用反比例解决问题

合集下载

用反比例函数解决问题

用反比例函数解决问题

函数图像可以直观的解决数学问题.
11.3 用反比例函数解决问题(1)
问题2 某厂计划建造一个容积为4×104m3的长
方形蓄水池. (1)蓄水池的底面积 S(m2)与其深度 h(m)有怎 样的函数关系?
解:(1)由Sh=4×104,得
40000 S= . h
蓄水池的底面积S是其深度 h 的反比例函数.
11.3 用反比例函数解决问题(1)
问题2 某厂计划建造一个容积为4×104m3的长 方形蓄水池. (2)如果蓄水池的深度设计为5 m ,那么它的 底面积应为多少? 40000 解:(2)把h=5代入 S= ,得 h 40000 S= =8000 .
当蓄水池的深度设计为5 m 时,它的底面积应为
8000m2.
96 V= ≈0.686. 140
所以为了安全起见,气体的体
积应不少于0.69m3.
11.3 用反比例函数解决问题(1)
生活中还有许多反比例函数模型的实际问 题,你能举出例子吗?
11.3 用反比例函数解决问题(1)
小结:
转化 实际问题 解决 老师寄语: 数学来源于生活,生活中处处有数学, 让我们学会用数学的眼光看待生活. 数学问题 (反比例 函数)
录入任务. 在函数求值的过程中,要注意单位的一致.
11.3 用反比例函数解决问题(1)
问题1 小明要把一篇24000字的社会调查报告录
入电脑.
(4)要在3 h 内完成录入任务,小明每分钟至少 应录入多少个字?
解:(4)把t=180代入v· t=24000,得 24000 400 v= = ≈133.3. 180 3 小明每分钟至少应录入134字,才能在3 h 内完成
11.3 用反比例函数解决问题(1)

用反比例方法解决问题

用反比例方法解决问题
公式
对于两个量 x 和 y,如果它们的比例是常数 k,则可以表示 为 x/y = k。
反比例方法的适用范围
反比例方法适用于解决涉及两个量之间比例的问题,特别是当一个量随着另一个 量的增加而减少,或者一个量随着另一个量的减少而增加的情况。
常见应用场景包括工程、物理、化学、商业等领域。
反比例方法的解题步骤
06
总结与展望
总结:反比例方法的重要性和应用领域
反比例方法的重要性
反比例方法是数学中一种重要的比例关 系,它揭示了两个量之间的变化关系。 在解决实际问题中,反比例方法具有广 泛的应用价值,能帮助我们更好地理解 问题的本质和找到有效的解决方案。
VS
应用领域
反比例方法在各个领域都有广泛的应用, 如物理学、工程学、经济学等。例如,在 物理学中,反比例关系可以描述电磁场、 引力场等场的性质;在工程学中,反比例 方法可用于优化设计、控制工程等;在经 济学中,反比例方法可用于研究市场供求 关系、货币供应等。
05
用反比例方法解决复杂问题的案例分析
案例一:最优库存问题
01 总结词
通过使用反比例函数,我们可以有效地解 决最优库存问题,以实现最大化的利润。
03
02
公式解释
04
详细描述
在最优库存问题中,我们需要确定一个最优 的库存水平,以平衡库存持有成本和缺货成 本。通过使用反比例函数,我们可以将这两 个成本之间的关系表示为数学模型,从而找 到最优解。
谢谢您的聆听
THANKS
首先确定每个员工完成的工作量比例 ,这可以通过考虑每个员工完成的工 作量与总工作量的比例来计算。然后 ,使用反比例公式将权重分配给每个 员工,即每个员工的权重 = 总权重 / (员工的完成比例)。最后,根据每个 员工的权重计算其工作效率得分。

用反比例函数解决实际问题

用反比例函数解决实际问题

反比例函数是一种常见的数学模型,可以用来解决很多实际问题。

以下是一个例子:
假设一辆汽车行驶的距离与其油耗量是一个反比例关系。

也就是说,当汽车行驶的距离增加时,它消耗的油耗将减少,并且当汽车行驶的距离减少时,它消耗的油耗将增加。

如果我们知道汽车在某一段路程中的油耗量(例如每公里消耗的升数),以及这段路程的总长度,我们可以使用反比例函数来求出它的平均油耗量。

具体步骤如下:
1. 定义变量:假设总距离为 D 千米,油耗量为 H 升/公里,平均油耗为 Y 升/百公里
2. 确定反比例函数:根据定义,可得:H = k / Y,其中 k 是一个常数
3. 求解常数 k:当总距离为 D 时,油耗为 H * D 升。

