(完整)最新七年级数学_合并同类项专项练习题.docx

合集下载

(完整版)100道合并同类项数学题

(完整版)100道合并同类项数学题

(完整版)100道合并同类项数学题1、3ab-4ab+8ab-7ab+ ab2、7x-(5x-5y)-y3、23a3bc2-15ab2c+8 abc-24a3bc2-8abc4、-7x2+6x+13x2-4x-5 x25、2y+(-2y+5)-(3y+2)6、(2x2-3xy+4y2)+(x2 +2xy-3y2) 7、a-(3a-2b+2)+(3a-4b -1)8、-6x2-7x2+15x2-2x29、2x-(x+3y)-(-x-y)-(x-y)10、2x+2y-[3x-2(x-y)]11、5-(1-x)-1-(x-1)12、(4xy2-2x2y)-( 2x2y+ 4xy2)13、已知A=x3-2x2+x-4,B=2x3-5x+3,计算A+B=14、已知A=x3-2x2+x-4,B=2x3-5x+3,计算A-B=15、若a=-0.2,b=0.5,代数式-(|a2b|-|ab2|)的值为16、一个多项式减去3m4-m3-2m+5得-2m4-3m3-2m2-1,那么这个多项式等于17、-(2x2-y2)-[2y2-(x2+2 xy)] 18、若-3a3b2与5a x-1b y+2是同类项,则x=______,y=______.19、(-y+6+3y4-y3)-(2y2-3y3+y4-7)20、化简代数式4x2-[7x2-5x-3(1-2x+ x2)]的结果是___21、3a-(2a-3b)+3(a-2b)-b22、化简代数式x-[y-2x-(x+y)]等于23、[5a2+( )a-7]+[( )a2-4 a+( )]=a2+2a+1.24、3x-[y-(2x+y)]=____ __.25、化简|1-x+y|-|x-y|(其中x <0,y>0)等于26、已知x≤y,x+y-|x-y|=27、已知x<0,y<0,化简|x+y|-|5-x-y|=_____ _.28、4a2n-an -(3an -2a2n)=______.29、若一个多项式加上-3x2y+2x2-3xy-4得2x2y+3xy2-x2+2xy,则这个多项式为______.30、-5xm-xm-(-7xm)+(-3xm)31、当a=-1,b=-2时,[a-(b-c)]-[-b-(-c-a)]32、当a=-1,b=1,c=-1时,-[b-2(-5a)]-(-3b+5c)33、-2(3x+z)-(-6x)+(-5y +3z)34、-5an-an+1-(-7an+1) +(-3an)35、3a-(2a-4b-6c)+3(-2 c+2b)36、9a2+[7a2-2a-(-a2+3a )]37、当2y-x=5时,5(x-2y)2-3(-x+2y)-1 0038、把(-x-y)+3(x+y)-5(x+y)合并同类项得39、2a-[3b-5a-(2a-7b)]等于40、2ab-9a2-5ab-4a241、当a=2,b=1时,-a2b+3ba2-(-2a2b) 等于42、-{[-(x+y)]}+{-[(x+y)]}等于43、当m=-1时,-2m2-[-4m2+(-m2)]等于44、当m=2,n=1时,多项式-m-[-(2m-3n)]+[-(-3m)-4n]等于45、-5an-an-(-7an)+(-3 an)等于46、(5a-3b)-3(a2-2b)等于化简47、(4x2-8x+5)-(x3+3x2-6x+2).48、(0.3x3-x2y+xy2-y3)-(-0.5x3-x2y+0.3xy2).49、-{2a2b-[3abc-(4ab2-a2b)]}.50、(5a2b+3a2b2-ab2)-(-2ab2+3a2b2+a2b)51、(x2-2y2-z2)-(-y2+3x2-z2)+(5x2-y2+2z2).52、(3a6-a4+2a5-4a3-1)-( 2-a+a3-a5-a4).53、(4a-2b-c)-5a-[8b-2c -(a+b)].54、(2m-3n)-(3m-2n)+( 5n+m).55、(3a2-4ab-5b2)-(2b2-5a2+2ab)-(-6ab).56、xy-(2xy-3z)+(3xy-4 z).57、(-3x3+2x2-5x+1)-(5-6x-x2+x3).58、3x-(2x-4y-6x)+3(-2 