五年级上册多边形面积的计算
(完整word版)五年级上册多边形面积的计算

不规则图形面积的计算(一)我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算.如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。
那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。
例1 如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。
例2 如右图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF 的面积彼此相等,求三角形AEF的面积.例3 两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。
如右图那样重合.求重合部分(阴影部分)的面积。
例4 如右图,A为△CDE的DE边上中点,BC=CD,若△ABC(阴影部分)面积为5平方厘米.求△ABD及△ACE的面积.例5 如下页右上图,在正方形ABCD中,三角形ABE的面积是8平方厘例6 如右图,已知:S△ABC=1,例7 如下页右上图,正方形ABCD的边长是4厘米,CG=3厘米,矩形DEFG 的长DG为5厘米,求它的宽DE等于多少厘米?例8 如右图,梯形ABCD的面积是45平方米,高6米,△AED的面积是5平方米,BC=10米,求阴影部分面积.例9 如右图,四边形ABCD和DEFG都是平行四边形,证明它们的面积相等.习题一一、填空题(求下列各图中阴影部分的面积):二、解答题:1.如右图,ABCD为长方形,AB=10厘米,BC=6厘米,E、F分别为AB、AD中点,且FG=2GE.求阴影部分面积。
2.如右图,正方形ABCD与正方形DEFG的边长分别为12厘米和6厘米.求四边形CMGN(阴影部分)的面积.3.如右图,正方形ABCD的边长为5厘米,△CEF的面积比△ADF的面积大5平方厘米.求CE的长。
新人教版五年级上册数学多边形的面积知识点

多边形的面积一、计算公式注:S表示面积,a表示底,h表示高,底和高必须对应!在梯形的面积公式里,a表示上底,b表示下底,一般来说,短的是上底,长的是下底。
在计算面积时,要找准对应的量。
求三角形和梯形的面积时,不要忘了除以2。
二、其他知识点1、计算多边形的面积,要代入公式计算。
2、推导平行四边形的面积,将平行四边形转化成长方形。
(割补法)3、平行四边形的周长=相邻两边长之和×2 三角形的周长=三条边之和梯形的周长=上底+下底+两条腰4、把一个长方形拉成平行四边形,周长不变,面积变小(平行四边形的高比原来长方形的宽小)。
反之,把平行四边形拉成一个长方形,周长不变,面积变大。
5、两个完全一样的三角形可以拼成一个平行四边形。
(拼摆法)6、等底等高的平行四边形和三角形,平行四边形的面积是三角形面积的2倍,三角形面积是平行四边形面积的一半。
等面积等底的平行四边形和三角形,三角形的高是平行四边形的高的2倍,平行四边形的高是三角形的高的一半。
7、在直角三角形里,两条直角边就是对应的底和高,斜边最长。
8、两个完全一样的梯形可以拼成一个平行四边形。
(拼摆法)9、计算堆成梯形形状的圆木、钢管等的个数,通常用下面的方法:(顶层个数+底层个数)×层数÷2=总个数。
注意:只有下一层物体比上一层物体数多1时,才有“层数=底层个数-顶层个数+1”10、求组合图形的面积时,一定要找准所分成的图形的相关数据。
11、不规则图形的面积可以转化成学过的图形来估算,也可以通过数方格的方法来估算。
三、解答方法1、计算面积时,分清是算哪种图形的面积,直接利用相应的面积公式,一定要找准公式里所需的每个量,注意单位是否一致,算出结果后记得写单位,面积单位有“平方”两个字。
2、计算底、高、上底或下底时,同样看清是哪种图形,直接利用相应面积公式的变式。
(熟记和熟练运用上面表格的计算公式。
)3、计算组合图形的面积时,利用割补法,看清组合图形是由哪几个简单图形(所谓简单图形,就是我们学过的长方形、正方形、平行四边形、三角形、梯形)组成的,分别算出每个简单图形的面积,最后不要忘了再相加(分割法,图形是凸的)或相减(添补法,图形是凹的)。
人教版五年级上册《多边形的面积》要点知识及易错点解析