因此,有:H * D = k / Y,即 Y = k / (H * D)
4. 计算平均油耗:将上一步得到的等式中,代入已知的 H 和 D 值,即可求出平均油耗量 Y 的值。

总结:反比例函数可应用于很多实际问题,如物质的浓度与稀释液的体积关系、人口密度与城市面积的关系等。

在实际应用中,需要根据具体情况选择合适的变量和反比例函数形式,以获得所需的信息。

10、用反比例函数解决问题

10、用反比例函数解决问题

用反比例函数解决问题要点一、利用反比例函数解决实际问题1.基本思路:建立函数模型,即在实际问题中求得函数解析式,然后应用函数的图象和性质等知识解决问题.2.一般步骤如下:(1)审清题意,根据常量、变量之间的关系,设出函数解析式,待定的系数用字母表示.(2)由题目中的已知条件,列出方程,求出待定系数.(3)写出函数解析式,并注意解析式中变量的取值范围.(4)利用函数解析式、函数的图象和性质等去解决问题.要点二、反比例函数在其他学科中的应用1.当圆柱体的体积一定时,圆柱的底面积是高的反比例函数;2.当工程总量一定时,做工时间是做工速度的反比例函数;3.在使用杠杆时,如果阻力和阻力臂不变,则动力是动力臂的反比例函数;电压一定,输出功率是电路中电阻的反比例函数.要点三、反比例函数中的最值问题理论:若0a >,0b >,则a b +³a b =时等号成立)例题:对于函数()10y x x x=+>,当x 取何值时,函数y 的值最小?最小值是多少?0x Q >,12y x x \=+³=,当且仅当1x x =时,等号成立,由1x x=得:1x =或10x =-<(舍去),经检验,1x =是方程1x x =的解,故当x=1时,函数y 的值最小,最小值是2题型一:反比例函数实际问题与图象1.已知矩形的面积为 10,它的长y 与宽x 之间的关系用图象大致可表示为( )A .B .C .D .2.当温度不变时,某气球内的气压(kPa)p 与气体体积2(m )V 成反比例函数关系(其图象如图所示),已知当气球内的气压120kPa p >时,气球将爆炸,为了安全起见,气球内气体体积V 应满足的条件是( )A .不大于24m 5B .大于25m 4C .不小于24m 5D .小于25m 43.伟大的古希腊哲学家、数学家、物理学家阿基米德有句名言:“给我一个支点,我可以撬动地球!”这句名言道出了“标杆原理”的意义和价值.“标杆原理”在实际生产和生活中,有着广泛的运用.比如:小明用撬棍撬动一块大石头,运用的就是“标杆原理”.已知阻力1(N)F 和阻力臂1(m)L 的函数图像如图,若小明想使动力2F 不超过150N ,则动力臂2L 至少需要( )m .A .2B .1C .6D .44.体育课上,甲、乙、丙、丁四位同学进行跑步训练,如图用四个点分别描述四位同学的跑步时间y(分钟)与平均跑步速度x(米/分钟)的关系,其中描述甲、丙两位同学的y与x之间关系的点恰好在同一个反比例函数的图像上,则在这次训练中跑的路程最多的是()A.甲B.乙C.丙D.丁5.某商家设计了一个水箱水位自动报警仪,其电路图如图1所示,其中定值电阻110ΩR=,2R是一个压敏电阻,用绝缘薄膜包好后放在一个硬质凹形绝缘盒中,放入水箱底部,受力面水平,承受水压的面积S为0.012m,压敏电阻2R的阻值随所受液体压力F的变化关系如图2所示(水深h越深,压力F越大),电源电压保持6V不变,当电路中的电流为0.3A时,报警器(电阻不计)开始报警,水的压强随深度变化的关系图象如图3所示(参考公式:UIR =,F pS=,1000Pa1kPa=).则下列说法中不正确的是()A.当水箱未装水(0mh=)时,压强p为0kPaB.当报警器刚好开始报警时,水箱受到的压力F为40NC.当报警器刚好开始报警时,水箱中水的深度h是0.8mD.若想使水深1m时报警,应使定值电阻1R的阻值为12W题型二:利用反比例函数解决实际问题1.如图是某种电子理疗设备工作原理的示意图,其开始工作时的温度是20℃,然后按照一次函数关系一直增加到70℃,这样有利于打通病灶部位的血液循环,在此温度下再沿反比例函数关系缓慢下降至35℃,然后在此基础上又沿着一次函数关系一直将温度升至70℃,再在此温度下沿着反比例函数关系缓慢下降至,35℃如此循环下去.(1)t的值为;:分钟内温度大于或等于50℃时,治疗效果最好,则维持这个温度范围的持(2)如果在0t续时间为分钟.2.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x (分钟)的变化规律如图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?