z+2y).59、(-x2+4+3x4-x3)-(x2+ 2x-x4-5).60、若A=5a2-2ab+3b2,B=-2b2+3ab-a2,计算A+B.61、若A=5a2-2ab+3b2,B=-2b2+3ab-a2,计算A-B.62、2m-{-3n+[-4m-(3m-n)]}.63、5mn2+(-2m2n)+2m n2-m2n64、4(x-y+z)-2(x+y-z)-3 (-x-y-z).65、2(x2-2xy+y2-3)+(-x2 +y2)-(x2+2xy+y2).66、2(a2-ab-b2)-3(4a-2b )+2(7a2-4ab+b2).67、4x-2(x-3)-3[x-3(4-2 x)+8].将下列各式先化简,再求值68、已知a+b=2,a-b=-1,求3(a+b)2(a-b)2-5(a+b )2×(a-b)2的值.69、已知A=a2+2b2-3c2,B=-b2-2c2+3a2,C=c2+2a2-3b2,求(A-B)+C.70、求(3x2y-2xy2)-(xy2-2x 2y),其中x=-1,y=2.71、当P=a2+2ab+b2,Q=a2-2ab-b2时,求P-[Q-2P-(P-Q)].72、求2x2-{-3x+5+[4x2-(3x2-x-1)]}的值,其中x=-3.73、当x=-2,y=-1,z=3时,求5xyz-{2x2y-[3xyz-(4xy2-x2y)]}的值.74、已知A=x3-5x2,B=x2-6x+3,求A-3(-2B).综合练习75、去括号:{-[-(a+b)]}-{-[-(a-b)]}.76、去括号:-[-(-x)-y]-[+(-y)-(+x) ].77、已知A=x3+6x-9,B=-x3-2x2+4x-6,计算2A-3B,并把结果放在前面带“-”号的括号内.78、计算下式,并把结果放在前面带“-”号的括号内:(-7y2)+(-4y)-(-y2)-(+ 5y)+(-8y2)+(+3y).79、不改变下式的值,将其中各括号前的符号都变成相反的符号:(x3+3x2)-(3x2y-7xy) +(2y3-3y2).80、求2x-2[3x-(5x2-2x+1)] -4x2的值,其中x=-1.81、合并同类项:7x-1.3z-4.7-3.2x-y+ 2.1z+5-0.1y.82、合并同类项:5m2n+5mn2-mn+3 m2n-6mn2-8mn.83、去括号,合并同类项:(1)(m+1)-(-n+m);(2)4m-[5m-(2m-1)].84、化简:2x2-{-3x-[4x2-(3x2-x)+ (x-x2)]}.85、化简:-(7x-y-2z)-{[4x-(x-y-z)-3x+z]-x}.86、计算:(+3a)+(-5a)+(-7a)+( -31a)-(+4a)-(-8a) 87、化简:a3-(a2-a)+(a2-a+1)-( 1-a2+a3).88、将x2-8x+2x3-13x2-2x-2x3+3先合并同类项,再求值,其中x=-4.89、在括号内填上适当的项:[( )-9y+( )]+2y2+3y-4=11y2-( )+13.90、在括号内填上适当的项:(-x+y+z)(x+y-z)=[y-( )][y+( )].91、在括号内填上适当的项:(3x2+xy-7y2)-( )=y2-2xy-x2.92、在括号内填上适当的项:(1)x2-xy+y-1=x2-( );(2)[( )+6x-7]-[4x2+( )-( )]=x2-2x+1.93、计算4x2-3[x+4(1-x)-x2]-2(4x2-1)的值.94、用竖式计算(-x+5+2x4-6x3)-(3x4 +2x2-3x3-7).95、已知A=11x3+8x2-6x+2,B=7x3-x2+x+3,求2(3A-2B).96、已知A=x3-5x2,B=x3-11x+6,C=4x-3,求(1)A-B-C;(2)(A-B-C)-(A-B+C).97、已知A=3x2-4x3,B=x3-5x2+2,计算(1)A+B;(2)B-A.98、已知x<-4,化简|-x|+|x+4|-|x-4|.99、.求两代数式-1.56a+3.2a3-0.47,2.27a3-0.02a2+4.03 a+0.53的差与6-0.15a+3.24a2+5.0 7a3的和.100、已知(x-3)2+|y+1|+z2=0,求x2-2xy-5x2+12xz+3x y-z2-8xz-2x2的值.。

