承载能力极限状态计算
四按正常使用极限状态计算1验算特点

S SGk SQ1k
2、荷载效应的标准组合和准永久组合
(1)标准组合
n
S SGk SQ1k ciSQik i2
(2)准永久组合
1.承载力极限状态:结构或构件丧失承载能力或不能继续承载 的状态;其主要表现为: (1)整个结构或其中的一部分作为刚体失去平衡(如倾覆、过
大的滑移); (2)结构构件或连接因材料强度被超过而破坏(包括疲劳破坏),
或因过度的塑性变形而不适于继续承载(如受弯构件中的少 筋梁); (3)结构转变为机动体系(如超静定结构由于某些截面的屈服, 使结构成为几何可变体系); (4)结构或构件丧失稳定(如细长柱达到临界荷载发生压屈)。
用阶段一般要求不出现裂缝;三级为正常使用阶段允许出 现裂缝,但要控制裂缝宽度。具体要求是: 对裂缝控制等级为一级的构件,要求按荷载效应的标准组 合进行计算时,构件受拉边缘混凝土不宜出现拉应力
wmax
具体要求是: 对裂缝控制等级为一级的构件,要求按荷载效应的标准组
合进行计算时,构件受拉边缘混凝土不宜出现拉应力 对裂缝控制等级为二级的构件,要求按荷载效应的准永久
§3.2极限状态设计方法
一、影响结构可靠性的因素 1.作用效应:包括由荷载产生的各种效应。 (1)荷载的分类 a.永久荷载:在设计基准期内大小、方向、作用点及形式 不随时间变化,或者其变化可忽略不计,通常称为恒载; b.可变荷载:在设计基准期内大小、方向、作用点及形式 等任意因素随时间变化,通常称为活载; c.偶然荷载:在设计基准期内一般不出现,一旦出现,其 值很大且持续时间很短。
混凝土梁的极限承载力计算方法

混凝土梁的极限承载力计算方法一、引言混凝土梁是建筑中常见的结构构件,其承载能力是设计中必须考虑的关键因素。
本文将介绍混凝土梁的极限承载力计算方法,包括计算梁的截面性能、受力状态、极限状态设计、变形控制等方面。
二、计算梁的截面性能1. 混凝土强度的计算混凝土强度的计算需要知道混凝土的配合比和强度等级。
配合比可以通过实验室试验或参照相关国家标准计算得出。
强度等级则根据混凝土的28天抗压强度进行分类。
一般采用标准立方体试件进行试验,计算公式为:f_c=0.8f_t。
其中,f_c为混凝土的28天抗压强度,单位为MPa;f_t为混凝土的弯曲拉应力,单位为MPa。
2. 钢筋强度的计算钢筋的强度计算需要知道其钢号和直径。
一般采用国家标准规定的钢号和直径,按照标准进行计算。
钢筋的强度计算公式为:f_y=A_s/A_c*f_c。
其中,f_y为钢筋的抗拉强度,单位为MPa;A_s为钢筋的截面积,单位为mm²;A_c为混凝土梁的截面面积,单位为mm²;f_c为混凝土的28天抗压强度,单位为MPa。
3. 梁截面面积的计算梁截面面积的计算是混凝土梁设计的基础。
梁截面面积可以根据梁的几何尺寸计算得出,包括宽度、深度等。
梁截面面积的计算公式为:A=bh。
其中,A为梁的截面面积,单位为mm²;b为梁的宽度,单位为mm;h为梁的深度,单位为mm。
4. 梁截面惯性矩的计算梁截面惯性矩是计算梁的弯曲性能和扭曲性能的基础。
梁截面惯性矩可以根据梁的几何尺寸计算得出。
梁截面惯性矩的计算公式为:I=bh³/12。
其中,I为梁的截面惯性矩,单位为mm⁴;b为梁的宽度,单位为mm;h为梁的深度,单位为mm。
5. 梁截面受拉区和受压区的计算梁截面的受拉区和受压区是计算梁的弯曲性能的基础。
梁截面的受拉区和受压区可以根据梁的几何尺寸和受力状态计算得出。
当梁为矩形截面时,梁截面的受拉区和受压区的高度分别为:h_l=(h-α)/2,h_r=(h+α)/2。
承载能力极限状态计算

一,为什么进行承载能力极限状态计算??答:承载能力极限状态是己经破坏不能使用的状态。
正常使用极限状态是还可以勉强使用,承载能力极限状态是根据应力达到破坏强度,为了使建筑避免出现这种状态从而进行计算,使建筑数值高于极限承载能力状态的数值。
二,承载能力极限状态计算要计算那些方面??答:1作用效应组合计算;2正截面承载力的计算;3斜截面承载力计算;4扭曲截面承载力计算;5受冲击切承载力计算;6局部受压承载力计算。