请说明理由.3.某水果生产基地在气温较低时,用装有恒温系统的大棚栽培一种新品种水果,如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度()y ℃与时间()h x 之间的函数关系,其中线段,表示恒温系统开启后阶段,双曲线的一部分CD 表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)这个恒温系统设定的恒定温度为多少℃;(2)求全天的温度y 与时间x 之间的函数关系式;(3)若大棚内的温度低于()10℃不利于新品种水果的生长,问这天内,相对有利于水果生长的时间共多少小时?4.心理学研究发现,一般情况下,在一节45分钟的课中,学生的注意力随学习时间的变化而变化.开始学习时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y、分别为线段,CD为双曲线的一部随时间x (分钟)的变化规律如下图所示(其中AB BC分).(1)求注意力指标数y与时间x (分钟)之间的函数表达式;(2)开始学习后第4分钟时与第35分钟时相比较,何时学生的注意力更集中?(3)某些数学内容的课堂学习大致可分为三个环节:即“教师引导,回顾旧知;自主探索,合作交流;总结归纳,巩固提高”,其中“教师引导,回顾旧知”环节10分钟;重点环节“自主探索,合作交流”这一过程一般需要30分钟才能完成,为了确保效果,要求学习时的注意力指标数不低于40,请问:这样的课堂学习安排是否合理?并说明理由.5.如图所示,小明家饮水机中原有水的温度是20,开机通电后,饮水机自动开始加热,此过程中水温y (°C )与开机时间x (分)满足一次函数关系.当加热到100°C 时自动停止加热,随后水温开始下降,此过程中水温y (°C )与开机时间x (分)成反比例关系.当水温降至20°C 时,饮水机又自动开始加热……,不断重复上述程序.根据图中提供的信息,解答下列问题:(1)当05x ££时,求水温y (°C )与开机时间x (分)的函数关系式;(2)求图中t 的值;(3)有一天,小明在上午7:20(水温20°C ),开机通电后去上学,11:33放学回到家时,饮水机内水的温度为多少°C ?并求:在7:2011:33——这段时间里,水温共有几次达到100°C ?6.据医学研究,使用某种抗生素可治疗心肌炎,某一患者按规定剂量服用这种抗生素,已知刚服用该抗生素后,血液中的含药量y(微克)与服用的时间x成正比例药物浓度达到最高后,血液中的含药量y(微克)与服用的时间x成反比例,根据图中所提供的信息,回答下列问题:(1)抗生素服用_______小时时,血液中药物浓度最大,每毫升血液的含药量有____微克;(2)根据图象求出药物浓度达到最高值之后,y与x之间的函数解析式及定义域;(3)求出该患者服用该药物10小时时每毫升血液的含药量y.题型三:最值问题1.阅读与思考任务:(1)填空:已知0x >,只有当x =______时,4x x+有最小值,最小值为______.(2)如图,P 为双曲线()60y x x =>上的一点,过点P 作PC x ⊥轴于点C ,PD y ⊥轴于点D ,求PC PD +的最小值.2.【操作发现】由()20a b -³得,222a b ab +³;如果两个正数a ,b ,即0a >,0b >,则有下面的不等式:a b +³,当且仅当a b =时取到等号.例如:已知0x >,求式子4x x +的最小值.解:令a x =,4b x =,则由a b +³44x x +³=,当且仅当4x x =时,即2x =时式子有最小值,最小值为4.(1)【问题解决】请根据上面材料回答下列问题:已知0x >,当x 为多少时,代数式9x x +的最小值为;(2)【灵活运用】当2x >时,求12x x +-的最小值;(3)【学以致用】如图,民民同学想做一个菱形风筝,现在有一根长120cm 的竹竿,他准备把它截成两段做成风筝的龙骨即菱形的对角线AC ,BD ,请你帮他设计一下,当AC 为多少cm 时菱形的面积最大,最大值为2cm (直接写出结果).3.由2()0a b -³得,222a b ab +³;如果两个正数a ,b ,即0,0a b >>,则有下面的不等式:a b +³,当且仅当a b =时取到等号.例如:已知0x >,求式子4x x+的最小值.解:令4,a x b x ==,则由a b +³44x x +³=,当且仅当4x x =时,即2x =时,式子有最小值,最小值为4.