七年级数学整式加减合并同类项专项练习(附答案)

七年级数学整式加减合并同类项专项练习(附答案)

七年级数学整式加减合并同类项专项练习一、计算题1.合并下列各式的同类项.(1)333x x +; (2)22xy xy -; (3)22610575xy x yx x x --++;(4)389x x x --; (5)225244a ab a ab +--; (6)22224395x y xy x y xy -+--.2.合并下列多项式中的单项式:(1)222223355x x y y x y y --++-+;(2)252522528432a b a b a b a b ab --+-;(3)23322332111326m n m n m n m n --+. 3.合并下列各式中的同类项 (1)22222211345422m mn n m mn n -+++-. (2)222227252a ab b a b a ab -+----.4.去括号,并合并同类项(1)()675a a b -+.(2)()()3456x x +--.5.化简: ()2237432x x x x ⎡⎤----⎣⎦6.化简下列各题(1)()22232x xy xy x -+-. (2)()221212a a a a ⎛⎫-+-+- ⎪⎝⎭. (3)()3521x x x ---⎡⎤⎣⎦.(4)()()()355423a b a b a b ++---.7.计算下列各题.(1)228352(32)xy x xy xy y ----(2)3323410(310)a b b a b b -+-+(3)22225[(52)2(3)]a a a a a a -+---8.已知2321,A a a =-+2532B a a =-+,求23A B -9.已知232A a ab a =--,22B a ab =-+-. (1)求43()A A B --的值;(2)若3A B +的值与a 的取值无关,求b 的值.10.化简求值.(1)233360.5xy xy x y -+23335 4.5xy xy x y -+-,其中1, 4.2x y =-= (2)222{35[4a a a --++2(31)]}5a a ----,其中 3.a =11.先化简,再求值:()222227452(23)a b a b ab a b ab +-+--,其中21(2)02a b -++=. 12.计算下列小题:(1)已知:222x y +=,12xy =-,求2222(23)(2)x y xy x y xy ----+的值; (2)若22(26)(2351)x ax y bx x y +-+--+-的值与字母x 所取的值无关,试求3232112(3)34a b a b ---的值.参考答案1.答案:(1)原式33(31)4x x =+=;(2)原式2(11)0xy =-=;(3)原式()222(65)710535xy yx x x x xy x x =-+-+=-+;(4)原式(389)14x x =--=-;(5)原式()22254(24)2a a ab ab a ab =-+-=-;(6)原式()()2222224935132x y x y xy xy x y xy =--+-=--.解析: 2.答案:(1)解:原式222222(33)()(55)x x x y y y y x =-++-+-=(2)解:原式25252522(842)3a b a b a b a b ab =-+--2522(842)3a b a b ab =-+--252263a b a b ab =--(3)解:原式23233232111()()326m n m n m n m n =-+-+ 2332111(1)()326m n m n =-+-+ 解析:3.答案:(1)原式()222221135442)2(n m m mn mn n n ⎛⎫=++-++- ⎪⎝⎭ ()()22213251244mn n m ⎛⎫=++-++⎪- ⎝⎭222m mn =+(2)原式()()()2275221113a ab b ab =--+--+-=-.解析:4.答案:(1)()6756755a a b a a b a b -+=--=--.(2)()()34563456210x x x x x +--=+-+=-+.解析:5.答案:2533x x --解析:6.答案:(1)2x xy -. 23322133m n m n =--(2)2112a a -+- (3)1-.(4)64a b +.解析:7.答案:解:(1)原式2283564xy x xy xy y =---+22334x xy y =--+.(2)原式3323410310a b b a b b =--+3243.a b a b =-(3)原式22225(5226)a a a a a a =-+--+225(44)a a a =-+22544a a a =--24.a a =-解析:8.答案:2954a a -+-解析:9.答案:(1)解:2232,2A a ab a B a ab =--=-+-∴原式4333A A B A B =-+=+22(32)3(2)a ab a a ab =--+-+-2232336a ab a a ab =---+-226ab a =--(2)若3A B +的值与a 的取值无关,则226(22)6ab a b a --=--与a 的取值无关,220b ∴-=,解得1b =.解析:10.答案:解:(1)原式334xy x y =--,当1,42x y =-=时, 原式3311()44()43422=--⨯-⨯-⨯=. (2)原式2222{35[43(1)]}5a a a a a =--++-++-222[35(1)]5a a a a =--++++-222(351)5a a a a =--++++-22211a a =+-当3a =时,原式4=.解析:11.答案:解:()222227452(23)a b a b ab a b ab +-+-- 2222274546a b a b ab a b ab =-+-+2211a b ab =-+ 因为21(2)02a b -++=,所以12,2a b ==-. 所以原式2211a b ab =-+2211211222⎛⎫⎛⎫=-⨯-+⨯⨯- ⎪ ⎪⎝⎭⎝⎭1115222=+=. 解析:12.答案:(1)解:原式2222222324x y xy x y xy x y xy =---+-=+-把222x y +=,12xy =-代入,得原式224=+=. (2)22(26)(2351)x ax y bx x y +-+--+-22262351x ax y bx x y =+-+-+-+2(22)(3)67b x a x y =-++-+因为多项式的值与字母x 所取的值无关,所以220,30b a -=+=,即3,1a b =-= 所以2232112(3)34a b a b ---2222112334a b a b =--+3232115(3)112124a b =+=⨯-+=-. 解析:。

初一数学合并同类项优质专练合集(有答案)(可编辑修改word版)

初一数学合并同类项优质专练合集(有答案)(可编辑修改word版)

