中考模拟考试试卷

合集下载

2024年中考数学第一次模拟试卷(南京卷)(全解全析)

2024年中考数学第一次模拟试卷(南京卷)(全解全析)

2024年中考第一次模拟考试(南京卷)数学(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

一、选择题(本大题共6小题,每小题2分,共12分.在每小题给出的四个选项中,恰有一项是符合题目要求的)1.下列运算正确的是()A .235a b ab +=B .623a a a ÷=C .()326a a =D .()222141a a +=+【答案】C【分析】根据合并同类项法则,同底数幂相除法则,幂的乘方法则,完全平方公式计算即可.【详解】解:A .2a 与3b 不是同类项,不可以合并,故错误;B .624a a a ÷=,故原计算错误;C .()326a a =,原计算正确;D .()2221441a a a +=++,故原计算错误;故选:C .2.下列各式中计算正确的是()A 2(3)3-=-B 93=±C 33(3)3-=±D 3273=【答案】D【分析】本题主要考查了算术平方根及立方根.根据算术平方根及立方根进行求解即可.【详解】解:A 2(3)33-=≠-,故该选项不符合题意;B 933=≠±,故该选项不符合题意;C 33(3)33-=-≠±,故该选项不符合题意;D 3273=,故该选项符合题意;故选:D .3.若关于x 的一元一次不等式(2)2m x m -≥-的解为1x ≤,则m 的取值范围是()A .2m <B .2m ≤C .m>2D .2m ≥【答案】A【分析】本题主要考查不等式的解集,熟练掌握不等式的性质是解题关键.根据不等式的性质可知,两边同时除以2m -,不等式的符号发生改变,可知20m -<,求解即可.【详解】解: 关于x 的一元一次不等式(2)2m x m -≥-的解为1x ≤,20m ∴-<,2m <∴.故选:A .4.若()11,x y ,()22,x y 这两个不同点在y 关于x 的一次函数()11y a x =+-图象上,当()时,()()12120x x y y --<.A .0a <B .0a >C .1a <-D .1a >-【答案】C【分析】根据一次函数的性质知,当0k <时,判断出y 随x 的增大而减小.此题考查了一次函数图象上点的坐标特征,要根据函数的增减性进行推理是关键.【详解】解:∵()11,x y ,()22,x y 是一次函数()11y a x =+-图象上的两个不同点,且()()12120x x y y --<,∴12x x -与12y y -是异号,∴该函数y 随x 的增大而减小,∴10a +<,解得1a <-.故选:C .5.手影游戏利用的物理原理是:光是沿直线传播的.图中小狗手影就是我们小时候常玩的游戏.在一次游戏中,小明距离墙壁1米,爸爸拿着的光源与小明的距离为2米.在小明不动的情况下,要使小狗手影的高度增加一倍,则光源与小明的距离应()A .减少32米B .增加32米C .减少53米D .增加53米【答案】A【分析】根据题意作出图形,然后利用相似三角形的性质构建方程求解即可.【详解】解:如图,点O 为光源,AB 表示小明的手,CD 表示小狗手影,则AB CD ,过点O 作OE AB ⊥,延长OE 交CD 于F ,则OF CD ⊥,∵AB CD ,∴AOB COD ∽,则AB OECD OF=,∵1EF =米,2OE =米,则3OF =米,∴23AB OE D OF C ==,设2AB k =,3CD k=∵在小明不动的情况下,要使小狗手影的高度增加一倍,如图,即2AB k =,6C D k ''=,1EF '=米,AO B C O D ''''△∽△∴13AB O E C D O F ''=='''',则2O F O E O E EF '''''''-==,∴12O E ''=米,∴光源与小明的距离变化为:13222OE O E ''-=-=米,6.如图,在ABC 中,,36AB AC B =∠=︒.分别以点,A C 为圆心,大于12AC 的长为半径画弧,两弧相交于点D ,E ,作直线DE 分别交,AC BC 于点,F G .以G 为圆心,GC 长为半径画弧,交BC 于点H ,连结,AG AH .则下列说法错误的是()A .AG CG =B .2B HAB ∠=∠C .352CG AC -=D .51AGB AGC S S +=△△【答案】C【分析】根据基本作图得到DE 垂直平分AC ,GH GC =,再根据线段垂直平分线的性质得到AF CF =,GF AC ⊥,GC GA =,于是可对A 选项进行判断;通过证明FG 为∆ACH 的中位线得到FG AH ∥,所以AH AC ⊥,则可计算出18HAB ∠=︒,则2B HAB ∠=∠,于是可对B 选项进行判断;通过证明CAG CBA ∆∆∽,利用相似比得到2CA CG CB =⋅,然后利用AB GB AC ==,设BC x =,AB GB AC a ===,得2()a x a x =-,解之得512x -=,再计算出512CG AC -=512BG CG +=C 、D 选项进行判断.【详解】由作法得DE 垂直平分AC ,GH GC =,AF CF ∴=,GF AC ⊥,GC GA =,所以A 选项正确,不符合题意;CG GH = ,CF AF =,FG ∴为∆ACH 的中位线,FG AH ∴∥,AH AC ∴⊥,90CAH ∴∠=︒,AB AC = ,36C B ∴∠=∠=︒,180108BAC B C ∠=︒-∠-∠=︒ ,10818HAB CAH ∴∠=︒-∠=︒,2B HAB ∴∠=∠,所以B 选项正确,不符合题意;∴36C GAC ∠=∠=︒,∴72BGA C GAC ∠=∠+∠=︒,∴18072BAG B BGA ∠=︒-∠-∠=︒,∴=BG BA ,∴AB GB AC ==.GCA ACB ∠=∠ ,CAG B ∠=∠,CAG CBA ∴∆∆∽,::CG CA CA CB ∴=,2CA CG CB ∴=⋅,设BC x =,AB GB AC a ===,得2()a x a x =-,解之得152x a =(负舍),∴152BC +=∴155122CG BC BG a +-=-=-=,51512CGACa--==故C 选项不正确,符合题意;512512BGCGa =-,∴512AGB AGC S BG S CG +==△△所以D 选项正确,不符合题意.故选:C .二、填空题(本大题共10小题,每小题2分,共20分.)7.分式3121x x +-有意义,则x 的取值范围是.【答案】12x ≠【分析】本题考查的是分式有意义的条件,掌握分式分母不为0是解题的关键.【详解】解:∵分式3121x x +-有意义,∴210x -≠,解得:12x ≠,故答案为:12x ≠.8.2023年5月17日10时49分,我国在西昌卫星发射中心成功发射第五十六颗北斗导航卫星,北斗系统作为国家重要基础设施,深刻改变着人们的生产生活方式.目前,某地图软件调用的北斗卫星日定位量超300000000000次,将数据300000000000用科学记数法表示为.【答案】11310⨯【分析】此题考查了科学记数法的表示方法,根据科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数即可求解,解题的关键要正确确定a 的值以及n 的值.【详解】解:11300000000000310=⨯,故答案为:11310⨯.9.因式分解:22218x y -=.【答案】()()233x y x y +-【分析】本题考查了提公因式法与公式法的综合运用,先提公因式,再利用平方差公式继续分解即可解答.【详解】解:22218x y -()2229x y =-()()233x y x y =+-,故答案为:()()233x y x y +-.10.已知2220x x --=,代数式()212019x -+=.【答案】2022【分析】本题考查配方法的应用,解题的关键是掌握()2222a ab b a b ±+=±,把2220x x --=变形为:()213x -=,再代入代数式,即可.【详解】∵2220x x --=,∴222x x -=,∴2213x x -+=,∴()213x -=,∴()212019320192022x -+=+=.故答案为:2022.11.如图,在ABCD Y 中,BF 平分ABC ∠,交AD 于点F ,CE 平分BCD ∠,交AD 于点E ,6AB =,9BC =,则EF 长为.【答案】3【分析】本题考查了平行四边形的性质,平行线的性质,角平分线的定义,等角对等边;熟练掌握平行四边形的性质,得出AF AB =是解题的关键.根据平行四边形的对边平行且相等可得AD BC ∥,6DC AB ==,9AD BC ==;根据两直线平行,内错角相等可得AFB FBC ∠=∠;根据从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线可得ABF FBC ∠=∠;推得ABF AFB ∠=∠,根据等角对等边可得6AF AB ==,6DE DC ==,即可列出等式,求解.【详解】解:∵四边形ABCD 是平行四边形,∴AD BC ∥,6DC AB ==,9AD BC ==,∵AD BC ∥,∴AFB FBC ∠=∠,∵BF 平分ABC ∠,∴ABF FBC ∠=∠,则ABF AFB ∠=∠,∴6AF AB ==,同理可证:6DE DC ==,∵2EF AF DE AD =+-=,即669EF +-=,解得:3EF =;故答案为:3.12.如图,在平面直角坐标系中,点A ,B 都在反比例函数()0ky x x=>的图象上,延长AB 交y 轴于点C ,过点A 作AD y ⊥轴于点D ,连接BD .若2AB BC =,BCD △的面积是2,则k 的值为.【答案】4【分析】本题主要考查了反比例函数与几何综合,相似三角形的性质与判定,过点B 作BE AD ⊥于E ,设k k A a B b a b ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,,,,先求出23AB AC =,证明ABE ACD ∽△△,得到23AE AB AD AC ==,即23a b a -=,由此可得3a b =;由BCD △的面积是2,2AB BC =,得到24ABD BCD S S ==△△,求出23k k kBE b a b=-=,则123423ABD k S AD BE b b=⋅=⨯⋅=△,即可得到4k =.【详解】解:如图所示,过点B 作BE AD ⊥于E ,设k k A a B b a b ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,,,,∵2AB BC =,∴23AB AC =,∵AD y ⊥,BE AD ⊥,∴BE CD ,∴ABE ACD ∽△△,∴23AE AB AD AC ==,即23a b a -=,∴3a b =;∵BCD △的面积是2,2AB BC =,∴24ABD BCD S S ==△△,∵233k k k k kBE b a b b b=-=-=,∴123423ABD k S AD BE b b=⋅=⨯⋅=△,∴4k =,故答案为:4.13.