请根据上面材料回答下列问题:(1)当0x >,式子x +16x的最小值为 ;(2)当0x <,代数式364+x x最大值为多少?并求出此时x 的值;(3)用篱笆围一个面积为32平方米的长方形花园,使这个长方形花园的一边靠墙(墙长20米),问这个长方形的长、宽各为多少时,所用的篱笆最短,最短的篱笆是多少?4.阅读材料:①对于任意实数a 和b ,都有2()0a b -³,∴2220a ab b -+³,得到222a b ab +³,当且仅当a b =时,等号成立.②任意一个非负实数都可写成一个数的平方的形式.即:如果a ≥0,则2a =.如:22=等.例:①用配方法求代数式2283x x -+的最小值.②已知0a >,求证:12a a+>①解:由题意得:222832(2)5x x x -+=--,∵22(2)0x -³,且当2x =时,22(2)0x -=,∴22(2)55x --³-,∴当2x =时,代数式2283x x -+的最小值为:5-;②证明:∵0a >,∴2122a a +=+>=∴12a a +>12a a =,即请解答下列问题:某园艺公司准备围建一个矩形花圃,其中一边靠墙(墙足够长),另外三边用篱笆围成(如图所示).设垂直于墙的一边长为x 米.(1)若所用的篱笆长为36米,那么:①当花圃的面积为144平方米时,垂直于墙的一边的长为多少米?②设花圃的面积为S 米2,求当垂直于墙的一边的长为多少米时,这个花圃的面积最大?并求出这个最大面积;(2)若要围成面积为200平方米的花圃,需要用的篱笆最少是多少米?题型四:反比例函数综合运用1.如图是4个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作m T (m 为1~4的整数),函数()0k y x x =>的图象为曲线L ,若曲线L 使得14T T :,这些点分布在它的两侧,每侧各2个点,则k 的取值范围是( )A .812k ££B .812k £<C .812k <£D .812k <<2.如图,矩形ABCD 对角线的交点为O ,点P 在x 轴的正半轴上,DC 平分BDP Ð,PAD V 的面积为6.若双曲线()0k y x x=>经过点D ,交PD 于点Q ,且PQ DQ =,则k 的值为 .3.如图,已知点()1,A a 和点()3,B b 是直线y mx n =+与双曲线(0)k y k x =>的交点,AOB V 的面积为43.(1)求k 的值;(2)设()111,P x y ,()222,P x y 是反比例函数在同一象限上任意不重合的两点,1212y y M x x =+,2112y y N x x =+,判断M ,N的大小,并说明理由.4.已知反比例函数k y x =的图象经过点()A .(1)试确定此反比例函数的解析式;(2)点O 是坐标原点,将线段OA 绕O 点顺时针旋转30°得到线段OB .判断点B 是否在此反比例函数的图象上,并说明理由;(3)已知点()6P m +也在此反比例函数的图象上(其中0m <),过P 点作x 轴的垂线,交x 轴于点M .若线段PM 上存在一点Q ,使得OQM V 的面积是12,设Q 点的纵坐标为n ,求29n -+的值.5.如图,矩形ABCD的两边AD,AB的长分别为3,8,边BC落在x轴上,E是DC的中点,连接AE,反比例函数myx=的图象经过点E,与AB交于点F.(1)求AE的长;(2)若2AF AE-=,求反比例函数的表达式;(3)在(2)的条件下,连接矩形ABCD两对边AD与BC的中点M,N,设线段MN与反比例函数图象交于点P,将线段MN沿x轴向右平移n个单位,若MP NP<,直接写出n的取值范围.课后练习1.已知蓄电池的电压为定值,使用某蓄电池时,电流I(单位:A)与电阻R(单位:W )是反比例函数关系,它的图象如图所示,则当电阻为6W 时,电流为( )A .3AB .4AC .6AD .8A2.如图1是一个亮度可调节的台灯,其灯光亮度的改变,可以通过调节总电阻控制电流的变化来实现.如图2是该台灯的电流()A I .与电阻()R W 成反比例函数的图象,该图象经过点()880,0.25P .根据图象可知,下列说法正确的是( )A .当0.25R <时,880I <B .I 与R 的函数关系式是()2000I R R=>C .当1000R >时,0.22I >D .当8801000R <<时,I 的取值范围是0.220.25I <<3.