三,1作用效应组合计算所用到的公式及其作用:其效应组合表达式为:跨中截面设计弯矩Ma二Y G M恒+YaM汽+丫出人支点截面设计剪力V d= Y C V 恒+Y G V汽+YC2V 人2正截面承载力的计算所用到的公式及其作用:(1)T形截面受弯构件位于受压区的翼缘计算宽度,应按下列三者中最小值取用。
翼缘板的平均厚度h‘ f =(100+130)/2=115mm①对于简支梁为计算跨径的l/3ob‘ f=L/3=19500/3=6500mm②相邻两梁轴线间的距离。
b z f = S=1600mm③b+2bh+12, o此处b为梁的腹板宽,bh为承托长度,V £为不计承托的翼缘厚度。
b‘ f=b+12h, £=180+12XU5=1560mm(2)判断T形截面的类型设a f=120mm> ho=h—a,=1300—120=1180mm;= 13.8x1560x115(1180-—)2=2779.00x\06N-mm > y Q M d = 2250x 10&N -故属于第一类T 形截面。
(3) 求受拉钢筋的面积A,根据方程:孑=fcdb ;x(% -1) 2250x 106 = 13.8x1560x(1180-|) 解得:x = 92.11mm< h ; = 115mm=7087mnr满足多层钢筋骨架的叠高一般不宜超过0.15h~0. 20h 的要求。
梁底混凝土净保护层取32mm,侧混凝土净保护层取32mm,两片 焊接平面骨架间距为:> 40〃〃〃 180-2x32-2x35.8 = 44.4mm< > 1.25(1 = 40/77/7? ■§ 2. 2正截面抗弯承载力复核⑴跨中截面含筋率验算6434(32 + 2x35.8) + 804(32 + 4x35.8 +1 &4), “ “匕= ------------------------------------ - ------------------------- =1 1 3.60/77/7?7238h 0=h-a =1300-113. 60=1186. 40mm4 7238 「cc[> 0.2%p = —— = ------------------- = 3.39% > p =叽 180x1186.40mm[> 0.45f td / =0.19%⑵判断T 形截面的类型£”力;=13.8x1560x115 = 2475.72 x 10’ N > 人4 =7238x280= 2026.64 xl/N勺时,则按宽度为y £的矩形截面计算。
承载能力极限状态荷载设计值

承载能力极限状态荷载设计值承载能力极限状态荷载设计值是结构工程中的重要概念之一,它是用来确定建筑物或其他结构在设计寿命内所能承受的最大荷载的数值。
在本文中,我将深入探讨承载能力极限状态荷载设计值的定义、计算方法以及其在结构设计中的重要性。
让我们来理解承载能力极限状态荷载设计值的定义。
承载能力是指结构系统在正常使用和一定的破坏条件下所能承受的荷载。
极限状态是指结构系统在特定的承载能力条件下,即即将或已经失效的状态。
荷载设计值是为了保证结构在设计使用寿命内使用安全的要求而确定的。
在计算承载能力极限状态荷载设计值时,工程师通常会根据结构的特点和荷载情况使用不同的计算方法。
常见的计算方法包括极限状态设计法和概率设计法。
极限状态设计法是基于结构在极限状态下的失效行为进行设计的方法,其目标是保证结构在设计寿命内不会发生失效。
概率设计法则是基于概率论的原理,通过对结构在使用寿命内可能承受的荷载进行统计分析,确定适当的设计值。
承载能力极限状态荷载设计值在结构设计中具有重要的意义。
它可以确保建筑物或其他结构在正常使用条件下具备足够的安全性。
通过合理确定承载能力设计值,工程师可以确保结构的稳定性和完整性,降低结构失效的风险。
承载能力极限状态荷载设计值还可以为结构的施工提供指导。
合理设计的荷载值可以保证施工过程中所施加的荷载不会超过结构的承载能力,从而避免结构的过度变形或破坏。
承载能力极限状态荷载设计值还为结构的检测和评估提供了基准。
在结构的使用寿命内,工程师可以通过定期检测和评估结构的荷载情况,进一步验证结构的可靠性和安全性。