人教版五年级上册《多边形的面积》要点知识及易错点解析《多边形的面积》要点知识一、公式:多边形面积公式面积公式的变式说明正方形正方形的面积=边长X边长S正=aXa=a2已知:正方形的面积,求边长长方形长方形的面积=长X宽S长=aXb已知:长方形的面积和长,求宽平行四边形平行四边形的面积=底X高S平=aXh已知:平行四边形的面积和底,求高h=S平÷a三角形三角形的面积=底X宽高÷2S三=aXh÷2已知:三角形的面积和底,求高H=S三X2÷a梯形梯形形的面积=(上底+下底)X高÷2S梯=(a+b)X2已知:梯形的面积与上下底之和,求高高=面积×2÷(上底+下底)上底=面积×2÷高-下底组合图形当组合图形是凸出的,用两种或三种简单图形面积相加进行计算。
当组合图形是凹陷的,用一种最大的简单图形面积减较小的简单图形面积进行计算。
二、平行四边形面积公式推导:剪拼、平移平行四边形可以转化成一个长方形;长方形的长相当于平行四边形的底;长方形的宽相当于平行四边形的高;长方形的面积等于平行四边形的面积,因为长方形面积=长×宽,所以平行四边形面积=底×高。
三、三角形面积公式推导:旋转两个完全一样的三角形可以拼成一个平行四边形,平行四边形的底相当于三角形的底;平行四边形的高相当于三角形的高;平行四边形的面积等于三角形面积的2倍,因为平行四边形面积=底×高,所以三角形面积=底×高÷2四、梯形面积公式推导:旋转两个完全一样的梯形可以拼成一个平行四边形。
平行四边形的底相当于梯形的上下底之和;平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍,因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2五、等底等高的平行四边形面积相等;等底等高的三角形面积相等;等底等高的平行四边形面积是三角形面积的2倍。
小学五年级上册数学《多边形的面积》知识点及练习题

【导语】当物体占据的空间是⼆维空间时,所占空间的⼤⼩叫做该物体的⾯积,⾯积可以是平⾯的也可以是曲⾯的。
平⽅⽶,平⽅分⽶,平⽅厘⽶,是公认的⾯积单位,以下是⽆忧考为⼤家精⼼整理的内容,欢迎⼤家阅读。
【篇⼀】⼩学五年级上册数学《多边形的⾯积》知识点 1、公式 长⽅形:周长=(长+宽)×2;字母公式:C=(a+b)×2 ⾯积=长×宽;字母公式:S=ab 正⽅形:周长=边长×4;字母公式:C=4a ⾯积=边长×边长;字母公式:S=a 平⾏四边形:⾯积=底×⾼;字母公式:S=ah 三⾓形:⾯积=底×⾼÷2;字母公式:S=ah÷2 底=⾯积×2÷⾼;⾼=⾯积×2÷底 梯形:⾯积=(上底+下底)×⾼÷2;字母公式:S=(a+b)h÷2 上底=⾯积×2÷⾼-下底;下底=⾯积×2÷⾼-上底;⾼=⾯积×2÷(上底+下底) 2、单位换算的⽅法 ⼤化⼩,乘进率;⼩化⼤,除以进率。
3、常⽤单位间的进率 1千⽶=1000⽶1⽶=10分⽶ 1分⽶=10厘⽶1厘⽶=10毫⽶ 1平⽅千⽶=100公顷1公顷=10000平⽅⽶ 1平⽅⽶=100平⽅分⽶1平⽅分⽶=100平⽅厘⽶ 4、图形之间的关系 (1)、平⾏四边形可以转化成⼀个长⽅形;两个完全相同的三⾓形可以拼成⼀个平⾏四边形。
两个完全相同的梯形可以拼成⼀个平⾏四边形。
(2)、等底等⾼的平⾏四边形⾯积相等;等底等⾼的三⾓形⾯积相等。
(3)、等底等⾼的平⾏四边形⾯积是三⾓形⾯积的2倍。
如果⼀个三⾓形和⼀个平⾏四边形等⾯积,等底,则三⾓形的⾼是平⾏四边形的2倍。
如果⼀个三⾓形和⼀个平⾏四边形等⾯积,等⾼,则三⾓形的底是平⾏四边形的2倍。
(4)、把长⽅形框架拉成平⾏四边形,周长不变,⾯积变⼩了。
小学五年级上册多边形的面积