某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度()C y °与时间()h x 之间的函数关系,其中线段AB 、BC 表示恒温系统开启阶段,双曲线的一部分CD 表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y 与时间()024x x ££的函数关系式;(2)若大棚内的温度低于10C °时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?4.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化:开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y 随时间x (分钟)的变化规律如图所示(其中AB BC ,分别为线段,BC x ∥轴,CD 为双曲线的一部分),其中AB 段的关系式为220y x =+.(1)点B 坐标为_______;(2)根据图中数据,求出CD 段双曲线的表达式;(3)一道数学竞赛题,需要讲20分钟,为了效果较好,要求学生的注意力指标数最低达到32,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?5.为确保身体健康,自来水最好烧开(加热到100℃)后再饮用.某款家用饮水机,具有加热、保温等功能.现将20℃的自来水加入到饮水机中,先加热到100℃.此后停止加热,水温开始下降,达到设置的饮用温度后开始保温.比如事先设置饮用温度为50℃,则水温下降到50℃后不再改变,此时可以正常饮用.整个过程中,水温()y ℃与通电时间()min x 之间的函数关系如图所示.(1)水温从20℃加热到100℃,需要______min ;请直接写出加热过程中水温y 与通电时间x 之间的函数关系式:______;(2)观察判断:在水温下降过程中,y 与x 的函数关系是______函数,并尝试求该函数的解析式;(3)已知冲泡奶粉的最佳温度在40℃左右,某家庭为了给婴儿冲泡奶粉,将饮用温度设置为40℃.现将20℃的自来水加入到饮水机中,此后开始正常加热.则从加入自来水开始,需要等待多长时间才可以接水冲泡奶粉?6.如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作m T (m 为18: 的整数)函数()0k y x x=<的图像为曲线L ,若曲线L 使得18~T T 这些点分布在它的两侧,每侧各4个点,则k 的取值范围是( )A .3628k -<<-B .2214k -<<-C .2012k -<<-D .3426k -<<-7.阅读理解:若三个非零实数x ,y ,z 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x ,y ,z 构成“和谐三数组”.(1)若A(m ,y 1),B(m +1,y 2),C(m +3,y 3)三点均在反比例函数4y x=的图象上,且三点的纵坐标恰好构成“和谐三数组”,求实数m 的值;(2)若实数a ,b ,c 是“和谐三数组”,且满足a >b >c >0,求点(,)c c P a b与原点O 的距离OP 的取值范围.8.如图直角坐标系中,矩形ABCD 的边BC 在x 轴上,点B 、D 的坐标分别为B (1,0),D (3,3).(1)点C 的坐标 ;(2)若反比例函数()0k y k x=¹的图象经过直线AC 上的点E ,且点E 的坐标为(2,m ),求m 的值及反比例函数的解析式;(3)若(2)中的反比例函数的图象与CD 相交于点F ,连接EF ,在直线AB 上找一点P ,使得32PEF CEF S S D D =,求点P 的坐标.9.阅读材料:已知,a b 为非负实数,∵2220a b +-=+-=³,∴a b +³“a b =”时,等号成立.这个结论就是著名的“均值不等式”,“均值不等式”在一类最值问题中有着广泛的应用.例:已知0x >,求函数4y x x =+的最小值.解:令a x =,4b x =,则由a b +³44y x x =+³=.当且仅当4x x=,即2x =时,函数取到最小值,最小值为4.根据以上材料解答下列问题:(1)已知0x >,则当x =______时,函数3y x x=+取到最小值,最小值为______;(2)用篱笆围一个面积为2100m 的矩形花园,则当这个矩形花园的长、宽各为多少时,所用的篱笆最短?最短的篱笆的长度是多少米?(3)已知0x >,则自变量x 取何值时,函数229x y x x =-+取到最大值?最大值为多少?。