如图,四边形ABCO 是正方形,顶点B 在抛物线()20y ax a =<的图象上,若正方形ABCO 2,且边OC 与y 轴的负半轴的夹角为15︒,则a 的值是.【答案】3【分析】本题主要考查二次函数、特殊三角函数、正方形的性质,正确做出辅助线,利用特殊角,应用特殊三角函数值进行求解是解题的关键.连接OB ,过B 作BD y ⊥轴于D ,则45BOC ∠=︒,可得30BOD ∠=︒,再由直角三角形的性质可得,OD BD 的长,进而得到点(1,3B --,即可求解.【详解】解:如图,连接OB ,过B 作BD y ⊥轴于D ,则90BDO ∠=︒,由题意得:45BOC ∠=︒,∵15COD ∠=︒,∴451530BOD ∠=︒-︒=︒,∵正方形OABC 2∴222OB OA AB =+=,∴在Rt OBD △中,∴112BD OB ==,∴22213OD =-=∴点(1,3B -,代入()20y ax a =<中,得:3a =-∴故答案为:314.如图,在ABC 中,9043ACB AC BC ∠=︒==,,,将ABC 绕点B 旋转到DBE 的位置,其中点D 与点A 对应,点E 与点C 对应.如果图中阴影部分的面积为4.5,那么CBE ∠的正切值是.【答案】913【分析】本题考查了正切函数的定义,旋转的性质和勾股定理.作FG BD ⊥于点G ,利用旋转的性质以及面积法和勾股定理求得1EF =,10BF =,解得95FG =,再利用由旋转的性质求得CBE FBG ∠=∠,据此求解即可.【详解】解:作FG BD ⊥于点G ,∵9043ACB AC BC ∠=︒==,,,∴22345AB =+=,由旋转的性质得,3BE =,5BD =,90BED ∠=︒,由题意得11433 4.522S EF =⨯⨯-⨯⨯=阴影,解得1EF =,∴2210BF BE EF =+=,∵14.52BFD S S BD FG ==⨯⨯=阴影△,解得95FG =,∴22135BG BF FG =-=,由旋转的性质得,CBA EBD ∠=∠,则CBE FBG ∠=∠,∴CBE ∠的正切值995tan 13135FG FBG BG =∠===,故答案为:913.15.如图,在平面直角坐标系中,Q 与y 轴相切于点A ,与x 轴交于点B 、C ,连接BQ 并延长交Q 于点D ,交y 轴于点E ,连接DA 并延长交x 轴于点F ,已知点D 的坐标为()1,6,则点B 的坐标为.【答案】()9,0【分析】作DG OE ⊥于点G ,连接QA ,BA ,利用切线性质推出QA OB ∥,推出DAQ DFB ∽得出AQ 为DFB △的中位线,进而推出()AAS AFO ADG ≌,得到FO DG =,AO AG =,根据D 的坐标得到1FO =,3AO =,利用圆周角定理的推论,推出AFO BAO ∽,得到AO FO BO AO=,即可求出B 坐标.【详解】解:如图,作DG OE ⊥于点G ,连接QA ,BA,Q 与y 轴相切于点A ,QA OE ∴⊥,BO OE ⊥ ,QA OB ∴∥,DAQ DFB ∴ ∽,DQ AQ DB FB∴=,12DQ BQ BD == ,12AQ FB ∴=即12AQ FB =,AQ ∴为DFB △的中位线,DA FA ∴=,FAO DAG ∠=∠ ,90AOF AGD ∠=∠=︒,()AAS AFO ADG ∴ ≌,FO DG ∴=,AO AG =,点D 的坐标为()1,6,1DG ∴=,6OG =,1FO ∴=,3AO =,BD Q 是直径,90FAB ∴∠=︒,FAO BAO ABO BAO ∠+∠=∠+∠ ,AOF ABO ∴∠=∠,90AOF AOB ∠=∠=︒ ,AFO BAO ∴ ∽,AO FO BO AO∴=,313BO ∴=,9BO ∴=,B ∴的坐标为()9,0,故答案为:()9,0.16.如图,把Rt OAB 置于平面直角坐标系中,点A 的坐标为()04,,点B 的坐标为()30,,点P 是Rt OAB 内切圆的圆心.将Rt OAB 沿x 轴的正方向作无滑动滚动,使它的三边依次与x 轴重合,第一次滚动后圆心为1P ,第二次滚动后圆心为2P ,…,依此规律,第2023次滚动后,Rt OAB 内切圆的圆心2023P 的坐标是.【答案】()80931,【分析】作PD OA ⊥交OA 于D ,PF OB ⊥交OB 于F ,PE AB ⊥交AB 于E ,连接AP 、OP 、PB ,由A 、B 的坐标得出4OA =,3OB =,由勾股定理可得5AB =,再由内切圆的性质可得PD PE PF ==,设PD PE PF r ===,根据三角形的面积计算出1r =,从而得到()11P ,,根据旋转可得出2P 的坐标为:()35411++-,,即()111,,设1P 的横坐标为x ,根据切线长定理可得:331x -=-,即可得到2P 的坐标,从而得到每滚动3次为一个循环,最后根据202336741÷=⋯,进行计算即可得到答案.【详解】解:如图,作PD OA ⊥交OA 于D ,PF OB ⊥交OB 于F ,PE AB ⊥交AB 于E ,连接AP 、OP 、PB ,,点A 的坐标为()04,,点B 的坐标为()30,,3OB ∴=,4OA =,2222435AB OA OB ∴+=+=,点P 是Rt OAB 内切圆的圆心,PD OA ⊥,PF OB ⊥,PE AB ⊥,PD PE PF ∴==,设PD PE PF r ===,1134622AOB S OA OB =⋅=⨯⨯= ,111222AOB APB AOP OPB S S S S AB PE OA PD OB PF =++=⋅+⋅+⋅ ,1115436222r r r ∴⨯+⨯+⨯=,解得:1r =,()11P ∴,,将Rt OAB 沿x 轴的正方向作无滑动滚动,使它的三边依次与x 轴重合,第一次滚动后圆心为1P ,第二次滚动后圆心为2P ,∴由图可得2P 的坐标为:()35411++-,,即()111,,设1P 的横坐标为x ,根据切线长定理可得:331x -=-,解得:5x =,()151P ∴,,∴3P 的坐标为()35411+++,,即()131,,∴每滚动3次为一个循环,202336741÷=⋯ ,∴第2023次滚动后Rt OAB 内切圆的圆心2023P 的横坐标是:()67434558093⨯+++=,即2023P 的横坐标是8093,()202380931P ∴,,故答案为:()80931,.三、解答题(本大题共11小题,共88分.解答时应写出文字说明、证明过程或演算步骤)17.(7分)已知210a a +-=,求代数式321121a a a a a a -⎛⎫-÷ ⎪--+⎝⎭的值.【详解】解:321121a a a a a a -⎛⎫-÷ ⎪--+⎝⎭()()()211111a a a a a a a -+=-+⨯--21a a =+,∵210a a +-=,∴21a a +=,∴原式111==.18.(7分)已知实数x ,y 满足43617x y x y -=⎧⎨+=⎩,求x y +的值.【详解】解:43617x y x y -=⎧⎨+=⎩①②,①6⨯+②得:24661817x y x y -++=+,解得75x =,将75x =代入①式,解得135y =,713455x y ∴+=+=.19.(8分)2023春节档电影《满江红》热映,进一步激发观众爱国之情.帝都南阳与名将岳飞有着一段传颂至今的历史——公元1138年,岳飞统军过南阳到武侯祠敬拜诸葛亮,雨夜含泪手书前后《出师表》,为南阳留下了千古绝唱“三绝碑”.某超市采购了两批同样的《出师表》纪念品挂件,第一批花了3300元,第二批花了4000元,已知第一批每个挂件的进价是第二批的1.1倍,且第二批比第一批多购进25个.(1)求第二批每个挂件的进价;(2)两批挂件售完后,该超市以第二批每个挂件的进价又采购一批同样的挂件,经市场调查发现,当售价为每个60元时,每周能卖出40个,若每降价1元,每周多卖10个,由于货源紧缺,每周最多能卖90个,求每个挂件售价定为多少元时,每周可获得最大利润,最大利润是多少?【详解】(1)解答:解:(1)设第二批每个挂件进价是每个x 元,根据题意得33004000251.1x x=-解得40x =,经检验,40x =是原方程的解,也符合题意,∴40x =,答:第二批每个挂件进价是每个40元;(2)设每个挂件售价定为m 元,每周可获得利润W 元,∵每周最多能卖90个,∴604010901m -+⨯≤,解得55m ≥,根据题意得()()260404010105214401m W m m -⎛⎫=-+⨯=--+ ⎪⎝⎭,∵100->,∴当52m ≥时,y 随x 的增大而减小,∵55m ≥,∴当55m =时,W 取最大,此时210555214401350W =-⨯-+=().∴当每个挂件售价定为55元时,每周可获得最大利润,最大利润是1350元.20.(8分)北京时间2023年10月3日,瑞典皇家科学院宣布,将诺贝尔物理学奖授予皮埃尔·阿戈斯蒂尼、费伦茨·克劳什、安妮·卢利耶.这3位获得者所做的实验,为人类探索原子和分子内部的电子世界提供了新的工具.在诺贝尔奖历史上,诺贝尔物理学奖是华人获奖最多的领域,共有6位华人科学家获奖,分别是杨振宁、李政道、丁肇中、朱棣文、崔琦、高锟.小轩家刚好有《杨振宁传》《李政道传》《丁肇中传》《高锟传》四本传记书,小轩阅读完后任选一本写读后感.(1)小轩选到《朱棣文传》是________事件.(填“随机”“必然”或“不可能”)(2)小轩的妹妹也从这四本传记书中任选一本写读后感,请用列表或画树状图的方法,求他们恰好选到同一本书写读后感的概率.【详解】(1)解:∵小轩家有《杨振宁传》《李政道传》《丁肇中传》《高锟传》四本传记书,∴小轩选到《朱棣文传》是不可能事件,故答案为:不可能;(2)解:由题意可得,树状图如图所示,总共有16种情况,他们恰好选到同一本书的有4种,∴41164P ==.21.(8分)2023年,教育部等八部门联合印发了《全国青少年学生读书先去实施方案》,某校为落实该方案,成立了四个主题阅读社团:A .民俗文化,B .节日文化,C .古曲诗词,D .红色经典.学校规定:每名学生必须参加且只能一个社团.学校随机对部分学生选择社团的情况进了调查.下面是根据调查结果绘制的两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)本次随机调查的学生有名,在扇形统计图中“A ”部分圆心角的度数为;(2)通过计算补全条形统计图;(3)若该校共有1800名学生,请根据以上调查结果,估计全校参加“D ”社团的人数.【详解】(1)本次调查的总人数2440%60÷=(名),扇形统计图中,C 所对应的扇形的圆心角度数是63603660⨯=︒︒,故答案为:60,36︒;(2)606241812---=(人);补全条形统计图如答案图所示.(3)18180054060⨯=(名).