如果结构的荷载值超过了设计值,就需要采取相应的维修和加固措施,以确保结构的正常使用。
总结起来,承载能力极限状态荷载设计值是结构工程中至关重要的概念。
通过合理确定承载能力设计值,工程师可以确保结构的安全性和稳定性,为结构的设计、施工、检测和评估提供指导。
在未来的结构设计中,我们需要更加注重承载能力极限状态荷载设计值的计算和应用,以确保建筑物和其他结构的长期使用安全。
极限状态设计表达式

qi ——可变荷载 Qik 的准永久值系数,按规范选用
8
2 正常使用极限状态设计表达式
正常使用极限状态验算规定:
对结构构件进行抗裂验算时,应按荷载效应
标准组合和准永久组合进行计算,其计算值
不应超过规范规定的相应限值。
结构构件的裂缝宽度按荷载效应标准组合并
考虑长期作用影响进行计算,构件的最大裂
缝宽度不应超过规范规定的最大裂缝宽度限
按荷载效应的标准组合、频遇组合、准永久组合
或标准组合并考虑长期作用影响,采用下列极限状态
设计表达式:
n
标准组
Sk SGk SQ1k ciSQik
合:
i2
n
频遇组合: Sf SGk S f1 Q1k qiSQik
i2
n
准永久组合:Sq SGk qiSQik i 1
f 1 ——可变荷载 Q1k 的频遇值系数,按规范选用
i 1
偶然组合:荷载效应组合的设计值宜按下列规定确定:
偶然荷载的代表值不乘分项系数;
与偶然荷载同时出现的其他荷载可根据观测资料
和工程经验采用适当的代表值。
3
1 承载能力极限状态设计表达式
n
可变荷载效应控制组合 S GSGk S Q1 Q1k Qi ciSQik i2
G ——永久荷载分项系数,对结构不利时取1.2,有利时取1.0 Q1 Qi ——可变荷载分项系数,一般取1.4,当活荷载 4kN / m2 , 取1.3
第 三 章 结构设计基本原理 主要内容:结构可靠度及结构设计方法
荷载和材料强度的取值 概率极限状态设计法 极限状态设计表达式 容许应力法设计法
重点:结构可靠度及结构设计方法
荷载和材料强度的取值 概率极限状态设计法及允许应力设计法
承载能力极限状态计算

对混凝土结构中的非杆系混凝土结构构件(如复杂布置的 剪力墙、大体积转换构件、大体积基础底板等),有时无法 或不方便按本章的有关规定直接由内力进行承载力计算和设 计,此时可直接采用结构分析得到的主应力进行配筋设计, 包括配筋量和钢筋布置。
对于大尺度混凝土构件,当处于多轴受压状态时,可考 虑混凝土受压强度的有效提高。
,绝
2
对值较小端为 M1,当构件按单曲率弯曲时,M1 / M2取正值,
否则取负值;
应主轴方向lc上—下—支构撑件点的之计间算的长距度离,;可近似取偏心受压构件相
i ——偏心方向的截面回转半径。
条文说明:
各类混凝土结构中的偏心受压构件在确定偏心受压构件的内力设计值
(M、N、V、T等)时,均应遵守本规范地5.3.4条规定,考虑二阶效应的
因此,按照平截面假定建立判别纵向受拉钢筋是否屈服的界
限条件和确定屈服之前钢筋的应力是合理的。平截面假定作
为计算手段,即使钢筋已达屈服,甚至进入强化段时,也还
是可行的,计算值与试验值符合较好。
引用平截面假
定可以将各种类型截面(包括周边配筋截面)在单向或双向受
力情况下的正截面承载力计算贯穿起来,提高了计算方法的
逻辑性和条理性,使计算公式具有明确的物理概念。引用平
截面假定也为利用电算进行混凝土构件正截面全过程分析
(包括非线性分析)提供了必不可少的截面变形条件。
国际上的主要规范,均采用了平截面假定。
2 混凝土的应力-应变曲线
随着混凝土强度的提高,混凝土受压时的应力-应变曲线将
逐渐变化,其上升段将逐渐趋向线性变化,且对应于峰值应力
根据国内中、低强度混凝土和高强度混凝土偏心受压短柱
的试验结果,在条文中给出了有关参数的取值,与试验结果较
混凝土承载能力极限状态计算

混凝土承载能力极限状态计算混凝土结构在使用过程中会受到外界荷载的作用,因此需要保证结构的安全性和承载能力。
为了评估混凝土结构的承载能力,在设计和施工阶段需要进行一系列的计算,其中包括极限状态计算。
极限状态指的是结构在荷载作用下达到或超过规定的极限情况,如弯曲、剪切、压缩和拉伸等。