13用反比例解决问题

13用反比例解决问题

课题:用反比例解决问题第 13 课时总计第节教学目标1.结合具体情境,能判断两种量之间的比例关系,并利用反比例的意义解决问题。

2.使学生经历用反比例知识解决问题的过程,掌握用反比例知识解决问题的思路和方法,体会算术法与比例法的区别和联系。

3.培养学生综合应用知识,分析问题灵活解决问题的能力,发展学生思维。

教学重难点1.掌握用反比例知识解决问题的方法与步骤。

2.通过分析问题的已知条件和所求问题,确定各个量之间的比例关系,依据反比例关系列出方程。

教学过程:一、复习导入判断两种相关联的量是否成比例?成什么比例?说明理由。

1.总路程一定,速度和时间。

()2.总页数一定,看了的页数和剩下的页数。

()3.全校学生做操,平均每行站的人数和站的行数。

()【设计意图】进一步巩固反比例的意义,进一步加深对反比例关系的理解,为用反比例关系解决问题做铺垫。

二、探究新知一个办公楼原来平均每天照明用电100千瓦时,改用节能灯之后,平均每天只用电25千瓦时。

原来5天的用电量现在可以用多少天?1.理解题意:从题目中你获得哪些信息?2.用算术法解答。

(1)解题思路:先求出总的用电量,再求出改用节能灯够用的天数。

(2)列式解答。

100×5÷25=500÷25=20(天)3.引导学生尝试用比例解决问题。

(1)判断比例关系。

每天用电量×用电天数=总用电量(一定),总用电量一定,每天用电量与用电天数成反比例关系。

也就是说,每天用电量与天数的乘积一定。

(2)列方程。

根据现在每天用电量×用电天数=原来每天用电量×用电天数,设现在可以用x 天,列方程为25x=100×5。

(3)解答过程。

解:设现在用x天。

25x=100×5x=500÷25x=20答:现在用20天。

4.集体交流订正。

5.想一想,应用比例解答应用题,是怎样想怎样做的?同学们可互相讨论一下。

6.你认为用“算术法”与“反比例法”解决问题有什么不同?师小结:用比例解决应用题的关键,正确找出题中的两种相关联的量,看它们是否积或商一定,再列出关系式。

小学数学《用反比例解决问题》教案

小学数学《用反比例解决问题》教案

小学数学《用反比例解决问题》教案一、教学目标1.让学生理解反比例的概念,掌握反比例关系的判断方法。

2.能够运用反比例解决问题,提高分析问题和解决问题的能力。

3.培养学生的逻辑思维和创新能力。

二、教学重难点1.教学重点:理解反比例的概念,掌握反比例关系的判断方法。

2.教学难点:运用反比例解决问题,提高分析问题和解决问题的能力。

三、教学过程1.导入新课(1)引导学生回顾正比例的概念,提问:什么是正比例?(2)引导学生举例说明正比例关系,如:速度与时间的关系、路程与速度的关系等。

(3)引入反比例的概念,提问:什么是反比例?2.讲解反比例的概念(1)用数学定义讲解反两种量成反比例:如果两种量中相对应的两个数的乘积一定,这两种量就成反比例。

(2)举例说明反比例关系,如:面积与长宽的关系、密度与体积的关系等。

3.反比例关系的判断方法(1)引导学生回顾正比例关系的判断方法。

(2)讲解反比例关系的判断方法:判断两种量是否成反比例,关键看它们相对应的两个数的乘积是否一定。

(3)举例说明反比例关系的判断方法。

4.运用反比例解决问题(1)引导学生回顾正比例解决问题的方法。

(2)讲解反比例解决问题的方法:根据反比例关系,列出相应的方程,求解未知数。

(3)举例说明反比例解决问题的方法。

5.练习巩固(1)课堂练习:让学生独立完成反比例关系的判断和解决问题。

(2)小组讨论:学生分组讨论,互相交流解题思路和方法。

6.课堂小结(2)强调反比例在生活中的应用,提高学生的实际应用能力。

四、作业布置1.完成课后练习题,巩固反比例知识。

2.收集生活中的反比例实例,下节课分享。

五、教学反思1.本节课教学过程中,学生对反比例的概念理解较好,但反比例关系的判断方法还需加强练习。

2.学生在解决问题时,能够运用反比例关系,但解题速度有待提高。

3.教师在课堂上要关注每一个学生,确保每个学生都能掌握反比例知识。

六、教学延伸1.下节课学习反比例函数的图像和性质。

用反比例解决问题(共9篇)

用反比例解决问题(共9篇)