精心整理第五章多边形的面积【知识梳理】1.平行四边形的面积平行四边形的面积=底×高用字母表示:s=ah要点提示2.要点提示3.要点提示:已知梯形的面积,求梯形的高或其中一个底,也可以用方程法解决。
4.组合图形的面积把求组合图形的面积转化成求几个简单图形的面积的和或差。
要点提示:求组合图形的面积时,一定要分清是由哪些基本图形组合而成的,再利用割补、剔除等方法求面积。
5.估计不规则图形的面积方法一:借助方格纸用数方格的方法进行估计。
方法二:根据图形的特点转化为近似的规则图形来估计。
要点提示:数方格时,先确定图形的面积范围,再估计它的面积。
【诊断自测】1.填空题。
(1)3.8dm 2=()cm 20.03公顷=()平方米(2)一个三角形的底是3.6米,高是2.5米,它的面积是()平方米,和它等底等高 的平行四边形的面积是()平方米。
(3(42.选择。
(1A.(2)(34 1268A.3.(1)(2)(3)4.(1) 3 5 (2) 75.15.5米,这个花园的面积是多少平方米?6.一个三角形的面积是75平方厘米,高是7.5【考点突破】类型一:平行四边形、三角形、梯形的面积。
例1.13.5 B18C 答案:=18×=243(cm 2例2.0.25答案:905400÷例3.A.C.扩大到原来的4倍D.不变 答案:D解析:平行四边形的面积=底×高, (底×2)×(高×12)=底×高×2×12=底×高,面积不变。
故选D 。
例4.一块三角形绿地的面积是13.5平方米,底是6米,高是多少米?答案:由s=ah÷2推导出h=2s÷a。
h=2s÷a=2×13.5÷6=27÷6=4.5(m)答:高是4.5米。
解析:可以先根据三角形的面积计算公式s=ah÷2推导出h=2s÷a,再计算。
五年级上册多边形的面积

第五章多边形的面积【知识梳理】1.平行四边形的面积平行四边形的面积=底×高用字母表示:s=ah变形式:平行四边形的底=面积÷高(a=s÷h)平行四边形的高=面积÷底(h=s÷a)要点提示:求平行四边形的面积时,底和高要对应。
2.三角形的面积三角形的面积=底×高÷2用字母表示:s=ah÷2变形式:三角形的底=面积×2÷高(a=2s÷h)三角形的高=面积×2÷底(h=2s÷a)要点提示:①等底等高的三角形的面积相等。
②等底等高的平行四边形和三角形,三角形的面积是平行四边形面积的一半。
3.梯形的面积梯形的面积=(上底+下底)×高÷2用字母表示:s=(a+b)h÷2变形式:梯形的高=面积×2÷(上底+下底) 字母表示为:h=2s÷(a+b)梯形的上底=面积×2÷高-下底字母表示为:a=2s÷h-b梯形的下底=面积×2÷高-上底字母表示为:b=2s÷h-a要点提示:已知梯形的面积,求梯形的高或其中一个底,也可以用方程法解决。
4.组合图形的面积把求组合图形的面积转化成求几个简单图形的面积的和或差。
要点提示:求组合图形的面积时,一定要分清是由哪些基本图形组合而成的,再利用割补、剔除等方法求面积。
5.估计不规则图形的面积方法一:借助方格纸用数方格的方法进行估计。
方法二:根据图形的特点转化为近似的规则图形来估计。
要点提示:数方格时,先确定图形的面积范围,再估计它的面积。
【诊断自测】1.填空题。
(1)=()cm2公顷=()平方米(2)一个三角形的底是米,高是米,它的面积是()平方米,和它等底等高的平行四边形的面积是()平方米。
(3)一个平行四边形的高是12厘米,面积是96平方厘米,它的底是()厘米。
五年级上多边形的面积

五年级上多边形的面积在我们五年级上册的数学学习中,多边形的面积可是一个重要的知识板块呢。
它就像是一把神奇的钥匙,能帮助我们打开数学世界里更多有趣的大门。
让我们先来聊聊什么是多边形。
多边形呀,就是由三条或三条以上的线段首尾顺次连接所组成的封闭图形。
常见的多边形有三角形、四边形、五边形、六边形等等。
那多边形的面积又是什么呢?简单来说,就是这个多边形所占平面的大小。
我们先从三角形说起吧。
三角形的面积计算公式是:面积=底×高÷2 。
为什么要除以 2 呢?我们可以通过一个小实验来理解。
假如我们用两个完全一样的三角形,可以把它们拼成一个平行四边形。
这个平行四边形的底就是三角形的底,高就是三角形的高。
而平行四边形的面积是底×高,所以一个三角形的面积就是平行四边形面积的一半,也就是底×高÷2 啦。
比如有一个三角形,底是 6 厘米,高是 4 厘米,那它的面积就是6×4÷2 = 12 平方厘米。
接下来是平行四边形。
平行四边形的面积计算公式是底×高。
想象一下,我们把平行四边形沿着高剪开,然后平移,就可以拼成一个长方形。
这个长方形的长就是平行四边形的底,宽就是平行四边形的高。
因为长方形的面积是长×宽,所以平行四边形的面积就是底×高。
举个例子,一个平行四边形的底是 8 厘米,高是 5 厘米,那它的面积就是 8×5 = 40 平方厘米。
再说说梯形。
梯形的面积计算公式是:(上底+下底)×高÷2 。
我们可以把两个完全一样的梯形拼成一个平行四边形,这个平行四边形的底就是梯形的上底与下底之和,高就是梯形的高。
平行四边形的面积是底×高,所以一个梯形的面积就是(上底+下底)×高÷2 。
比如一个梯形,上底是 3 厘米,下底是 7 厘米,高是 6 厘米,那它的面积就是(3 + 7)×6÷2 = 30 平方厘米。
五年级上册第六单元 多边形面积