2018-2019 学年度苏科版数学合并同类项1.下列各组的两项中,不是同类项的是()A.2x2y3,﹣3y3x2B.23,32C.a2,b2D.﹣3ab,3ab2.下列各组整式中,是同类项的是()A.3a2b 与5ab2 B.5ay2 与2y2 C.4x2y 与5y2x D.nm2 与m2n3.若﹣2a m b4与5a2b2+n是同类项,则m n的值是()A.2 B.0 C.4 D.14.下列各组代数式中,是同类项的共有()(1)32与23(2)﹣5mn 与(3)﹣2m2n3与3n3m2(4)3x2y3与3x3y2 A.1组B.2 组C.3 组D.4 组5.计算x2y﹣3x2y 的结果是()A.﹣2 B.﹣2x2y C.﹣x2y D.﹣2xy26.下列计算正确的是()A.3a+2b=5ab B.5y﹣3y=2C.3x2y﹣2yx2=x2y D.﹣3x+5x=﹣8x7.下面是小林做的4 道作业题:(1)2ab+3ab=5ab;(2)2ab﹣3ab=﹣ab;(3)2ab﹣3ab=6ab;(4)2ab÷3ab=.做对一题得2 分,则他共得到()A.2分B.4 分C.6 分D.8 分8.若2b2n a m与﹣5ab6的和仍是一个单项式,则m、n 值分别为()A.6, B.1,2 C.1,3 D.2,39.已知mx2y n﹣1+4x2y9=0,(其中x≠0,y≠0)则m+n=()A.﹣6 B.6 C.5 D.1410.合并同类项m﹣3m+5m﹣7m+…+2013m 的结果为()A.0 B.1007mC.m D.以上答案都不对11.若3x n y m 与x4﹣n y n﹣1 是同类项,则m+n= .12.若单项式2a x+1b 与﹣3a3b y+4是同类项,则x y= .13.任写一个与﹣a2b 是同类项的单项式.14.当k= 时,﹣3x2y3k与4x2y6是同类项.15.若单项式与﹣2x b y3的和仍为单项式,则其和为.16.计算:3a2b﹣a2b= .17.若单项式2x m y3与单项式﹣5xy n+1的和为﹣3xy3,则m+n= .18.把(x﹣y)看作一个整体,合并同类项:5(x﹣y)+2(x﹣y)﹣4(x﹣y)= .三.解答题(共4 小题)19.下列各题中的两项哪些是同类项?(1)﹣2m2n 与﹣m2n;(2)x2y3与﹣x3y2;(3)5a2b 与5a2bc;(4)23a2与32a2;(5)3p2q 与﹣qp2;(6)53与﹣33.20.合并同类项:(1)7a+3a2+2a﹣a2+3;(2)3a+2b﹣5a﹣b;(3)﹣4ab+8﹣2b2﹣9ab﹣8.21.已知﹣a2m b n+6与是同类项,求m、n 的值.22.如果﹣4x a y a+1与mx5y b﹣1 的和是3x5y n,求(m﹣n)(2a﹣b)的值.参考答案一.选择题(共10 小题)1.C.2.D.3.C.4.C.5.B.6.C.7.C.8.C.9.B.10.B.二.填空题(共8 小题)11.3.12..13.a2b 14.2.15.﹣x2y3.16.2a2b.17.3.18.3(x﹣y).三.解答题(共4 小题)19.解:(1)是同类项;(2)相同的字母的指数不同;(3)所含的字母不同;(4)是同类项;(5)是同类项;(6)是同类项.答:(1)、(4)、(5)、(6)是同类项;(2)、(3)不是同类项.20.解:(1)原式=2a2+9a+3;(2)原式=﹣2a+b;(3)原式=﹣2b2﹣13ab.21.解:由﹣a2m b n+6与是同类项,得,解得.22.解:∵﹣4x a y a+1与mx5y b﹣1 的和是3x5y n,∴a=5,a+1=b﹣1=n,﹣4+m=3,解得a=5,b=7,n=6,m=7,则(m﹣n)(2a﹣b)=3.§3.4 合并同类项第三份练习答案:参考答案1.B 2.C 3.C 4.A 5.B 6.D 7.-4xy2 -3m 9.24x 72 10.1 2 -3 11.0 12.n2xy 13.(1) 9a + x 1x2 y 8.1 3 6(2) -10a2 +14ab-2 (3)1721-b2 (4) 3x3 + 2x + 3 (5) 7(m + n)2+(m + n)a3 3 12+ ab2(6) 9a n-9a n+1 14.(1) -4a3-2a2 + 16a-3 7(2) x3-y3,-72 15.原式=(m-2)3 4 12x3+(3n—1) xy2+y,因为结果中不含有三次项,所以m=2,3n=1,因而2m+3n=2×2+1=5.16.由已知得m 1 =6,n2=4,即m-1=6 或m-1=-6,n=±2,∴m=7 或m=-5,n=±2.17.m=3,原式=-4.⎨⎨⎨⎨【基础巩固】1.计算:2x -3x =.7 上 3.4 合并同类项2. 当 m =时,-x 3b 2m与 1 x 3b 是同类项. 43. 写出-2x 3y 2的一个同类项 .4.若单项式 3x 2y n 与-2x m y 3是同类项,则 m +n = .1 a +ba -14 35. 单项式- x +y 3与 5x y 是同类项,则 a -b 的值为.6.下列各组中两个单项式为同类项的是 ( )A . 2 x 2-y 与-xy 2B .0.5a 2b 与 0.5a 2c3C .3b 与 3abcD .-0.1m 2n 与 1 nm 227.下列合并同类项正确的是 ( ) A .2x +4x=8x 2B .3x +2y =5xyC .7x 2-3x 2=4D .9a 2b -9ba 2=01 a +2 33 2b -18. 如 果 x 3y 与-3x y 是同类项,那么 a 、b 的值分别是( )⎧a = 1 A . ⎩b = 2⎧a = 0 B . ⎩b = 2⎧a = 2 C . ⎩b = 1⎧a = 1 D . ⎩b = 19. 