用反比例解决问题(共9篇)以下是网友分享的关于用反比例解决问题的资料9篇,希望对您有所帮助,就爱阅读感谢您的支持。

《用反比例解决问题》练习篇1新课标人教版六年级下《用反比例解决问题》练习1.先判断x和y成什么比例,再填一填。

(1)x和y成()比例x 3 6 12 24 48y 8 16(2)x和y成()比例x 3 6 12 24 48y 16 82.判断。

(1)如果积不变,一个因数和另一个因数成反比例。

()(2)路程一定,速度和时间成反比例。

()(3)菜籽千克数一定,出油率与菜油的千克数成反比例。

( )(4)公顷数一定,总产量与每公顷产量成反比例。

()3.用比例的方法解答下面各题。

(1)有一堆煤,每天烧5吨,可以烧180天。

如果每天烧4.5吨,可以烧多少天?(2)街东村修一条水渠,原计划每天修32米,65天能完成;但是实际50天就完成了任务,实际平均每天修多少米?(3)同学们做操,每行站20人,正好站18行,如果每行多站4人,要站多少行?(4)一捆铁丝重68千克,剪下其中的2.5米,刚好重10千克,这捆铁丝全长多少米?(5)有一间大客厅,用面积9平方分米的方砖铺地,需要1200块,如果改用边长40厘米的方砖铺地,需要多少块?用反比例函数解决问题篇211.3用反比例函数解决问题(1)例1.小明将一篇24000字的社会调查报告录入电脑.打印成文.(1)如果小明以每分种120字的速度录入.他需要(2) 完成录入的时间t(分) 与录入文字的速度v(字/分)有怎样的函数关系?(3)小明希望能在3h内完成录入任务.那么他每分钟至少应录入多少个字?例2某厂计划建造一个容积为4 10m的长方形蓄水池.(1)蓄水池的底面积S与其深度h(m)有怎样的函数关系?(2)如果蓄水池的深度设计为5m.那么蓄水池的底面积应为多少平方米?(3)由于绿化以及辅助用地的需要.经过实地测量.蓄水池的长与宽最多只能设计为100m和60m.那么蓄水池的深度至少应为多少米(精确到0.01)?43例3. 某报报道:一村民在清理鱼塘时被困淤泥中,消防队员以门板作船,泥沼中救人.(1)写出压强和受力面积及压力的函数关系。

初中数学教案:应用反比例关系解决问题

初中数学教案:应用反比例关系解决问题

初中数学教案:应用反比例关系解决问题一、引言反比例关系在数学中是一个重要的概念,它描述了两个变量之间的相互关系,其中一个变量的增大导致另外一个变量的减小。

在初中数学教学中,应用反比例关系解决问题是一个常见且具有挑战性的任务。

本文将介绍如何设计一节初中数学课的教案,以帮助学生理解和运用反比例关系来解决实际问题。

二、知识概述在开始解决应用反比例关系问题之前,首先需要对反比例关系进行简要概述。

反比例关系通常表示为 y = k/x ,其中 k 是常数。

当 x 增加时,y 会减少;当 x 减少时,y 会增加。

这种关系可以用图像、表格或公式来表示。

三、教案设计1. 引入(10分钟)通过提问引导学生思考垂直上升和下降的物体与时间之间存在何种关系,并逐步引入反比例关系的概念。

同时,给出一个简单的实际问题作为导入示例:“如果小明每天骑自行车上学,需要30分钟;那么他骑自行车上学所需要的时间是否会随着骑行速度增加而减少?为什么?”2. 探究(20分钟)将学生分成小组,发放练习册或工作纸,并提供一系列与速度、距离或时间有关的问题。