第五单元多边形的面积一、基础概念及公式梳理(一)平行四边形的面积1.把平行四边形沿高剪开可以拼成长方形。
长方形的面积等于平行四边形的面积,这个长方形的长等于平行四边形的底,这个长方形的宽等于平行四边形的高,因为长方形的面积=长×宽,所以平行四边形的面积=底×高,用字母表示为:S=ah2.计算平行四边形面积时,底和高一定要相对应。
3.平行四边形的底=面积÷高 a=s÷h平行四边形的高=面积÷底 h=s÷a4.把长方形木框拉成平行四边形,周长不变,面积变小;把平行四边形木框拉成长方形,周长不变,面积变大:在长方形时面积最大5.等底等高的平行四边形面积相等。
6.两个平行四边形等底等高,面积相等两个平行四边形的面积相等,底相等,那么高也相等。
两个平行四边形的面积相等高相等,那么底也相等。
(二)三角形的面积1.两个个完全一样(完全相同)的三角形可以拼成一个平行四边形,拼成的平行四边形的底等于三角形的底,平行四边形的高等于三角形的高,每个三角形的面积等于拼成的平行四边形的面积的一半,因为平行四边形的面积=底×高,所以三角形的面积=底×高÷2,用字母表示为S=ah÷22.计算三角形的面积时底和高要对应,不要忘记除以23.三角形的面积是和它等底等高的平行四边形的面积的一半,,平行四边形的面积是和它等底等高三角形的面积的两倍。
4.计算三角形的面积时底和高要对应,不要忘记除以2。
5.三角形的高=面积×2÷底 h=2s÷a三角形的底=面积×2÷高 a=2s÷h6.等底等高的三角形面积相等。
7.两个面积相等的三角形底和高不一定相等,形状不一定相同。
8.三角形的面积与它的底和高有关,与它的形状无关。
(三)梯形的面积1.两个完全一样(完全相同)的梯形可以拼成一个平行四边形,这个平行四边形的底等于梯形的上底与下底的和,高等于梯形的高,每个梯形的面积等于拼成的平行四边形面积的一半。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不规则图形面积的计算(一)
我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算.如下表:
实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。
那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。
例1 如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。
例2 如右图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF 的面积彼此相等,求三角形AEF的面积.
例3 两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。
如右图那样重合.求重合部分(阴影部分)的面积。
例4 如右图,A为△CDE的DE边上中点,BC=CD,若△ABC(阴影部分)面积为5平方厘米.求△ABD及△ACE的面积.
例5 如下页右上图,在正方形ABCD中,三角形ABE的面积是8平方厘
例6 如右图,已知:S△ABC=1,
例7 如下页右上图,正方形ABCD的边长是4厘米,CG=3厘米,矩形DEFG 的长DG为5厘米,求它的宽DE等于多少厘米?
例8 如右图,梯形ABCD的面积是45平方米,高6米,△AED的面积是5平方米,BC=10米,求阴影部分面积.
例9 如右图,四边形ABCD和DEFG都是平行四边形,证明它们的面积相等.
习题一
一、填空题(求下列各图中阴影部分的面积):
二、解答题:
1.如右图,ABCD为长方形,AB=10厘米,BC=6厘米,E、F分别为AB、AD中点,且FG=2GE.求阴影部分面积。
2.如右图,正方形ABCD与正方形DEFG的边长分别为12厘米和6厘米.求四边形CMGN(阴影部分)的面积.
3.如右图,正方形ABCD的边长为5厘米,△CEF的面积比△ADF的面积大5平方厘米.求CE的长。
4.如右图,已知CF=2DF,DE=EA,三角形BCF的面积为2,四边形BEDF 的面积为4.求三角形ABE的面积.
5.如右图,直角梯形ABCD的上底BC=10厘米,下底AD=14厘米,高CD=5厘米.又三角形ABF、三角形BCE和四边形BEDF的面积相等。
求三角形DEF的面积.
6.如右图,四个一样大的长方形和一个小的正方形拼成一个大正方形,其中大、小正方形的面积分别是64平方米和9平方米.求长方形的长、宽各是多少?。