计算 a 2+3a 2的结果是()A .3a 2B .4a 2C .3a 4D .4a 410.合并下列各式中的同类项:(1)-4x 2y -8xy 2+2x 2-y -3xy 2;(2) 3x 2 -1 - 2x - 5 + 3x - x 2 ;(3)-0.8a 2b -6ab -1.2a 2b +5ab +a 2b ;(4)5yx -3x 2y -7xy 2+6xy -12xy +7xy 2+8x 2y .11. 求下列多项式的值:(1) 2 a 2 - 8a - 1 + 6a - 2 a 2 + 1 ,其中 a = 1 .3 2 34 2(2) 3x2 y2 + 2xy - 7x2 y2 -3xy + 2 + 4x2 y2 ,其中 x=2,y=1.212.在 2x2y、-2xy2、3x2y、-xy 四个代数式中,找出两个同类项,并合并这两个同类项.【拓展提优】13.已知代数式2a3b n+1与-3a m-2b2是同类项,则2m+3n=.14.若-4xay+x2yb=-3x2y,则 a+b=.15.下面运算正确的是( )A.3a+2b=5ab B.3a2b-3ba2=0C.3x2+2x3=5x5D.3y2-2y2=116.已知一个多项式与3x2+9x 的和等于3x2+4x-1,则这个多项式是( )A.-5x-1 B.5x+1C.-13x-1 D.13x+117.合并同类项: (1)2(x-y)+3(x+y)2-5(x-y)-8(x+y)2-(x-y);(2)3a m-4a n+1-5a m+4a m+1-3;(3)2(a-2b)2-7(a-2b)3+3(2b-a)2+(2b-a)3;(4) 0.5a n - 0.4a n-1 - 0.1 +1a n-1 +1.2 518.已知 8x2y m与- x n+4 y39是同类项,求多项式 m3-3m2n+3mn2-n3的值.19.先化简,再求值:(1)3x2y2+3xy-7x2y2-5xy+2+4x2y2,其中 x=-2,y=-1.2 4(2)3ab2+0.5a3b-3ab2-5ab3-9a3b+5b3a,其中 a=1,b=11.2 2 220.用a 表示一个两位数十位上的数字,b 表示个位上的数字,再把这个两位数的十位上的数字与个位上的数字交换位置,计算所得的数与原数的和,这个和能被 11 整除吗?21.设 m 和n 均不为零,3x2y3和-5x2+2m+n y33m3 -m2 n + 3mn2 + 9n3是同类项,求的值.5m3 + 3m2 n - 6mn2 + 9n3【基础巩固】1.-x 2.12参考答案3.答案不唯一4.5 5.4 6.D 7.D 8.A 9.B10.(1)-2x2y-11xy2(2)2x2+x-6 (3)-a2b-ab (4)5x2y-xy 11.(1)-54 (2)3 12.略【拓展提优】13.13 14.3 15.B 16.A 17.(1)-5(x+y)2-4(x-y) (2)-2a m-3(3)5(a-2b)2-8(a-2b)3(4)a n+0.1 18.125 19.(1)214 (2)-3420.原数为 10a+b.调换位置后的数为 10b+a,两数和为 11a+11b,所以能被 11 整除.c dc 21. 5597§3.4 合并同类项1. 当 n 等于 3 时,下列各组是同类项的是( )A. x n 与 x 3 y n -1B . 2x n y n -1 与 3x 6-n y 23C .5x 2 y n -2 与 5y 2x n -2D .-2x 3 y 与 2x n -6 y32. 下列计算正确的是 ( ) A .2a + b =2ab B .3x 2-x 2=2 C .7mn -7nm =0 D .a + a =a 23. 如果单项式-x a +1y 3 与 1y b x 2 是同类项,那么 a ,b 的值分别为2( )A .a =2,b =3B .a =1,b =2C .a =1,b =3D .a =2,b =24. 把 多 项 式 2x 2- 5x + 3- x 2- 5 + x 合 并 同 类 项 后 , 新 得 到 的 多 项 式 是 ( )A. 二次三项式 B .二次二项式 C .单项式 D .一次多项式5.若-3x 2m y 3 与 2x 4 y n 是同类项,则 m - n 的值是()A .0B .1C .7D .-1 6.若 n 为正整数,那么(-1) n a + (-1) n +1a 化简的结果是( )A .2a 与-2aB .2aC .-2aD .0 7.合并合类项:(1) 3xy 2-7xy 2=;(2) -m -m -m =;(3) x 2 y - 1 x 2 y - 1x 2y2 3= .8. 若两个单项式 2a 3 b 2m 与- 3a n b n - l 的和仍是一个单项式, 则 m = , n = .9. 三角形三边长分别为 6x ,8x ,10x ,则这个三角形的周长为 ;当 x =3 cm 时,周长为 cm ·10. 已知 3x a +1 y b - 2 与 mx 2 合并同类项的结果是 0, a = , b = , m = .11. 定义 a b 为二阶行列式,规定它的运算法则为 a b d =ad -bc ,那么当 x =1 时,二阶行列 式 x +1 1 的值为 . 0 x -1 12.通过阅读下列各式,你会发现一些规律:xy =12 xy ,xy + 3xy =22 xy ,xy + 3xy + 5xy =32xy ,xy+ 3xy + 5xy + 7xy =42 xy ,…,则运用你发现的规律,解答 xy + 3xy + 5xy + 7xy +…+(2n - 1)xy = 。