答:全校1800名学生中,参加“D ”活动小组的学生约有540名.22.(8分)如图,在矩形ABCD 中,E 是BC 的中点,DF AE ⊥,垂足为F .(1)求证:ABE DFA △∽△;(2)若64AB BC ==,,求DF 的长.【详解】(1)证明:∵四边形ABCD 是矩形,∴90ABC BAD ∠=∠=︒,∵DF AE ⊥,∴90AFD EBA =︒=∠∠,∴90BAE FAD FAD FDA +=︒=+∠∠∠∠,∴BAE FDA ∠=∠,∴ABE DFA △∽△;(2)解:∵四边形四边形ABCD 是矩形,4BC =,∴4AD BC ==,∵E 是BC 的中点,∴122BE BC ==,∵6AB =,∴22210AE AB BE =+=∵ABE DFA △∽△,∴AB AE DF AD =,即62104DF =∴6105DF =23.(8分)随着人民生活水平的日益提高,许多农村的房屋普遍进行了改造,小明家改造时在门前安装了一个遮阳棚,如图,在侧面示意图中,遮阳篷AB 长为4米,与墙面AD 的夹角75.5BAD ∠=︒,靠墙端A 离地高AD 为3米,当太阳光线BC 与地面DE 的夹角为45︒时,求阴影CD 的长.(结果精确到0.1米;参考数据:sin 75.50.97cos 75.50.25tan 75.5 3.87︒≈︒≈︒≈,,)【详解】解:如图所示,过点B 作BG AD ⊥于点G ,BF CE ⊥于点F ,则四边形DGBF 是矩形,∴BF DG BG DF ==,,在Rt ABG △中,75.5904m BAD AGB AB ∠=︒=︒=,∠,,∴cos 4cos75.5 1.0m AG AB BAG =⋅∠=⨯︒≈,sin 4sin 75.5 3.9m BG AB BAG =⋅=⨯︒≈∠,∴ 2.0m BF DG AD AG ==-=,在Rt BCF 中, 2.0 2.0m tan tan 45BF CF BCF ===︒∠,∴ 3.9 2.0 1.9m CD DF CF BG CF =-=-=-=,∴阴影CD 的长为1.9m .24.(8分)如图,AB 是O 的直径,点E 是OB 的中点,过E 作弦CD AB ⊥,连接AC ,AD .(1)求证:ACD 是等边三角形;(2)若点F 是 AC 的中点,连接AF ,过点C 作CG AF ⊥,垂足为G ,若O 的半径为2,求线段CG 的长.【详解】(1)证明:如图,连接OC 、BC ,∵AB 是O 的直径,CD AB ⊥,∴AC AD = ,∴AC AD =,∵点E 是OB 的中点,CD AB ⊥,∴CD 是OB 的中垂线,∴OC BC =,∵OC OB =,∴OC OB BC ==,∴OBC 是等边三角形,∴60ABC ∠=︒,∴60ADC ABC ∠=∠=︒,∴ACD 是等边三角形;(2)解:如图,连接DF ,∵O 的半径为2,点E 是OB 的中点,∴3AE =,∵ACD 是等边三角形,CD AB ⊥,∴1122CE CD AC ==,在Rt ACE 中,3AE =,由勾股定理得:222AC CE AE -=,即22192AC AC ⎛⎫-= ⎪⎝⎭,则23AC =∵点F 是AC 的中点,∴AF CF =,∴1302ADF CDF ADC ∠=∠=∠=︒,∴30CAG CDF ∠=∠=︒,∵CG AG ⊥,∴90G ∠=︒,∴132CG AC ==.25.(8分)某龙舟队进行500米直道训练,全程分为启航,途中和冲刺三个阶段.图1,图2分别表示启航阶段和途中阶段龙舟划行总路程()m s 与时间()s t 的近似函数图象.启航阶段的函数表达式为()20s kt k =≠;途中阶段匀速划行,函数图象为线段;在冲刺阶段,龙舟先加速后匀速划行,加速期龙舟划行总路程()m s 与时间()s t 的函数表达式为()()2700s k t h k =-+≠.(1)求出启航阶段()m s 关于()s t 的函数表达式(写出自变量的取值范围),(2)已知途中阶段龙舟速度为5m/s .①当90s t =时,求出此时龙舟划行的总路程,②在距离终点125米处设置计时点,龙舟到达时,85.20s t ≤视为达标,请说明该龙舟队能否达标;(3)冲刺阶段,加速期龙舟用时1s 将速度从5m/s 提高到5.25m/s ,之后保持匀速划行至终点.求该龙舟队完成训练所需时间(精确到0.01s ).【详解】(1)把(20,50)A 代入2s kt =得50400k =,解得18k =,∴启航阶段总路程s 关于时间t 的函数表达式为21(020)8s t t =<≤;(2)①设5s t b =+,把(20,50)代入,得50520b =⨯+,解得50b =-,550s t ∴=-.当90t =时,45050400s =-=.∴当90t =时,龙舟划行的总路程为400m .②500125375-=,把375s =代入550s t =-,得85t =.8585.20< ,∴该龙舟队能达标.(3)加速期:由(1)可知18k =,把(90,400)代入21(70)8s t h =-+,得350h =.∴函数表达式为21(70)3508s t =-+,把91t =代入21(70)3508s t =-+,解得405.125s =.(500405.125) 5.2518.07∴-÷≈,90118.07109.07∴++=.答:该龙舟队完成训练所需时间为109.07s .26.(9分)如图,在ABC 中,90BCA ∠=︒,8AC =,4sin 5B =,点D 是斜边AB 的中点,点E 是边AC 的中点,连接CD ,点P 为线段CD 上一点,作点C 关于直线EP 对称点F ,连接EF PF 、,设DP 长为()0x x >.(1)AB 的长为.(2)求PF 长度(用含x 的代数式表示).(3)当点F 落在直线CD 上时,求x 的值.(4)当直线PF 与ABC 的边BC 或AC 垂直时,直接写出x 的值.【详解】(1)解:∵在ABC 中,90BCA ∠=︒,8AC =,4sin 5B =,∴8104sin 5ACAB B ===,故答案为:10;(2)解:∵点D 是斜边AB 的中点,∴152CD AB ==,∵DP x =,∴5CP CD DP x =-=-,∴由轴对称的性质可得5PF CP x==-(3)解:如图,当点F 落在直线CD上时,∵点E 是边AC 的中点,∴142CE AC ==,∵D 为AB 的中点,∴12CD AD AB ==,∴A ECP ∠=∠,∴4cos cos 5ACA ECP AB ∠=∠==,由轴对称的性质可得CPE FPE =∠∠,∵180CPE FPE +=︒∠∠,∴90CPE FPE ==︒∠∠,∴在Rt CPE △中,4cos 5CPECP CE ∠==,∴5445x-=,解得95x =;(4)解:当PF AC ⊥时,延长FP 交CA 于点G,在Rt ABC △中,226BC AB AC =-=,∴3sin 5BCA AB ==,由轴对称的性质可得F PCE A PC PF ∠=∠=∠=,,4EC EF ==,∴43cos cos cos sin sin 55F PCG A PCG A ∠=∠=∠=∠=∠=,,∴35PGPC =,∴()33555PG PC x ==-∴()855FG PF PG x =+=-,∵在Rt EFG △中,3cos 5FGF EF ∠==,∴()854545x -=,解得3x =;当PF BC ⊥时,延长FP 交BC 于点M ,则MF AC ∥,∴CEN F ACD A MPC ∠=∠==∠=∠∠,∴sin sin MPC A ∠=∠,∴Rt MPC △中,3sin 5MC MPC CP ==∠∴()33555MC PC x ==-∵在Rt CEN △中,44cos 5CE CE CEN NE =∠==,∴5EN =,∴223CN EN CE =-=,∴365495MN CM CN x NF =+=-=+=,,在Rt MNF △中,3sin 5MN F NF ∠==,∴363595x -=,解得1x =.综上所述,x 的值为1或3.27.(9分)如图,直线32y x =与双曲线()0k y k x=≠交于A ,B 两点,点A 的坐标为(),3m -,点C 是双曲线第一象限分支上的一点,连接BC 并延长交x 轴于点D ,且2BC CD =.(1)求k 的值并直接写出点B 的坐标;(2)点G 是y 轴上的动点,连接GB ,GC ,求GB GC +的最小值;(3)点P 是直线AB 上一个动点,是否存在点P ,使得OBC △与PBD △相似,若存在,求出此时点P 的坐标;若不存在,请说明理由.【详解】(1)将(),3A m -代入直线32y x =中,得332m -=,解得:2m =-,()2,3A ∴--,6(3)2k \--´==,∴反比例函数解析式为6y x =,由326y xy x⎧=⎪⎪⎨⎪=⎪⎩,解得23x y =-⎧⎨=-⎩或23x y =⎧⎨=⎩,∴点B 的坐标为()2,3;(2)如图,作BE x ⊥轴于点E ,CF x ⊥轴于点F ,则BE CF ∥,BE CF ∥,DCF DBE \ ∽,DCCF DFDB BE DE \==,2BC CD = ,13DCCFDFDB BE DE \===,∴3BE CF =,()2,3B ,3BE ∴=,1CF ∴=,∵点C 在反比例函数6y x =图象上,()6,1C ∴,作点B 关于y 轴的对称点B ',连接B C '交y 轴于点G ,则B C '即为BG GC +的最小值,()2,3B ¢-,()6,1C ,()()222631217B C ¢\=--+-=BG GC ∴+的最小值为217(3)根据点P 是直线AB :32y x =的上一个动点,则设点3,2P x x ⎛⎫ ⎪⎝⎭,∵()6,1C ,()2,3B ,∴37OC =13OB =25CB =在(2)中有:13DCCFDFDB BE DE ===,∴3DE DF =,即2EF DE DF DF =-=,()2,3B ,()6,1C ,∴2OE =,6OF =,∴4EF OF OE =-=,∴2DF =,即8OD OF DF =+=,∴()8,0D ,当OBC PBD ∽时,如图,∴BOC BPD ∠=∠,∴OC PD ∥,∴2BOBCOP CD ==,∵13OB =∴132OP =,∵3,2P x x ⎛⎫ ⎪⎝⎭,结合图象有0x <,∴2231322OP x x x 骣琪=+=-琪桫,131322==1x -,此时点31,2P ⎛⎫-- ⎪⎝⎭;当OBC DBP ∽时,如图,∴BOBCBD BP =,∵()8,0D ,()2,3B ,∴35BD =132535BP =,∴3013BP =,∵3,2P x x ⎛⎫⎪⎝⎭,()2,3B ,∴()222323213x x 骣骣琪琪-+-=琪琪桫桫,解得:18613x =,23413x =-,当8613x =时,点P 在点B 右侧,此时DBP 是钝角三角形,不可能与OBC △相似,故舍去;当23413x =-时,点3451,132P ⎛⎫-- ⎪⎝⎭;综上:满足条件的点P 的坐标为:3451,132⎛⎫-- ⎪⎝⎭或者31,2⎛⎫-- ⎪⎝⎭.。

