s c L s F L t f 111)()(= (F-4)ts n i i ie c −=∑1②有重根 0)(=s A 设有r 重根,F(s)可写为0)(=s A 1s ())()()()(11n r rs s s s s s s B s F −−−=+L 421=nn i i r r r r r r s s c s s c s s c s s c s s c s s c −++−++−+−++−+−++−−L L L 11111111)()()( 式中,为F(s)的r 重根,,…, 为F(s)的n-r 个单根;1s 1+r s n s 其中,,…, 仍按式(F-2)或(F-3)计算,,,…, 则按下式计算: 1+r c n c r c 1−r c 1c)()(lim 11s F s s c r s s r −=→)]()([lim111s F s s dsdc r s s r −=→− M)()(lim !11)()(1s F s s dsd j c r j j s s jr −=→− (F-5) M)()(lim )!1(11)1()1(11s F s s dsd r c r r r s s −−=−−→原函数为 )(t f[])()(1s F Lt f −=⎥⎦⎤⎢⎣⎡−++−++−+−++−+−=++−−−n n i i r r r r r r s s c s s c s s c s s c s s c s s c L L L L 111111111)()()( t s nr i i t s r r r r ie c e c t c t r c t r c ∑+=−−−+⎥⎦⎤⎢⎣⎡+++−+−=1122111)!2()!1(L (F-6)4224.2.10 性质表及常用变换表为了便于查阅和应用,最后,将单边拉普拉斯变换的性质和常用单边拉普拉斯变换分别列于表4.1和4.2表中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

拉普拉斯变换的基本性质、变换及反变换
t t
8 卷积定理L[ [f i(t—l)f2&)dE] =L[ [f i(t)f2(t—l)dl] = F i(s)F2(s)
用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行
反变换。

设F(s)是s 的有理真分式
A(s)二0有重根
设A(s) = 0有r 重根s ,F(s)可写为
F s
-(s-s ,)r
(s-s ri ) (s-s n )
B(s)
b m 「4 g b0
A(s)
n ,
n 」
a n S - a n 」s 山…“y s - a 。

式中系数a 0, a i ,..., a n J ,a n , b °,b i , b m 」,b m 都是实常数; 将F(s)展开为部分分式。

分以下两种情况讨论。

m,n 是正整数。

按代数定理可
①A(s) = 0无重根
这时,F(s)可展开为n 个简单的部分分式之和的形式。

i C 2
C j
C n
F(s) 1
2
1
— s — s i s — S 2
s — s
s_s n
C i
(F-1)
式中,q,s 2,…,s n 是特征方程 A(s) = 0的根。

C i 为待定常数,称为 可按下式计算:
F(s)在S i 处的留数,
式中,
C =lim (s _sJF (s)
S T
i
c _ B(s) i
A(s)
s zs i
A (s)为A(s)对s 的一阶导数。

根据拉氏变换的性质,从式(
4 I l j n C i =L !F (S )】=L 巨一—
S — Sj 一 f(t)
C i
n -s i
t
=' C
i e i
i =1
(F-2)
(F-3)
F-1 )可求得原函数
(F-4)
B(s)
式中, 其中,
& r -
(S —S i) (s—s)
C i
f ,s〜) Cri
S —■
S r i
G •…©
S - s S—
S n
S i为F(s)的r重根,S r审,…,s n为F(s)的n-r个单根;
C r +,…,C n 仍按式(F-2)或(F-3)计算,C r,C rj,…, C i则按下式计算:
f(t)为
厂c r =lim (s — sj r F
(s)
T i
d r
C ri =lim [(s -sj F(s)] ds
s :si
C i
原函数
f (t)二L°〔F(s) I
冷冗加(DE
i d(7
C i _____ . C r i ....
(F-
5)
(s -
S i)
r 1(s—s i) S —
S r*
G *…+C n
S — S j S —
S n
t r^ +…+c2t +G e Sit
(r-2)! 2 5
S i t
°e i
F-6)
欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。

相关文档
最新文档