每个小组选择一到两个问题进行讨论,并使用图表、图像或表格来解决问题。

教师在此过程中进行巡视和指导。

3. 讲解(15分钟)请学生回答探究阶段的问题,并适时向他们提供指导。

然后,教师通过示范板书和解释的方式详细讲解反比例关系的特点和计算方法。

着重强调如何根据已知数据计算未知数,并引导学生进行相关题目的思考和解答。

4. 练习(25分钟)在此环节,教师给学生一些简单到复杂不等难度的练习题和实际问题,要求他们运用反比例关系来解决。

鼓励学生积极参与,并提供必要的辅助材料以帮助他们完成任务。

同时,教师及时给予反馈并纠正错误。

5. 拓展(10分钟)在拓展环节中,教师引入更加复杂的应用反比例关系问题,并鼓励学生进行思考和讨论。

这些问题可能涉及多个变量,并要求学生利用所学知识解决较为复杂的实际情境。

教师可以分组让学生进行合作解决,通过分享和讨论加深对反比例关系的理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:设他下山时每分钟走Biblioteka 米。(30-5)x=50×30
x=60
3、一间房子,用9dm²的方砖铺地, 要用200块;如果改用4dm²的方砖铺, 需要多少块? 总面积(一定)
解:设需要x块。
4x=9×200 x=450
4、学校进行教室地面的装修,用边 长15cm的方砖铺地,需要300块。如 果改用边长25cm的方砖铺地,那么 需要多少块? 总面积(一定)
解:设这堆煤实际可以烧x天。
2.4x 396 x 396 2.4 x 120
答:这堆煤实际可以烧120天。
第1问:
解:设每包X本。
15X = 20×18
X=
20×18 15
X = 24
答:每包24本。
第2问:
课件PPT
这批书如果每包20本,要捆18包,如果每包 30本,要捆多少包?
x=20
5、给一间房子铺地,如果用边长6分 米的方砖,需要80块。如果改用边长 8分米的方砖,需要多少块?
x=45
6. 某工厂生产一批零件,计划每天 生产200件,25天可以完成任务,实 际每天超产25%,实际生产了多少天?
200×(1+25%)x=200×25
x=20
4、甲乙两地间的距离是490千米,一辆
总价(钱的总数)
解:设李奶奶带的钱能买x千克苹果。
10/3x=4.8×5
x=7.2
9、水泥厂购进一堆煤,原计划每天
烧12t,可以烧45天,实际每天烧的煤
比原计划节约25%,这堆煤实际烧了
多少天?
总数量(煤的总数)
解:设这堆煤实际烧了x天。
12×(1-25%)x=12×45 x=60
3、同学们做操,每行站15人,正好 站12行。如果每行站9人,可以站多少 行?
(1)设要求的问题为x;(有的间接设未知数) (2)判断题目中哪个量是一定的?另外两种 量成正比例关系(除的关系)还是成反比例关系 (乘的关系)? (3)列比例式; (4)解比例,验算,作答。
一、填空
一个锅炉每天烧3吨煤,经过技术改 造后,每天只烧2.5吨。原来75天的用 量,现在可以用多少天? 想:煤的总量一定时,(每天用煤量)和
解:设需要x块。
25×25x=15×15×300
x=108
5、修一条公路,原计划每天修120米, 25天完成。实际每天多修30米,实际 多少天就可以修完?
总长(工作总量)
解:设实际x天就可以修完。
(120+30)x=120×25
x=20
6、把一批纸装订成同样的练习本,如 果每本18页,可以装订200本,如果每 本增加2页,可以装订多少本?
候课要求
请同学们准备好自己的本、笔 和书,预备铃响,保持安静,以饱 满的激情等待上课,老师期待你们 精彩的表现!
我们准备好了!
课件PPT
用 比 例 解 决 问 题---
练习课
学习目标
课件PPT
1、能正确判断题中数量之间的 关系。
2、能熟练地运用比例知识解决 问题。
用比例解这类问题的过程可以归纳为 以下几个步骤:
总面积(一定) =地砖的面积×块数
(用煤天数 )成(反比例)关系;即对应
的(每天用煤量)和( 用煤天数 )的(乘积)
相等。
二、解决问题。(用比例解) 1、六年级同学在操场上做操,如果每 行站18人,可以站32行。如果每行站 24人,可以站多少行?总人数(一定)
解:设可以站x行。
24x=18×32 x=24
2、小明周末爬山,上山时每分钟大 约走50米,用了30分钟;下山时按原 路返回,比上山少用5分钟,他下山 时每分钟走多少米? 路程(一定)
纸的总页数(总量)
解:设可以装订x本。
(18+2)x=18×200
x=180
7、李师傅加工一批零件,每天加工8 小时,15天可以完成。如果李师傅每 天加班2小时,他能提前几天完成任务?
工作总量(一批零件)
解:设他能提前x天完成任务。
(8+2)x=8×15 x=12
15-12=3(天)
8、李奶奶要去超市买苹果,原价 4.8元/千克,李奶奶带的钱正好能买5千 克。周末搞促销,3千克只需要10元,李 奶奶带的钱能买多少千克苹果?
典题精讲
课件PPT
解:设原来5天的用电量现在可以用x天。
25x=100×5
x 1005 25
x 20
答:原来5天的用电量现在可以用20天。
练习1:
一堆煤,原计划每天烧3吨,可以烧课件9P6PT 天,由于改进炉灶,每天烧2.4吨。这堆 煤实际可以烧多少天?(用比例解)
煤总量(一定) =每天用煤量×天数
解:设要捆X包。 30X = 20×18
总价(一定) =单价×数量 解:设可以买X枝。
2x 1.5 4 x 1.5 4 2 x3
答:可以买3枝。
路程(一定) =速度×时间
78X = 60×6.5
思考题:
装修一间会议室,用边长6dm的方 砖铺地,需要160块;若用边长8dm 的方砖铺地,需要多少块?
汽车5小时行驶了350千米。照这样计算,
行完全程需要几小时?
正比例
速度(一定)=路程÷时间
解:设行完全程需要x小时。
x=20
北京到长沙的铁路长大约是1600km。 一列由北京开往长沙的高铁,9:00出发, 11:30到达郑州。北京到郑州的铁路长大约 是700km。按照这样的平均速度,从北京 到长沙6小时能到吗?
相关文档
最新文档