2024年中考数学第一次模拟试卷(无锡卷)(全解全析)

2024年中考数学第一次模拟试卷(无锡卷)(全解全析)

2024年中考第一次模拟考试(无锡卷)数学·全解全析(考试时间:120分钟试卷满分:140分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的)1.下列各组数中,互为相反数的组是()A .2023-和2023-B .2023和12023C .2023-和2023D .2023-和12023【答案】A【解析】解:A .20232023-=和2023-互为相反数,故A 选项符合题意;B .2023和12023互为倒数,故B 选项不符合题意;C .20232023-=和2023不互为相反数,故C 选项不符合题意;D .2023-和12023不互为相反数,故D 选项不符合题意;故选:A .2.已知114A a =-+,下列结论正确的是()A .当5a =-时,A 的值是0B .当4a >-时,A 的最小值为1C .若A 的值等于1,则4a =-D .若A 的值等于2,则5a =-【答案】D【解析】解:当5a =-时,1111254A =-=+=-+,A 选项错误;当4a >-时,40a +>,104a >+,104a -<+,1114a -<+,即A 的最小值小于1,B 选项错误;当1A =时,1114a =-+,解得4a =-,此时分式无意义,故不合题意,C 选项错误;当2A =时,1214a =-+,解得5a =-,D 选项正确,故选:D .3.光线在不同介质中的传播速度是不同的,因此当光线从水中射向空气时,要发生折射,由于折射率相同,所以在水中平行的光线,在空气中也是平行的.如图,1122,2∠=︒∠的度数为()A .32︒B .58︒C .68︒D .78︒【答案】B【解析】解:如图,根据题意得:a b ,c d ∥,∴13180∠+∠=︒,32∠=∠,∵1122∠=︒,∴258∠=︒.故选:B .4.下列计算错误的是()A .()21x x x x -=-B .325x x x ×=C .()236x x =D .()2224a a -=-【答案】D【解析】解:A 中()21x x x x -=-,正确,故不符合要求;B 中325x x x ×=,正确,故不符合要求;C 中()236x x =,正确,故不符合要求;D()2222444a a a a -=-+≠-,错误,故符合要求;故选:D .5.若点()()()112233A x y B x y C x y ,、,、,是反比例函数11y x=-图象上的点,且1230x x x <<<,则123y y y 、、的大小关系是()A .123y y y <<B .321y y y <<C .231y y y <<D .312y y y <<【答案】D【解析】解:根据题意画出函数图象得,可知,312y y y <<.故选:D .6.随着城际交通的快速发展,某次动车平均提速60km /h ,动车提速后行驶480km 与提速前行驶360km 所用的时间相同.设动车提速后的平均速度为x km /h ,则下列方程正确的是()A .36048060x x =+B .36048060x x =-C .36048060x x =-D .36048060x x=+【答案】B【解析】解:根据题意,得36048060x x=-.故选:B .7.将抛物线()215y x =-+通过平移后,得到抛物线的解析式为223y x x =++,则平移的方向和距离是()A .向右平移2个单位长度,再向上平移3个单位长度B .向右平移2个单位长度,再向下平移3个单位长度C .向左平移2个单位长度,再向上平移3个单位长度D .向左平移2个单位长度,再向下平移3个单位长度【答案】D【解析】解:抛物线()215y x =-+的顶点坐标为15(,),抛物线()222312y x x x =++=++的顶点坐标为()12-,,而点()15,向左平移2个,再向下平移3个单位可得到()12-,,所以抛物线()215y x =-+向左平移2个,再向下平移3个单位得到抛物线y=x 2+2x+3.故选:D .8.如图,正方形ABCD 和正方形AEFG ,当正方形AEFG 绕点A 逆时针旋转45︒时,如图,连接DG 、BE ,并延长BE 交DG 于点.H 若AE =228AB =,时,则线段BH 的长为()A 16105B 14105C .5210+D .610+【答案】A【解析】解:连结GE 交AD 于点N ,连结DE ,如图,正方形AEFG 绕点A 逆时针旋转45︒,AF ∴与EG 互相垂直平分,且AF 在AD 上,2AE = 22AN GN ∴==,826DN ∴=-=,在Rt DNG 中,DG =22DN GN +2=10;由题意可得:ABE 相当于逆时针旋转90°得到AGD ,2DG BE ∴==10,DEG S = 12GE ND ⋅=12DG HE ⋅,HE ∴=10=6105BH BE HE ∴=+=6101021055+=故选:A .9.如图,AB 是O 的一条弦,点C 是O 上一动点,且ACB θ∠=,点E ,F 分别是,AC BC 的中点,直线EF 与O 交于G ,H 两点,若O 的半径是r ,则GE FH +的最大值是()A .()2sin r θ-B .()2sin r θ+C .()2cos r θ-D .()2cos r θ+【答案】A【解析】解:作直径AP ,连接BP ,90ABP ∴∠=︒,,2P C PA r θ∠=∠== ,sin sin AB P APθ∴∠==,2sin AB r θ∴=⋅,∵E ,F 分别是,AC BC 的中点,EF ∴是ABC 的中位线,1sin 2EF AB r θ∴==⋅,GE FH GH EF +=- ,∴当GH 长最大时,GE FH +有最大值,∴当GH 是圆直径时,GH 最大.∴GE FH +最大值是()2sin 2sin r r r θθ-=-.故选:A .10.如图,在矩形ABCD 中,E 为AB 中点,以AE 为边向上作正方形AEFG ,边EF 交CD 于点H ,在边AE 上取点M 使AM AD =,作MN AG ∥交CD 于点L ,交FG 于点N ,记AE a =,EM b =,欧几里得在《几何原本》中利用该图解释了()()22a b a b a b +-=-.现以BM 为直径作半圆O ,恰好经过点H ,交CD 另一点于P ,记HPB △的面积为1S ,DLF △的面积为2S ,若1b =,则12S S -的值为()A .12B .22C .1D 2【答案】A【解析】解:依题意得:四边形AEFG AMLD ,均为为正方形,四边形AMNG MEFN MEHL MBCL EBCH ,,,,均为矩形,∵AE a EM b ==,,点E 为AB 的中点,∴EB AE CH a ===,AD AM DL EH BC a b =====-,DG LN HF ME HL b =====,ML EH BC ==,∴()211•22S DL HF a b b ==-,连接MH ,∵HC ME ∥,∴ MHBP =,∴MH BP =,在Rt MHL △和Rt BPC △中,ML BC MH BP=⎧⎨=⎩,∴()Rt Rt HL MHL BPC ≌△△,∴HL PC b ==,∴HP CH PC a b =-=-,∴()211122S HP BC a b =⨯=-,∵MB 为直径,∴90MHB ∠=︒,即90MHE BHE ∠+∠=︒,∵90MEH HEB ∠=∠=︒,∴90HME MHE ∠+∠=︒,∴HME BHE ∠=∠,∴HME BHE ∽,∴EH EB EM EH =::,∴2EH BE EM =⨯,即:()2a b ab -=,∴()211122S a b ab =-=,∴()212111222S S ab a b b b -=--=,∵1b =,∴1212S S -=.故选:A .二、填空题(本大题共8小题,每小题3分,共24分.)11.化学元素钉()Ru 是除铁()Fe 、钻()Co 和镍()NIi 以外,在室温下具有独特磁性的第四个元素.钉()Ru 的原子半径约0.000 000 000 189m .将0.000 000 000 189用科学记数法表示为.【答案】101.8910-⨯【解析】解:100.000 000 000 189 1.8910-=⨯,故答案为:101.8910-⨯12.若2a +与3b -互为相反数,则22a b =.2【解析】解:∵2a +与3b -互为相反数,∴230a b ++-=,即1a b +=,∴)2222a b a b =+=213.不等式组32122x x x x ≥-⎧⎪⎨+≥⎪⎩的解集是.【答案】113x -≤≤【解析】解:32122x x x x ≥-⎧⎪⎨+≥⎪⎩①②解不等式①得:1x ≥-解不等式②得:13x ≤,∴不等式组的解集为:113x -≤≤,故答案为:113x -≤≤.14.写出一个图象是曲线且过点()1,2的函数的解析式:.【答案】2y x=(答案不唯一)【解析】解:设反比例函数解析式为k y x=,依题意,2k =∴一个图象是曲线且过点()1,2的函数的解析式是:2y x=,故答案为:2y x=(答案不唯一).15.如图,某品牌扫地机器人的形状是“莱洛三角形”,它的三“边”分别是以等边三角形的三个顶点为圆心,边长为半径的三段圆弧.若该等边三角形的边长为3,则这个“莱洛三角形”的周长是.【答案】3π根据正三角形的有关计算求出弧的半径和圆心角,根据弧长的计算公式求解即可.【解析】解:如图:∵ABC 是正三角形,∴60BAC ∠=︒,∴ BC的长为:603180ππ⨯=,∴“莱洛三角形”的周长=33ππ⨯=.故答案为:3π.16.如图,已知平行四边形ABCD 中,E 为BC 边上一点,连接AE DE 、,若AD DE =,AE DC =,4BE =,tan 3B ∠=,则EC 的长为.【答案】6【解析】解:作,AF BE DG AE ⊥⊥,如图所示:∵,AE DC AB DC==∴,AB AE B AEB =∠=∠∵AD BC ∥∴AEB DAE ∠=∠∴B AEB DAE ∠=∠=∠∵4BE =∴2BF EF ==∵tan 3AFB BF∠==∴226,210AF AB AE AF BF ===+=∵AD DE =,DG AE ⊥∴10AG EG ==∵tan tan tan 3DAE AEB B ∠=∠=∠=∴22310,10DG AD DG AG ==+=∴10BC AD ==∵4BE =∴6EC BC BE =-=故答案为:617.我国魏晋时期的数学家刘徽(263年左右)首创“割圆术”,所谓“割圆术”就是利用圆内接正多边形无限逼近圆来确定圆周率,刘徽计算出圆周率 3.14π≈.刘徽从正六边形开始分割圆,每次边数成倍增加,依次可得圆内接正十二边形,圆内接正二十四边形,⋯,割得越细,正多边形就越接近圆.设圆的半径为R ,圆内接正六边形的周长66P R =,计算632P πR ≈=;圆内接正十二边形的周长1224sin15P R =︒,计算12 3.102PπR≈=;那么分割到圆内接正二十四边形后,通过计算可以得到圆周率π≈.(参考数据:sin150.258︒≈,sin 7.50.130)︒≈【答案】3.12【解析】解:圆内接正二十四边形的周长2448sin 7.5P R =⋅⋅︒,则48sin 7.5480.130 3.1222R R π⋅︒⨯≈≈≈,故答案为3.1218.如图,点A 是双曲线y=8x在第一象限上的一动点,连接AO 并延长交另一分支于点B ,以AB 为斜边作等腰Rt △ABC ,点C 在第二象限,随着点A 的运动,点C 的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为.【答案】y=﹣8x .【解析】解:如图,连结OC ,作CD ⊥x 轴于D ,AE ⊥x 轴于E ,∵A 点、B 点是正比例函数图象与双曲线y=8x 的交点,∴点A 与点B 关于原点对称,∴OA=OB ,∵△ABC 为等腰直角三角形,∴OC=OA ,OC ⊥OA ,∴∠DOC+∠AOE=90°,∵∠DOC+∠DCO=90°,∴∠DCO=∠AOE ,∵在△COD 和△OAE 中,CDO OEA DCO EOA CO OA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△COD ≌△OAE (AAS ),设A 点坐标为(a ,8a ),则OD=AE=8a ,CD=OE=a ,∴C 点坐标为(﹣8a,a ),∵﹣8a a ∙=﹣8,∴点C 在反比例函数y=﹣8x图象上.故答案为:y=﹣8x .三、解答题(本大题共10小题,共86分.解答时应写出文字说明、证明过程或演算步骤)19.(1)计算:()103127123π2-⎛⎫-+- ⎪⎝⎭;(2)用配方法解方程:24210x x --=.【解析】(1)解:原式()23211=--+23211=+-+52=(2)解:24210x x --=2421x x -=244214x x -+=+()2225x -=25x ∴-=±17x ∴=,23x =-20.计算:(1)()()22a b b a b -+-;(2)21241121x x x x +⎛⎫+÷ ⎪+++⎝⎭【解析】(1)解:()()22a b b a b -+-22222a ab b ab b =-++-2a =;(2)解:21241121x x x x +⎛⎫+÷ ⎪+++⎝⎭()21212(2)x x x x ++=⨯++12x +=21.