混凝土承载能力的极限状态计算主要包括弯曲极限承载力、剪切极限承载力、压缩极限承载力和拉伸极限承载力的计算。
弯曲极限承载力计算是评估结构在受到弯曲荷载作用时的能力。
一般采用弯矩-曲率法进行计算,通过计算截面的应力和应变分布,确定截面的极限弯矩。
常用的方法有弯矩系数法和受拉区受压区应变平衡法。
弯曲极限承载力计算要考虑混凝土的强度、受压钢筋的强度和配筋率等因素。
剪切极限承载力计算是评估结构在受到剪切力作用时的能力。
常用的方法有剪力平衡法和剪力延性法。
剪力平衡法是基于混凝土截面内的剪应力等于剪力作用的基本原理,通过计算剪应力分布和抗剪承载力来确定截面的极限剪力。
剪力延性法是基于结构的整体性能,通过计算结构的延性系数和剪切滑移的特性曲线来确定截面的极限剪力。
压缩极限承载力计算是评估结构在受到压力作用时的能力。
一般采用受压区受拉区应变平衡法进行计算,通过计算截面的受压和受拉钢筋应变平衡的条件,确定截面的极限压力。
压缩极限承载力计算要考虑混凝土的强度、受压钢筋的强度和配筋率等因素。
拉伸极限承载力计算是评估结构在受到拉力作用时的能力。
一般采用混凝土截面的抗拉强度和钢筋的抗拉强度进行计算,通过计算截面的抗拉强度和抵抗拉伸力的能力来确定截面的极限拉力。
拉伸极限承载力计算要考虑混凝土的抗拉强度和受拉钢筋的强度等因素。
在实际计算中,需要根据具体结构的几何形状,荷载形式和受力边界条件等因素,选择合适的计算方法和假设条件。
同时,还需要根据设计准则和规范的要求,进行弯曲、剪切、压缩和拉伸等极限状态计算,确保结构的承载能力和安全性。
总之,混凝土承载能力的极限状态计算是评估结构在受到荷载作用时的能力,涉及到弯曲、剪切、压缩和拉伸等方面的计算。
二建考试必备-建筑结构与建筑设备 (14)承载能力极限状态计算

第三节 承载能力极限状态计算承受荷载产生的弯矩和剪力的构件,称为受弯构件(如梁、板)。
它在弯矩作用下可能会发生正截面受弯破坏;同时在弯矩和剪力的共同作用下又可能会发生斜截面受剪破坏。
承受荷载产生的轴力、弯矩和剪力的构件,称为受压构件(即柱)。
当然它也存在着正截面受弯破坏和斜截面受剪破坏的可能。
一、正截面承截能力计算 (一)破坏形态( 1 )受弯构件(梁),因其配筋率ρ的不同,可能出现适筋梁破坏,超筋梁破坏和少筋梁破坏等三种。
它们的破坏特征为;1 )适筋梁破坏(配筋量适中)——受拉区钢筋先达屈服强度,然后受压区边缘纤维混凝土的压应变达到其极限压应变。
εcu 值而破坏。
该破坏属延性破坏。
2 )超筋梁破坏(配筋量过多) ——当受拉压钢筋还未达屈服强度,而受压区边缘纤维混凝土就因已达εcu 值而破坏。
该破坏属脆性破坏。
3 )少筋梁破坏(配筋量过少)——当梁一开裂,受拉钢筋立即达屈服强度,梁被拉为两部分而断裂破坏。
它的极限弯矩与开裂弯矩几乎相等,该破坏也属脆性破坏。
( 2 )偏压构件(柱)的破坏形态有:大偏心受压破坏和小偏心受压破坏等两种。
它们的破坏特征为:1 )大偏心受压破坏 ——远离轴向力 N 一侧的受拉钢筋先达屈服强度,然后另一侧截面外边缘纤维混凝土的压应变达εcu 而破坏。
('2s x a 时,该侧的受压钢筋也达受压屈服强度)。
该破坏属延性破坏。
2 )小偏心受压破坏——靠近轴向力 N 一侧的外边缘纤维混凝土压应变先达到εcu ,同时这一侧的受压钢筋也达受压屈服强度;而远离轴向力 N 一侧的钢筋,无论是受拉还是受压,均未屈服而破坏。
该破坏属脆性破坏。
(二)计算基本假定 ( 1 )截面应变保持平面; ( 2 )不考虑混凝土的抗拉强度;( 3 )混凝土受压的应力与应变关系曲线,如图 4 一 3 所示:式中:σc——混凝土压应变为。
时的混凝土压应力;f c——混凝土轴心抗压强度设计值;ε0——混凝土压应力刚达fc 时的混凝土压应变;εcu——正截面的混凝土极限压应变,当处于非均匀受压时,按式(4 一1 )计算,当处于轴心受压时取为ε0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一,为什么进行承载能力极限状态计算??