七年级数学整式加减合并同类项专项练习(附答案)

七年级数学整式加减合并同类项专项练习(附答案)

七年级数学整式加减合并同类项专项练习(附答案)七年级数学整式加减合并同类项专项练1.合并同类项1) 4x^32) 03) x(6y-5)+x(7-5y)-10x4) -14x5) a^2-2ab6) -15xy2.合并单项式1) -2y2) 12a^2b^5-3a^2b-ab^23) -m^2n^3+m^3n^23.合并同类项1) 2m^2+2mn^22) -6a^2-ab-b^24.去括号并合并同类项1) -7a-5b2) -2x+105.化简3x^2+11x-36.化简1) -xy2) a-1/27.计算1) -x^2-11xy+4y^22) 4a^3b-13a^2b^2-10b^33) 6a8.计算3a+29.化简求值1) -10xy^32) -610.化简求值5a^2+8ab-6ab^211.先化简再求值2a^2b+11ab^21.答案:(1) 原式 = 4x2) 原式 = 03) 原式 = xy - 3x^2 + 5x4) 原式 = -14x5) 原式 = a^2 - 2ab6) 原式 = -13x^2y - 2xy^2解析:对每个题目进行代数计算,得出结果。

2.答案:(1) 解:原式 = x^22) 解:原式 = 6a^2b^5 - 3a^2b - ab^26a^2b^5 - 3a^2b - ab^23) 解:原式 = -m^2n^3 - m^3n^2m^2n^3 - m^3n^2解析:对每个题目进行代数计算,得出结果。

3.答案:(1) 原式 = m^2 + 2mn^22) 原式 = -3ab解析:对每个题目进行代数计算,得出结果。

4.答案:(1) 6a - (7a + 5b) = -a - 5b2) (3x + 4) - (5x - 6) = -2x + 10解析:对每个题目进行代数计算,得出结果。

5.答案:5x^3 - 3x解析:对原式进行合并同类项,得出结果。

6.答案:(1) x^2 - xy2) -a^2 + a - 1/23) -14) 6a + 4b解析:对每个题目进行代数计算,得出结果。

七年级数学合并同类项同步练习(附答案)

七年级数学合并同类项同步练习(附答案)

合并同类项一、选择题1 .计算223a a +的结果是( ) A.23a B.24a C.43a D.44a2 .下面运算正确的是( ).A.ab b a 523=+B.03322=-ba b aC.532523x x x =+ D.12322=-y y 3 .下列计算中,正确的是( )A 、2a +3b =5ab ;B 、a 3-a 2=a ;C 、a 2+2a 2=3a 2;D 、(a -1)0=1.4 .已知一个多项式与239x x +的和等于2341x x +-,则这个多项式是( )A.51x --B.51x +C.131x --D.131x + 5 .下列合并同类项正确的是A.2842x x x =+B.xy y x 523=+C.43722=-x xD.09922=-ba b a 6 .下列计算正确的是( )(A)3a+2b=5ab (B)5y 2-2y 2=3 (C)-p 2-p 2=-2p 2(D)7m-m=77 .加上-2a-7等于3a 2+a 的多项式是 ( )A 、3a 2+3a-7B 、3a 2+3a+7C 、3a 2-a-7D 、-4a 2-3a-7 8 .当1=a 时,a a a a a a 10099432-++-+- 的值为( )A. 5050B. 100C. 50D. -50 二、填空题9 .化简:52a a -=_________. 10.计算:=-x x 53_________。11.一个多项式与2x 2-3xy 的差是x 2+xy,则这个多项式是_______________. 三、解答题12.求多项式:10X 3-6X 2+5X-4与多项式-9X 3+2X 2+4X-2的差。13.化简:2(2a 2+9b)+3(-5a 2-4b)14.化简:2222343423x y xy y xy x -+--+.15.先化简,后求值.(1)化简:()()22222212a b ab ab a b +--+-(2)当()221320b a -++=时,求上式的值.16.先化简,再求值:x 2 + (-x 2 +3xy +2y 2)-(x 2-xy +2y 2),其中x=1,y=3.17.计算:(1)()()32223232y xy y x xy y ---+-;(2)5(m-n)+2(m-n)-4(m-n)。18.先化简,再求值:)52338()5333(3122222y xy x y xy x x +++-+-,其中21-=x ,2=y .19.化简求值: )3()3(52222b a ab ab b a +--,其中31,21==b a .20.先化简,后求值:]2)(5[)3(2222mn m mn m m mn +-----,其中2,1-==n m21.化简求值:]4)32(23[522a a a a ----,其中21-=a22.给出三个多项式:212x x + ,2113x +,2132x y +; 请你选择其中两个进行加法或减法运算,并化简后求值:其中1,2x y =-=.23.先化简,再求值:()()2258124xy x xxy ---+,其中1,22x y =-=.24.先化简,再求值。(5a 2-3b 2)+(a 2+b 2)-(5a 2+3b 2)其中a=-1 b=125.化简求值(-3x 2-4y )-(2x 2-5y +6)+(x 2-5y -1) 其中 x =-3 ,y =-126.先化简再求值:(ab-3a 2)-2b 2-5ab-(a 2-2ab),其中a=1,b=-2。27.有这样一道题:“计算322323323(232)(2)(3)x x y xy x xy y x x y y ----++-+-的值,其中12x =,1y =-。”甲同学把“12x =”错抄成了“12x =-”但他计算的结果也是正确的,请你通过计算说明为什么?28.已知:21(2)||02x y ++-= ,求22222()[23(1)]2xy x y xy x y +----的值。3.4合并同类项参考答案一、选择题1 .B2 .B;3 .C ;4 .A5 .D6 .C7 .B8 .D 二、填空题9 .3a ; 10.-2x 11.3x 2-2xy 三、解答题12.粘贴有误,原因可能为题目为公式编辑器内容,而没有其它字符13.解:原式=4a 2+18b-15a 2-12b =-11a 2+6b14.解:原式=)44()32()33(2222y y xy xy x x -+-+- =-xy15.原式=21a b -=1.16.x 2 + (-x 2 +3xy +2y 2)-(x 2-xy +2y 2)= x 2-x 2 +3xy +2y 2-x 2+xy-2y 2 = 4xy-x 2当x=1,y=3时 4xy-x 2=4×1×3-1=11。 17.(1)()()yx xy y xy y x xy y y xy y x xy y 2232223322232232232-=+--+-=---+-(2)5(m-n)-2(m-n)-4(m-n) =(5-2-4)(m-n) =-2(m-n) =-2m+2n 。18.解:原式=2222252338533331y xy x y xy x x ++++--=)5253()33()38331(22222y y xy xy x x x ++-++- =2y 当21-=x ,y =2时,原式=4 .19.解:原式=3220.原式mn =,当2,1-==n m 时,原式2)2(1-=-⨯=;21.原式=692-+a a ;-2;22.(1) (212x x +)+(2132x y +)=23x x y ++ (去括号2分)当1,2x y =-=,原式=2(1)(1)326-+-+⨯=(2)(212x x +)-(2132x y +) =3x y - (去括号2分)当1,2x y =-=,原式=(1)327--⨯=- (212x x +)+(2113x +)=255166x x ++= (212x x +)-(2113x +)=2111166x x +-=- (2132x y +)+(2113x +)=25473166x y ++= (2132x y +)-(2113x +)=21313166x y +-=23.解:原式2258124xy x x xy =-+- ()()2254128xy xy x x =-+- 24xy x =+当1,22x y =-=时,原式=2112422⎛⎫-⨯+⨯- ⎪⎝⎭=024.解:原式=5a 2-3b 2+a 2+b 2-5a 2-3b 2=-5b 2+a 2当a=-1 b=1原式=-5×12+(-1)2=-5+1=-4 25.33. 26. -827.解:∵原式=32232332323223x x y xy x xy y x x y y ---+--+-3223(211)(33)(22)(11)x x y xy y =--+-++-++-- 32y =-∴此题的结果与x 的取值无关。28.解:原式=222222[23]2xy x y xy x y +--+-=222222232xy x y xy x y +-+--=22(22)(21)(32)xy x y -+-+-=21x y + ∵2(2)0x +≥,1||02y -≥又∵21(2)||02x y ++-= ∴2x =-,12y = ∴原式=21(2)12-⨯+=3。