如图,在ABC 中,过A 点作AD BC ∥,交ABC ∠的平分线于点D ,点E 在BC 上,DE AB ∥.(1)求证:四边形ABED 是菱形;(2)当6BC =,4AB =时,求DF 的长.【解析】(1)证明:∵AD BC ∥,DE AB ∥,∴四边形ABED 是平行四边形,∵AD BC ∥,∴ADB CBD ∠=∠,∵BD 平分ABC ∠,∴ABD CBD ∠=∠,∴ADB ABD ∠=∠,∴AD AB =,∴四边形ABED 是菱形;(2)解:∵四边形ABED 是菱形,4AB =,∴4DE BE AD AB ====,AD BC ∥,∴ADF CEF ∠=∠,∵AFD CFE ∠=∠,∴CEF ADF ∽△△,∴ADDFCE EF =,∵6BC =,∴2CE BC BE =-=,∴42DF EF=,∴2DF EF =,∴23DF DE =,∴83DF =.22.现有三张正面印有2023年杭州亚运会吉祥物琮琮、宸宸和莲莲的不透明卡片A ,B ,C ,卡片除正面图案不同外,其余均相同,(1)若将三类卡片各10张,共30张,正面向下洗匀,从中随机抽取一张卡片,则抽出的卡片图案是琮琮的概率是___________.(2)现将三类卡片各一张,放入不透明箱子,小明随机抽取一张,看后,放回,再由小充随机抽取一张.请用树状图或列表的方法列出所有等可能的结果,并求恰好摸到相同卡片的概率.【解析】(1)解;∵一共有30张卡片,其中琮琮的卡片有10张,且每张卡片被抽到的概率相同,∴从中随机抽取一张卡片,则抽出的卡片图案是琮琮的概率是101303=,故答案为:13.(2)解:画树状图如下:由树状图可知,一共有9种等可能性的结果数,其中恰好摸到相同卡片的结果数有3种,∴恰好摸到相同卡片的概率为3193=.23.某校初三物理组为激发学生学习物理的热情,组织初三500名学生进行“水火箭”制作和演示飞行活动.为了解该年级学生自制水火箭的飞行情况,现随机抽取40名学生进行水火箭飞行测试,并将测试成绩(百分制)作为样本数据进行整理、描述和分析,下面给出了部分信息.①将样本数据分成5组:5060,6070,7080,8090,90100x x x x x ≤<≤<≤<≤<≤<,并制作了如图所示的不完整的频数分布直方图;②在8090x ≤<这一组的成绩分别是:80,81,83,83,84,85,86,86,86,87,8.8,89,根据以上信息,解答下列问题:(1)补全频数分布直方图;(2)抽取的40名学生成绩的中位数是____________;(3)如果测试成绩达到80分及以上为优秀,试估计该年级500名学生中水火箭飞行测试为优秀的学生约有多少人?【解析】(1)解:在7080x ≤<这组的人数为:404612108----=(人),补全频数分布直方图如下:(2)中位数应为40个数据由小到大排列中第20,21个数据的平均数,∵数据处于较小的三组中有46818++=(个)数据,∴中位数应是8090x ≤<这一组第2,3个数据的平均数,∴中位数为:8183822+=(分),故答案为:82分;(3)∵样本中优秀的百分比为:1210100%55%40+⨯=,∴可以估计该校500名学生中对安全知识掌握程度为优秀的学生约有:55%500275⨯=(人),答:估计该校500名学生中对安全知识掌握程度为优秀的学生约有275人.24.如图,在四边形ABCD 中,90A C ∠=∠=︒.(1)经过点A 、B 、D 三点作O ;(2)O 是否经过点C ?请说明理由.【解析】(1)解:如图所示,O 即为所求;(2)O 经过点C ,理由如下:连接OC ,∵90BCD ∠=︒,点O 为BD 的中点,∴12CO BC OD OB ===,∴点C 在O 上.25.最佳视点如图1,设墙壁上的展品最高处点P 距底面a 米,最低处的点Q 距底面b 米,站在何处观赏最理想?所谓观赏理想是指看展品的视角最大,问题转化为在水平视线EF 上求使视角最大的点.如图2,当过P Q E ,,三点的圆与过点E 的水平线相切于点E 时,视角PEQ ∠最大,站在此处观赏最理想,小明同学想这是为什么呢?他在过点E 的水平线HM 上任取异于点E 的点E ',连接PE '交O 于点F ,连接QF ,…任务一:请按照小明的思路,说明在点E 时视角最大;任务二:若3 1.8a b ==,,观察者的眼睛距地面的距离为1.5米,最大视角为30︒,求观察者应该站在距离多远的地方最理想(结果精确到0.013 1.73≈).【解析】任务一:过点E 的水平线HM 上任取异于点E 的点E ',连接PE '交O 于点F ,连接QF ,∵PFQ ∠是QFE ' 的外角,∴PFQ PE Q '∠>∠,又∵PFQ ∠与PEQ ∠都是弧PQ 所对的圆周角,∴PFQ PEQ ∠=∠,∴PEQ PE Q '∠>∠,∴在点E 时视角最大.任务二:∵30PEQ ∠=︒,∴60POQ ∠=︒,又∵OP OQ =,∴OPQ △是等边三角形,OP OQ PQ ==.如图2,连接OE ,∵HE 是O 的切线,∴90OEH ∠=︒,∵90PHE ∠=︒,∴180OEH PHE ∠+∠=︒,∴//PQ OE ,又∵PQ OP OE ==,∴四边形PQOE 是平行四边形,∴30OPE PEQ ∠=∠=︒,∴603030EPH OPQ OPE ∠=∠-∠=︒-︒=︒.由题意得,3 1.5 1.5PH =-=(米),在Rt PHE △中,3•tan 1.50.873HE PH EPH =∠=⨯(米).答:观察者应该站在距离0.87米的地方最理想.26.在2024年元旦即将到来之际,学校准备开展“冬日情暖,喜迎元旦”活动,小星同学对会场进行装饰.如图1所示,他在会场的两墙AB 、CD 之间悬挂一条近似抛物线2435y ax x =-+的彩带,如图2所示,已知墙AB 与CD 等高,且AB 、CD 之间的水平距离BD 为8米.(1)如图2,两墙AB ,CD 的高度是米,抛物线的顶点坐标为;(2)为了使彩带的造型美观,小星把彩带从点M 处用一根细线吊在天花板上,如图3所示,使得点M 到墙AB 距离为3米,使抛物线1F 的最低点距墙AB 的距离为2米,离地面2米,求点M 到地面的距离;(3)为了尽量避免人的头部接触到彩带,小星现将M 到地面的距离提升为3米,通过适当调整M 的位置,使抛物线2F 对应的二次函数的二次项系数始终为15,若设点M 距墙AB 的距离为m 米,抛物线2F 的最低点到地面的距离为n 米,探究n 与m 的关系式,当924n ≤≤时,求m 的取值范围.【解析】(1)解:由题意得,抛物线的对称轴为4x =,则45422b x a a==-=-,解得:0.1a =;∴抛物线的表达式为0.10.83y x x =-+,则点(0,3)A ,即3AB CD ==(米),当4x =时,0.10.83 1.4y x x =-+=,即顶点坐标为(4,1.4),故答案为:3,(4,1.4);(2)解:设抛物线的表达式为2(2)2y a x ='-+,将点A 的坐标代入上式得23(02)2a ='-+,解得14a '=,∴抛物线的表达式为21(2)24y x =-+,当3x =时,21(2)2 2.254y x =-+=(米),∴点M 到地面的距离为2.25米;(3)解:由题意知,点M 、C 纵坐标均为4,则右侧抛物线关于M 、C 对称,∴抛物线的顶点的横坐标为11(8)422m m +=+,则抛物线的表达式为211(4)52y x m n =--+,将点C 的坐标代入上式得2113(84)52m n =--+,整理得21412055n m m =-+-;当2n =时,即214122055m m =-+-,解得85m =-;当9n 4=时,同理可得86m =故m 的取值范围为:8685m ≤≤27.定义:对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的四边形,则这样的四边形称为镶嵌四边形.(1)如图1,将ABC 纸片沿中位线EH 折叠,使点A 落在BC 边上的D 处,再将纸片分别沿EF ,HG 折叠,使点B 和点C 都与点D 重合,得到双层四边形EFGH ,则双层四边形EFGH 为______形.(2)ABCD Y 纸片按图2的方式折叠,折成双层四边形EFGH 为矩形,若5EF =,12EH =,求AD 的长.(3)如图3,四边形ABCD 纸片满足AD BC ∥,AD BC <,AB BC ⊥,8AB =,10CD =.把该纸片折叠,得到双层四边形为正方形.请你画出一种折叠的示意图,并直接写出此时BC 的长.【解析】(1)双层四边形EFGH 为矩形,理由如下:由折叠的性质可得AEH HED ∠=∠,BEF DEF ∠=∠,180AEH HED BEF DEF ∠+∠+∠+∠=︒ ,90HED DEF ∴∠+∠=︒,90HEF ∴∠=︒,同理可得90EHG EFD ∠=∠=︒,∴四边形EFGH 是矩形,故答案为:矩;(2) 四边形EFGH 为矩形,90FEH ∴∠=︒,EH FG =,EH FG ∥,222251213FH EF EH ∴=+=+=,EHM GFN ∠=∠,又ABCD 为平行四边形,A C ∴∠=∠,AD BC =,由折叠得A EMH ∠=∠,C GNF ∠=∠,EMH GNF ∴∠=∠,在EHM 与GFN 中,EH FGEHM GFN EMH GNF=⎧⎪∠=∠⎨⎪∠=∠⎩,(AAS)EHM GFN ∴ ≌,MH NF ∴=,由折叠得AH MH =,CF FN =,AH CF ∴=,又AD BC = ,DH BF FM ∴==,又AD AH DH =+ ,HF MH MF =+,13AD HF ∴==.(3)有以下三种基本折法:折法1中,如图所示:由折叠的性质得:AD BG =,142AE BE AB ===,152CF DF CD ===,GM CM =,90FMC ∠=︒, 四边形EFMB 是叠合正方形,4BM FM ∴==,2225163GM CM CF FM ∴=-=-=,1AD BG BM GM ∴==-=,7BC BM CM =+=;折法2中,如图所示:由折叠的性质得:四边形EMHG 的面积12=梯形ABCD 的面积,142AE BE AB ===,DG NG =,NH CH =,BM FM =,MN MC =,125GH CD ∴==, 四边形EMHG 是叠合正方形,5EM GH ∴==,正方形EMHG 的面积2525==,90B ∠=︒ ,2225163FM BM EM BE ∴=-=-=,设AD x =,则3MN FM FN x =+=+,梯形ABCD 的面积1()82252AD BC =+⨯=⨯,252AD BC ∴+=,252BC x ∴=-,2532MC BC BM x ∴=-=--,MN MC = ,25332x x ∴+=--,解得:134x =,134AD ∴=,251337244BC =-=.折法3中,如图所示,作GM BC ⊥于M ,则E ,G 分别为AB ,CD 的中点,则4AH AE BE BF ====,152CG CD ==,正方形的边长42EF GF ==4GM FM ==,2225163CM CG GM --=,11BC BF FM CM ∴=++=.综上所述:7BC =或11或374.28.如图所示,抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,且1OA =,4OB OC ==.(1)求抛物线的解析式;(2)若连接AC 、BC .动点D 从点A 出发,在线段AB 上以每秒1个单位长度向点B 做匀速运动;同时,动点E 从点B 出发,在线段BC 2个单位长度向点C 做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接DE ,设运动时间为t 秒.在D 、E 运动的过程中,当t 为何值时,四边形ADEC 的面积最小,最小值为多少?(3)点M 是抛物线上位于x 轴上方的一点,点N 在x 轴上,是否存在以点M 为直角顶点的等腰直角三角形CMN ?若存在,求出点M 的坐标,若不存在,请说明理由.【解析】(1)解:∵4OB OC ==,1OA =,则()0,4C ,()4,0B ,()0,1A -∴抛物线解析式为2(1)(4)34y x x x x =-+-=-++;(2)解:∵4OB OC ==,∴OBC △是等腰直角三角形,由点的运动可知:2BE t =,过点E 作EF x ⊥轴,垂足为F ,∴22tBE BF t t ==,又∵()0,1A -,则5AB =,∴ADEC ABC BDES S S =- 1145(5)22t t=⨯⨯-⨯-⨯21555(228t =-+,∵当其中一点到达终点时,另一点随之停止运动,∴224442AC =+=5AB =,∴04t ≤≤,当52t =时,四边形ADEC 的面积最小,即为558;(3)解:存在,(15,15)M +或(222,222)M -,当点M 在CN 的右侧时,如图所示,过点M 作y 轴的平行线PQ ,交x 轴于点Q ,过点C 作CP PQ ⊥,∵CMN 是以M 为直角为直角顶点的等腰直角三角形,∴CM MN =,90CMN ∠=︒,∴90PCM PMC NMQ ∠=︒-∠=∠,又90CPM MQN ∠=∠=︒∴CPM MQN ≌,∴CP MQ =,设2(,34)M m m m -++,∴234m m m -++=,解得:51m =或15m =∴(15,15)M ;当点M 在CN 的右侧时,同理可得234m m m -++=-,解得:222m =-22m =(舍去)∴(222,222)M -,综上所述,(15,15)M 或(22,22)M -.。

2024年中考第三次模拟考试语文(山西卷)(全解全析)

2024年中考第三次模拟考试语文(山西卷)(全解全析)

2024年中考第三次模拟考试(山西卷)语文·全解全析注意事项:1.本试卷共8页,满分120分,考试时间150分钟。

2.答卷前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置。

3.答案全部在答题卡上完成,答在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

一、古典之美(27分)(一)1.赤胆忠心凝聚而成的一腔热忱,形成了青海红色文化的基因,成为中华民族的根与魂。

研学活动中,为了加深对“家国情怀”内涵的深刻理解,小华以“家国情怀”为主题制作了一张古诗文积累卡,请你帮他把空缺的古诗文原句书写在横线上。

(10分)取丹心照汗青⑦落红不是无情物⑧恨别鸟惊心⑨赢得生前身后名⑩会挽雕弓如满月评分标准:每空1分,共10分。

出现错字、别字、漏字、多字不得分。

【详解】本题考查诗文默写。

易错字有:圆、汗、赢、生前身后、雕。

2.辛弃疾的《破阵子·为陈同甫赋壮词以寄之》追忆了诗人年轻时雄壮豪迈的军旅生活和紧张激烈的战斗场面,创造了一个立功疆场的老将军形象。

请结合示例,为划线句加点词做批注。

(2分)【参考答案】“可怜”是可惜的意思,表明了前面所描述的年轻时的经历现在只是一种追忆,抒发壮志难酬的郁闷和惆怅。

【解析】本题考查古诗词中词语的表达效果。

“可怜”是可惜的意思,结合全诗,词的上阙回顾了自己征战沙场的战争场面,下阙点出自己的理想“了却君王天下事”,展现了诗人的抱负。

然而回到现实,表明了前面所描述的年轻时的经历现在只是一种追忆,进而体现了词人壮志难酬的郁闷和惆怅。

(二)【甲】江城子·密州出猎老夫聊发少年狂,左牵黄,右擎苍,锦帽貂裘,千骑卷平冈。

为报倾城随太守,亲射虎,看孙郎。

酒酣胸胆尚开张,鬓微霜,又何妨?持节云中,何日遣冯唐?会挽雕弓如满月,西北望,射天狼。

【乙】曹刿论战十年春,齐师伐我。

公将战,曹刿请见。

其乡人曰:“肉食者谋之,又何间.焉?”刿曰:“肉食者鄙,未能远谋。

”乃入见。

2024年中考第一次模拟考试语文(河南卷)(考试版A4)

2024年中考第一次模拟考试语文(河南卷)(考试版A4)

2024年中考第一次模拟考试(河南卷)语文注意事项:1.本试卷共六页,五个大题,满分120分,考试时间120分钟。

一、积累与运用(共22分)1.根据情境,补全对话。

(6分)秒,禾芒也。

春分而禾生……秋分而秒定。

(《说文解字》)小呦:让我们先从“秒”字的本义开始研究吧!“秒”是形声字,“禾”作形旁,说明它最早和(1)有关。

小鸣:没错!再结合方框里的资料,我认为“秒”的本义是(2)。

根据本义,人们将“秒”引申为某种细微的长度单位,后来又将它用做时间计量单位。

小呦:看来,中国古代人民常常将生活中的物候现象融入字形字义中。

小鸣:到了现代社会,人们将“秒”完全融入了现实生活。

紧俏商品开售后被“秒杀”,别人的话你能否“秒懂”……这里的“秒”字多用作状语,理解为(3)。

小呦:看来,社会的不断发展,为字词增添了新义项,创造了新用法。

小鸣:你说得太好了!明天我打算这样向老师转述我们的探究过程和发现:(4)2.小郑准备写一段活动结语,请回顾学过的古诗文,帮他一起完成。

(8分)子曰:“①,②?”所以,我想请同学们跟我一起回顾所学的古诗文,共同完成活动总结。

王湾在《次北固山下》中说“③,④”,春节是一年之始,意味着旧去新来。

春节过后,天气逐渐转暖,不久便是花朝节、上巳节。

花朝节这一天,女孩子们像从军回家的木兰那样“⑤,⑥”,梳妆打扮一番,到郊外踏青赏红,迎接花神;上巳节,花繁草茂,春意更浓,正如白居易《钱塘湖春行》中描写的那样“⑦,⑧”,人们趁着天朗气清到水边祭祀宴饮,临溪而渔,酿泉为酒,享受野炊之趣……这些美好的节日虽已消失,但古人亲近自然、热爱生活的态度,我们应该继承。