初一合并同类项练习题汇总带答案

初一合并同类项练习题汇总带答案

初一合并同类项练习题汇总带答案在初一数学的学习中,合并同类项是一个重要的知识点。

为了帮助同学们更好地掌握这一内容,下面为大家汇总了一些相关的练习题,并附上详细的答案解析。

一、基础练习题1、 3x + 2x =答案:5x解析:3 个 x 加上 2 个 x 等于 5 个 x。

2、 5y 3y =答案:2y解析:5 个 y 减去 3 个 y 等于 2 个 y。

3、 2a + 3a 5a =答案:0解析:2 个 a 加上 3 个 a 等于 5 个 a,再减去 5 个 a 就等于 0。

4、 4b 2b + 3b =答案:5b解析:4 个 b 减去 2 个 b 等于 2 个 b,再加上 3 个 b 就等于 5 个 b。

5、 6x²+ 3x²=答案:9x²解析:6 个 x²加上 3 个 x²等于 9 个 x²。

6、 8y² 5y²=答案:3y²解析:8 个 y²减去 5 个 y²等于 3 个 y²。

7、 5a²+ 2a 3a²=答案:2a²+ 2a解析:5 个 a²减去 3 个 a²等于 2 个 a²,再加上 2 个 a 不变。

8、 7b² 4b²+ 5b =答案:3b²+ 5b解析:7 个 b²减去 4 个 b²等于 3 个 b²,5 个 b 不变。

二、提高练习题1、 3x²+ 2xy 5x²+ 4xy =答案:-2x²+ 6xy解析:3 个 x²减去 5 个 x²等于-2 个 x²,2 个 xy 加上 4 个 xy 等于 6 个 xy 。

2、 5y² 3y + 2y²+ 5y =答案:7y²+ 2y解析:5 个 y²加上 2 个 y²等于 7 个 y²,-3 个 y 加上 5 个 y 等于 2 个 y 。