希望通过这次活动,大家能对我们的传统节日有更多的了解,对如何弘扬节日文化有更多的思考。

3.育才中学记者团将开展以“加强未成年人网络保护工作”为主题调研活动,请你参与并完成任务。

(8分)(1)阅读下面的材料,请用一句话写出你的探究结果。

(2分)[材料一]提升未成年人网络环境的安全性和健康度,需要进一步强化法治保障。

语文(无锡卷)2024年中考第一次模拟考试卷(含解析)

语文(无锡卷)2024年中考第一次模拟考试卷(含解析)

方法指引
文中语 字词解


【借助工具书】《古代汉语词典》惮:1.dàn①畏难,害怕。②敬, 尔惮往
惮:
敬畏。③通“瘅”,劳苦。2.dá④惊惧。

【课内迁移】“莫不异之”中的“异”,根据《桃花源记》中“渔人甚异 遂排栅
遂:
之”的“异”,可理解为“对……感到惊异”的意思。

【成语推断】“舍而趋彼何为”中的“趋”,可以根据成语“趋之若鹜” 中的“趋”推断为“奔向,奔赴”的意思。
(选自陆游《南唐书》,南京出版社,有删节) 【注释】①周本、危全讽;均为人名。②栅:设置水寨时插在水中的木桩。③唯唯; 应答声。④烈祖:指南唐皇帝李昇(biàn)。⑤械:特指枷锁、镣铐一类的刑具。此处 作动词。⑥中使:皇帝派出的使者。⑦瘢痍(bān yí):创伤后留下的瘢痕。 (1)请给文中画波浪线句子断句,用“/”标出来。(限三处) 卧百余日复起耳至老不聩亦无瘢痍 (2)请你参考表格提示的方法对文中三个词语加以解释。(只写出词义)
②为什么屏幕会吞没我们的生活,抢走这么多的时间?在采访了开发者,查阅了数 据报告后,我终于开始明白,我们每个人身边究竟在发生什么——根据微软加拿大分公 司发布的关于人类注意力的研究报告,在 2000 年,普通人的注意力能保持 12 秒,而到 了 2013 年,人们只能聚焦 8 秒。人类的注意力正在萎缩,但绝大多数科技产品赖以生 存的基础,就是用户的注意力。所以,一个成功产品经理的职责,就是在一个又一个 8 秒内不断地释放新的刺激点,锁住用户的注意力。
8.甲诗以“
”字领起前四句,由远及近,视域开阔;乙诗以“
”一词统领四
句,由近及远,虚实相映,以声夺人。
9.情到深处,诗人泪目。杜甫和艾青之“泪”有什么相通之处?

语文(四川成都卷)2024年中考第一次模拟考试卷(含解析)

语文(四川成都卷)2024年中考第一次模拟考试卷(含解析)

语文(四川成都卷)2024年中考第一次模拟考试卷(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答主观题时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

A卷(共100分)第I卷(选择题,共24分)一、基础知识(每小题3分,共12分)1.下面加点字注音有误的一项是()A.斡旋(wò)粗犷(kuàng)振聋发聩(kuì)B.校对(jiào)遏制(è)花团锦簇(cù)C.憎恶(zēng)绰号(chuò)喃喃自语(nán)D.褴褛(lán)褶皱(zhě)彬彬有礼(bīn)2.下列语句中书写正确的一项是()A.我认识奥本海默时,他已经四十多岁了,已经是妇儒皆知的人物了。

B.黄与绿主宰着,无边无垠,坦荡如坻,你几乎忘记了是在高原上行走。

C.我们不应该讨厌它那暄嚣的歌声,它掘土四年,才能在阳光下歌唱。

D.我正在谈木材的事情,这畜生无缘无故跳出来咬了我的手指头一口。

3.下列语段中加点的成语使用有误的一项是()北京冬奥会让世界看到了一个更加从容自信的中国。

开幕式上,拂动舒展的绿色春苗,倾泻而下的黄河之水,破冰而出的奥运五环令人叹为观止;奥运健儿在赛场上顽强拼搏,不断超越自我,赢得了观众振聋发聩的欢呼声。

冬奥志愿者们以细致周到的服务助力奥运,那些感人的瞬间仍然历历在目;同时,众多科技元素也融入了冬奥,中国科技与冬奥相辅相成,科技让冬奥更节能低碳,冬奥让科技更普惠亲民。

A.叹为观止B.振聋发聩C.历历在目D.相辅相成4.下列语句中没有语病的一项是()A.心灵手巧的盆景师,把植物、山石、工艺品等加工整合,创作出构思精巧的微型景观。

2024年中考语文模拟考试试卷及答案

2024年中考语文模拟考试试卷及答案

2024年中考语文模拟考试试卷及答案学校:___________班级:___________姓名:___________考号:___________一、综合性学习七年级学生圆圆为班级策划主题为“天下国家”的综合性学习活动,请你协助完成方案。

1.你用心准备活动开场白。

青山绿水,草长()莺飞,鸟语花香……江山之美让我们心kuàng()神怡,幸福之感油然而生。

长征路上的豪迈宣言,渡江战役的胜利号角,神舟飞天的长空呼啸……时代之声使我们心潮澎湃,爱国之情。

胸怀天下,心系国家——中华儿女共同的情怀!(1)给加点字注音:长( )(2)根据拼音写汉字:kuàng( )2.圆圆想在活动中吟诵体现江山之美的古诗文名句,请你协助。

(1)你将古诗文填写完整。

①天苍苍,野茫茫,。

(北朝民歌《敕勒歌》)②,长河落日圆。

(王维《使至塞上》)③造化钟神秀,。

(杜甫《望岳》)④衔远山,,浩浩汤汤……(范仲淹《岳阳楼记》)(2)你认为“,”也能体现江山之美。

3.圆圆挑选了一些作品,展现不同时期的灿烂文化,你设计了对联游戏。

(1)将能够组成对联的作品名连接起来。

(填序号)甲《搜神记》(东晋·干宝)甲——( ) 乙——( ) 丙——( )(2)任选一副,填入适当的词或短语,将对联补充完整。

选(填序号),填入。

4.圆圆准备了下面一组材料,播发不同时期的强国之声,需要配一段“主播评论”。

你结合材料,围绕“强国”和“英雄”,撰写一段议论性文字。

(50字以内)[材料一]一次井下突然有一个信号测不到了,大家十分焦虑,人们劝他回去,他只说了一句话:“我不能走。

”——《邓稼先》[材料二]指挥大厅有人大声喊道:“快看啊,他眨眼了,利伟还活着!”……这时我第一次向地面报告飞船状态:“‘神舟五号’报告,整流罩打开正常!”——《太空一日》[材料三]打开舱门,飞行员冲着围过来的将士们说:“一切正常,感觉好极了!”——《一着惊海天》5.圆圆还制定了一份评价表,请老师和同学对上面的方案进行整体评价。

2024年中考第一次模拟考试语文(济南卷)(全解全析)

2024年中考第一次模拟考试语文(济南卷)(全解全析)

2024年中考第一次模拟考试(济南卷)语文注意事项:1.本试卷满分为150分,考试时间为120分钟。

2.答题前,请考生务必将自己的姓名、座号和准考证号等填写在答题卡和试卷指定位置上。

3.答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

答非选择题时,用0.5毫米黑色签字笔将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试题和答题卡一并交回。

一、(16分)阅读下面文段,完成1-2题。

“宁拙.毋巧、宁朴毋华”的百岁爱国科学家杨振宁,“互为手足、相濡.以沫”脱贫致富奔小康的残疾夫妇张顺东、李国秀,“心无旁①、志在冲天”开创我国自主研制歼击机先河的歼-8总设计师顾诵芬,不惧万难、长途②涉真实记录我国扶贫攻坚“无穷之路”的香港媒体人陈贝儿,历经磨难、初心不改的“中国核.潜艇之父”彭士禄,让五星红旗一次次闪耀浩③苍穹的中国航天人群体……他们带给我们的是感动,更是奋进的力量!1.加点字读音正确的一项是()(3分)A.宁拙.毋巧(zhuó)相濡.以沫(rǔ)核潜.艇(qián)B.宁拙.毋巧(zhuó)相濡.以沫(rú)核潜.艇(qiǎn)C.宁拙.毋巧(zhuō)相濡.以沫(rú)核潜.艇(qián)D.宁拙.毋巧(zhuō)相濡.以沫(rǔ)核潜.艇(qiǎn)【答案】C【解析】考查对字音的辨析。

宁拙毋巧:宁可装成愚蠢的样子,也不要投机取巧。

“拙”读作zhuō;相濡以沫:意思是泉水干了,鱼吐沫互相润湿。

比喻一同在困难的处境里,用微薄的力量互相帮助。

“濡”读作r ú;核潜艇:是核动力潜艇的简称,是以核反应炉为动力来源的潜艇。

“潜”读作qián;故选C。

2.横线处依次填入汉字全都正确的一项是()(3分)A.①骛②拔③翰 B.①鹜②拔③瀚C.①鹜②跋③翰 D.①骛②跋③瀚【答案】D【解析】考查对字形的辨析书写。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2006年中考模拟考试试卷社会政治亲爱的同学,祝贺你即将顺利地度过初中的学习生活,我们希望通过以下题目的测试了解一下你的学习成绩和教师的教学成果。

请你认真做好以下题目。

试卷Ⅰ一、选择题(每小题2分,共44分)1、2006年1月9日,全国科学技术大会在人民大会堂隆重开幕。

胡锦涛向获得2005年度国家最高科技奖的中国科学技术奖的中国科学院院士▲和▲颁发奖励证书和奖金。

A 叶笃正、吴孟超 B、刘东生、王永志 C、金怡濂、黄昆 D、费俊龙、聂海胜2、中国北京2008年奥运会吉祥物终于在11月11日晚八点倒计时的1000天揭开了神秘的面纱!他们是和平的信使,代表亿万中国人民向全世界人民发出了热情邀请:北京欢迎您。

你知道他们的名称是什么吗?A 、Athena(雅典娜)B、Phevos(费沃斯)C、海狸 D、中国福娃3、2005年11月22日,▲当选为联邦政府总理,成为德国历史上的第一位女总理。

A阿罗约 B.撒切尔 C.希拉里 D.默克尔4、2005年12月24日7时12分海峡两岸关系协会会长▲同志因病于在上海逝世,海内外各界沉痛哀悼。

A辜振甫B巴金C荣毅仁D汪道涵5、2005年中央电视台春节和元宵联欢晚会,分别隆重推出了具有浓郁的民族特色的贴春联和猜灯谜活动,为这两台欢度传统节日的晚会增色不少。

这启示我们要()A、摒弃腐朽的传统文化B、弘扬优秀的传统文化C、不能学习借鉴西洋文化D、应当批判吸收西洋文化6、要考证近代英法联军在中国犯下的罪行,下列地方应选择()A.卢沟桥B.圆明园C.大观园D.伪满皇宫7、鸦片战争后,中国社会最主要的矛盾是()A.资产阶级和农民阶级的矛盾B.外国资本主义和中华民族的矛盾C.封建主义和人民大众的矛盾D.工人阶级和资产阶级的矛盾8、座落在山东威海的中日甲午战争纪念馆所纪念的民族英雄是()A.林则徐B.李秀成C.左宗棠D.邓世昌9、下列刊物宣传“民主”、“科学”思想的是()A.《中外纪闻》B.《时务报》C.《国闻报》D.《新青年》10、我省最早宣传马克思主义的刊物是()A.《京报》B.《浙江潮》C.《浙江新潮》D.《东南战线》11、社会兴趣小组同学要实地考察中国共产党诞生地,他们应去的城市是()A.北京B.上海C.杭州D.广州12、下列革命活动中,周恩来直接参与的有()①南昌起义②左右江根据地的创立③三湾改编④西安事变的和平解决A.①②B.③④C.②④D.①④13、中国共产党第八次全国代表大会在探索社会主义建设道路中取得巨大成就,其原因主要是()A.正确认识中国国情B.坚持马克思主义指导C.坚持无产阶级专政D.坚持社会主义道路邓小平同志说:“贫穷不是社会主义,社会主义要消灭贫穷。

”“社会主义的本质是共同富裕”据此回答14-15题:14、共同富裕是社会主义的目标,最早提出这一观点的是()A.中共十一届三中全会B.十二大C.十三大D.十三届四中会会15、下列关于共同富裕说法正确的有()①共同富裕是社会主义的根本原则②共同富裕就是同步富裕③共同富裕是一个过程④在不同的发展阶段,共同富裕有不同的内容A.①②③B.②③④C.①②④D.①③④16、江泽民同志在党的十六大报告中指出:“全面建设小康社会,最根本的是坚持以经济建设为中心,不断解放和发展社会生产力。

”以上讲话反映了中国共产党()A.代表社会主义前进方向B.代表中国广大人民的利益C.代表先进生产力的发展要求D.代表先进文化的前进方向2005年12月22日中国国务院新闻办公室发表了《中国的和平发展道路》白皮书。

据此回答17-18题:17、当今时代的主题是:()A.和平与发展B.反恐与维和C.和平问题与发展问题D.和谐世界18、中国长治久安、立于不败之地的关键是()A.反对一切形式的恐怖主义B.增强自主创新能力C.以经济建设为中心不动摇D.建设全面小康社会19、2006年1月18日,禽流感防控国际筹资大会部长级会议在北京开幕。

温家宝出席开幕式并发表讲话,就进一步推动禽流感防控国际合作提出四点主张,并宣布中国政府捐资1000万美圆,支持全球禽流感防控事业。

这体现我国外交政策基本内容中的哪一方面:()A.维护全人类共同利益B.主张建立公正合理的国际政治经济新秩序C.继续改善和发展同发达国家的关系D.继续加强睦邻友好20、2005年,我国GDP达到18万亿元,比上年增长9.9%,GDP总量跃居世界第四,对中国GDP的高速增长,下列认识正确的是:()①它改善了人民的生活,提高了我国的经济实力和国际地位;②这是我国坚持基本路线不动摇的成果;③说明我国开始进入发达国家行列;④GDP不衡量资源消耗,环境质量,也不衡量社会公正和幸福。

A.①②③B.②③④C.①②④D.②③④2005年12月29日,十届全国人大常委会第十九次会议表决通过了全国人大常委会关于废止农业税条例的决定,1958年6月3日通过的农业税条例自2006年1月1日起废止。

这标志着在中国延续2600年的农业税退出了历史舞台。

回答21-22题。

21、全国人大常委会废止农业税条例是▲的体现。

A.社会主义精神文明B.社会主义政治文明C.社会主义生态文明D.社会主义物质文明22、我国从2006年起全部免征农业税的举措()①能够激发农民的生产积极性,增加农民的收入②有助于减轻农民负担,促进农业的发展③有利于缩小城乡差异,加快构建社会主义和谐社会④意味着农民今后不要交税了A.①②③B.②③④C.①②④D.②③④二、非选择题(共56分)23、材料一:阅读下列两首诗:材料二:图片说明:1月28日,大陆赠台大熊猫乳名征集活动的结果揭晓:“团团”“圆圆”最终胜出,据悉,有一亿多观众参与了投票。

阅读上述材料,回答:(1)《春愁》提到的"割台湾"是近代哪一不平等条约的内容?(2分)(2)中国人民在1945年10月收复台湾是哪一战争的胜利果实?(2分)(3)是什么历史原因造成“我在这头,母亲在那头”的“乡愁”?(2分)(4)赠台大熊猫乳名征集活动得到了两岸人民的热情参与,表达了人民怎样的心愿?(2分)体现了怎样的民族精神?(2分)24、2006年新年刚刚过去,江苏省常州市武进区朱藤树下村还弥漫着节日的喜庆气氛。

但是倪金兰一家却沉浸在深深的悲痛之中,就在不久前,她的老母亲,95岁的张桂娣老人葬身火海,离开了人世。

当地警方根据鉴定结果,经现场勘察和综合分析最后认定,这起火灾事故就是由倪金兰前不久刚买的电热毯故障引发的。

用来御寒的电热毯非但没有能给母亲送去温暖,却夺去了母亲的生命,这令倪金兰伤心不已。

阅读上述材料,回答:(1)“问题电热毯”侵犯了消费者的哪些合法权益?(2分)(2)作为消费者要维护自身的合法权益,下列哪一种行为是不可取的()(1分)A.到消协投诉B.申请仲裁C.提起诉讼D.忍气吞声,自认倒霉(3)如果你要提起诉讼,你应该把诉讼状递交哪一国家机关?(1分)(4) 2006年“3.15”维权主题是“消费与环境”,你认为怎样才能为消费者创造一个良好的消费环境?(请从国家角度和个人角度分别说明)(4分)25、材料一:《中国的民主政治建设》白皮书发表:10月19日,国务院新闻办公室发表《中国的民主政治建设》白皮书,这是中国政府首次发表关于民主政治建设的白皮书。

材料二:图中所反映的是浙江省义乌市大陈、廿三里等乡镇今年在镇人大代表选举中,既注意保障外来人员的选举权,又注意保障其被选举权。

阅读材料,回答:(1)社会主义的中国,国家的一切权力属于谁?(2分)(2)请你说出我国保证人民当家作主的根本政治制度,并说明这一制度是看样保证人民当家作主的?(3分)(3)请你再列举一项保证人民当家作主的基本政治制度。

(2分)(4)发展社会主义民主政治的最根本要求是什么?(3分)26、全国科学技术大会于1月9日——11日在北京举行。

这是中国在新世纪召开的第一次全国科技大会,它将吹响加强自主创新、建设创新型国家的号角,必将成为中国科技发展史上的又一个里程碑。

加强自主创新,建设创新型国家,是我们党综合分析世界发展大势和我国所处历史阶段提出的面向未来的重大战略。

阅读热点材料,回答:(1)请从基本国情或国际竞争的角度谈谈新一届党中央集体为何作出了“加强自主创新,建设创新型国家”的战略决策?(2分)(2)加强自主创新、建设创新型国家必须大力实施哪些战略?(2分)(3)加强自主创新、建设创新型国家要求我们的教育模式实行怎样的转变?(2分)(4)作为中学生,你能为建设创新型国家做些什么?(3分)27、中共十六届五中全会强调,要加快建设资源节约型、环境友好型社会,大力发展循环经济,加大环境保护力度,切实保护好自然生态,认真解决影响经济社会发展、特别是严重危害人民健康的突出的环境问题,在全社会形成资源节约的增长方式和健康文明的消费模式。

问:(1)从国情角度说说党为什么要提出建立资源节约型、环境友好型社会?(2分)(2)建设资源节约型、环境友好型社会要求我们贯彻哪些基本国策?(2分)(3)建设资源节约型、环境友好型社会要求我们树立怎样的发展观?体现了正确认识社会现象要坚持哪些观点?(3分)(4)请你为党和政府如何建设源节约型、环境友好型社会提二条措施?(2分)28、材料一:2005年10月11日,中共十六届五中全会北京召开,会议审议通过了《中共中央关于制定国民经济和社会发展第十一个五年规划建议》指出十一五时期中国经济社会发展的主要目标,提出为了实现这一目标关键是加强和改善党的领导。

材料二:党的十六届五中全会提出要建设“生产发展、生活宽裕、乡风文明、村容整洁、管理民主”的社会主义新农村,这是我们党领导社会主义现代化建设进程中的一项重大历史任务。

阅读上述材料,回答问题:(1)材料一、二说明中国共产党在我国社会主义现代化建设事业中处于何种地位?(2分)(2)建设社会主义新农村,要求“生产发展、生活宽裕、乡风文明、村容整治、管理民主”分别体现了哪一文明建设?(3分)请你发挥想象,描述的社会主义新农村美好前景。

(3分)(3)作为国家的小主人,你能为建设新农村做哪些力所能及的贡献?(2分)2006年中考模拟考试参考答案社会政治(试卷请点击中考模拟卷.doc)一、选择题。

(每小题2分,共44分)1.A2.D3.D4.D5.B6.B7.B8.D9.D 10.C11.B12.D 13.A 14.A 15.D 16.C 17.A 18.C 19.A 20.C 21.B22.A二、非选择题。

(共56分)23.(1)《马关条约》(2分) (2)抗日战争(2分)(3)1949年,国共内战,国民党败退台湾,台湾被人为分裂(2分)(4)渴望统一(2分),团结统一,爱好和平(2分)24.(1)生命健康权、人身、财产安全权、真情知悉权、公平交易权(2分)。

相关文档
最新文档