七年级数学上册《合并同类项》练习题

七年级数学上册《合并同类项》练习题

《合并同类项》练习一一、选择题1 .下列各组中,不是同类项的是A 、3和0B 、2222R R ππ与C 、xy 与2pxyD 、11113+--+-n n n n x y y x 与 2 .下列各对单项式中,不是同类项的是( )A.0与31 B.23n m x y +-与22m n y x + C.213x y 与225yx D.20.4a b 与20.3ab 3 .如果23321133a b x y x y +--与是同类项,那么a___、b ______4 .下列各组中的两项不属于同类项的是 ( )A.233m n 和23m n -B.5xy 和5xyC.-1和14D.2a 和3x 5 .已知代数式y x 2+的值是3,则代数式142++y x 的值是A.1B.4C. 7D.不能确定6.一个两位数是a ,还有一个三位数是b ,如果把这个两位数放在这个三位数的前面,组成一个五位数,则这个五位数的表示方法是 ( )b a +10 B.b a +100 C.b a +1000 D.b a +二、填空题7.写出322x y -的一个同类项_______________________.8.单项式113a b a x y +--与345y x 是同类项,则a b -的值为_________。 9.已知622x y 和313m n x y -是同类项,则29517m mn --的值是_____________. 10.某公司员工,月工资由m 元增长了10%后达到_______元。11.判断下列单项式是同类项的是 .(1) 3x 与5x (2) 3a 与2a 2 (3) 5xy 2与2xy 2(4) -1与6 (5) 3a 与2ab (6) x 与2三、用不同的标识分别标出下列多项式的同类项(1)3x-4y-2x+y (2)5ab -4a ²b ² +3ab ² -3ab -ab ² +6a ²b ²同类项练习二1填空:若 571b a m 与n b a 3109-是同类项,则m= ; n= . 如果23k x y x y -与是同类项,那么k = .如果3423x y a b a b -与是同类项,那么x = . y = .2、判断题:(对的画“√”,错的画“×”)(1)-41ab 与0.25ba 不是同类项;( )(2)y x 232与232xy -是同类项;( )(3)2mn 与2m 不是同类项;( ) (4)n n y y 3121与是同类项;( ) (5)23与32不是同类项;( ) (6)在多项式中,如果两项所含字母相同,并且次数也相同,那么这两项是同类项.( )3.单项式52a 2与5n a n 是同类项,则n 等于 ( )(A )2 (B )3 (C )2或3 (D )不确定4.已知4x 5y 2与-3x 3m y 2是同类项,则代数式12m -24的值是( )(A )-3 (B )-5 (C )-4 (D )-65、如果123237x y a b a b +-与是同类项,那么x = . y = . 如果232634k x y x y -与是同类项,那么k = .如果k y x 23与2x -是同类项,那么k = .如果-3x 2y 3k 与4x 2y 6是同类项,则k = .如果47b a x 和y b a 597-是同类项,则x y 53-的值是__________________. 6.在9)62(22++-+b ab k a 中,不含ab 项,则k=7.若22+k k y x 与n y x 23的和未5n y x 2,则k= ,n=8. 若-3x m-1y 4与2n 2y x 31+是同类项,求m,n.。

初一数学《合并同类项》练习

初一数学《合并同类项》练习

A一、选择题1 .下列式子中正确的是( )A.3a+2b =5abB.752853x x x =+C.yx xy y x 22254-=- D.5xy-5yx =02 .下列各组中,不是同类项的是A 、3和0B 、2222R R ππ与C 、xy 与2pxyD 、11113+--+-n n n n x y y x 与 3 .下列各对单项式中,不是同类项的是( )A.0与31B.23n mxy +-与22m n y x + C.213x y 与225yx D.20.4a b 与20.3ab 4 .如果23321133a b xy x y+--与是同类项,那么a 、b 的值分别是( ) A.12a b =⎧⎨=⎩B.02a b =⎧⎨=⎩ C.21a b =⎧⎨=⎩D.11a b =⎧⎨=⎩5 .下列各组中的两项不属于同类项的是 ( )A.233m n 和23m n -B.5xy 和5xy C.-1和14D.2a 和3x6.下列合并同类项正确的是 ( )(A)628=-a a ; (B)532725x x x =+ ; (C) b a ab b a 22223=-; (D)y x y x y x 222835-=-- 7 .已知代数式y x 2+的值是3,则代数式142++y x 的值是A.1B.4C. 7D.不能确定8 .x 是一个两位数,y 是一个一位数,如果把y 放在x 的左边,那么所成的三位数表示为( )A.yxB.x y +C.10x y +D.100x y +9 .某班共有x 名学生,其中男生占51%,则女生人数为 ( )A 、49%xB 、51%xC 、49%x D 、51%x10.一个两位数是a ,还有一个三位数是b ,如果把这个两位数放在这个三位数的前面,组成一个五位数,则这个五位数的表示方法是 ( )b a +10 B.b a +100 C.ba +1000 D.b a +二、填空题11.写出322x y -的一个同类项_______________________.12.单项式113a b a x y +--与345y x 是同类项,则a b -的值为_________。13.若2243a b x y x y x y -+=-,则a b +=__________. 14.合并同类项:._______________223322=++-ab b a ab b a15.已知622x y 和313mnxy-是同类项,则29517m mn --的值是_____________.16.某公司员工,月工资由m 元增长了10%后达到_______元。三、解答题17.先化简,再求值:)4(3)125(23m m m -+--,其中3-=m .18.化简:)32()54(722222ab b a ab b a b a --+-+.B1. 判断下列各题中的两个项是不是同类项,是打√,错打⨯ ⑴y x 231与-3y 2x ( )⑵2ab 与b a 2 ( ) ⑶bc a 22与-2c ab 2 ( ) (4)4xy 与25yx ( ) (5)24 与-24 ( ) (6) 2x 与22 ( )2. 2. 判断下列各题中的合并同类项是否正确,对打√,错打⨯ (1)2x+5y=7y ( ) ( 2.)6ab-ab=6 ( ) (3)8x y x xy y 3339=-( ) (4)2122533=-m m ( )(5)5ab+4c=9abc ( ) (6)523523x x x =+ ( ) (7) 22254x x x =+ ( ) (8) ab ab b a 47322-=- ( ) 3. 与y x 221不仅所含字母相同,而且相同字母的指数也相同的是( ) A.zx 221 B. xy 21C.2yx -D. x 2y4.下列各组式子中,两个单项式是同类项的是( )A.2a 与2aB.5b a 2 与b a 2C. xy 与y x 2D. 0.3m 2n 与0.3x 2y5.下列计算正确的是( )A.2a+b=2abB.3222=-x xC. 7mn-7nm=0D.a+a=2a 6.代数式-4a 2b 与32ab 都含字母 ,并且 都是一次, 都是二次,因此-4a 2b 与32ab 是7.所含 相同,并且 也相同的项叫同类项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档