答:承载能力极限状态是已经破坏不能使用的状态。
正常使用极限状态是还可以勉强使用,承载能力极限状态是根据应力达到破坏强度,为了使建筑避免出现这种状态从而进行计算,使建筑数值高于极限承载能力状态的数值。
二,承载能力极限状态计算要计算那些方面??
答:1作用效应组合计算;2正截面承载力的计算;3斜截面承载力计算;4扭曲截面承载力计算;5受冲击切承载力计算;6局部受压承载力计算。
三,1作用效应组合计算所用到的公式及其作用: 其效应组合表达式为:
)
(2
111
00∑∑==++=n
j QjK Qj C K Q Q m
i GiK Gi ud S S S S γψγγγγ
跨中截面设计弯矩 M d =γG M 恒+γq M 汽+γq M 人
支点截面设计剪力 V d =γG V 恒+γG1V 汽+γG2V 人
2正截面承载力的计算所用到的公式及其作用:
(1)T形截面受弯构件位于受压区的翼缘计算宽度,应按下列三者中最小值取用。
翼缘板的平均厚度h′f =(100+130)/2=115mm
①对于简支梁为计算跨径的1/3。
b′f=L/3=19500/3=6500mm
②相邻两梁轴线间的距离。
b′f = S=1600mm
③b+2b h+12h′f,此处b为梁的腹板宽,b h为承托长度,h′f为不计承托的翼缘厚度。
b′f=b+12h′f=180+12×115=1560mm
(2)判断T形截面的类型
设a s=120mm,h0=h-a s=1300-120=1180mm;
mm N M mm N h h h b f d f
f f cd -⨯=>-⨯=-
⨯⨯='-
''60601022501000.2779)
2
115
1180(11515608.13)2(γ 故属于第一类T 形截面。
(3)求受拉钢筋的面积A s
mm
h mm x x
x x
h x b f M f f cd d 11517.92:)
2
1180(15608.13102250)
2(:600='<=-⨯=⨯-'=解得根据方程γ
2
708728017
.9215608.13mm f x b f A sd
f cd s =⨯⨯=
'=
满足多层钢筋骨架的叠高一般不宜超过0.15h~0.20h 的要求。
梁底混凝土净保护层取32mm ,侧混凝土净保护层取32mm ,两片焊接平面骨架间距为:
⎩⎨
⎧=>>=⨯-⨯-mm d mm
mm 4025.1404.448.352322180
§2.2正截面抗弯承载力复核 ⑴跨中截面含筋率验算
mm
a s 60.1137238)
4.188.35432(804)8.35232(6434=+⨯++⨯+=
h 0=h -a s =1300-113.60=1186.40mm
⎩⎨⎧=>>=>=⨯==
%19.0/45.0%2.0%39.340.11861807238
min 0sd td s f f bh A ρρ
⑵判断T 形截面的类型
N
A f N h b f s sd f f cd 331064.202628072381072.247511515608.13⨯=⨯=>⨯=⨯⨯=''
f
f cd s sd h b f A f ''≤时,则按宽度为b ′f 的矩形截面计算。
⑶求受压区的高度x
mm h mm b f A f x i f cd s sd 11014.941560
8.13280
7238='<=⨯⨯='=
⑷正截面抗弯承载力M u
mm N M mm N x
h x b f M d f cd u -⨯=>-⨯=-
⨯⨯=-'=6601000.22501002.2309)2
14
.9440.1186(14.9415608.13)
2
( 说明跨中正截面抗弯承载力满足要求。
3斜截面承载力计算的公式及其作用
:矩形、T 形和工字形截面受弯构件,符合下列条件时
)
(1050.00230kN bh f V td d αγ-⨯≤
要求时则不需要进行斜截面抗剪承载力计算,而仅按构造要求配置箍筋。
跨中:
0.50×10-3f td bh 0=0.50×10-3×1.39×180×1186.40=148.42kN>V dm =84k N
支点:
0.50×10-3f td bh 0=0.50×10-3×1.39×180×1250.10=156.39kN<V d0=440kN
故跨中截面部分可按构造配置箍筋,其余区段按计算配置腹筋。
最大剪力取用距支座中心h/2处截面的数值,并按混凝土和箍筋共同承担不少于60%;弯起钢筋承担不超过40%,
并且用水平线将剪力设计值包络图分割为两部分。
距支座中心h/2处截面剪力
kN
V d 27.416)84440(2/195002
/1300440=--
='
混凝土和箍筋承担的剪力
V cs =0.6V'd =0.6×416.27=249.76KN 弯起钢筋承担的剪力
V sb =0.4V'd =0.4×416.27=166.51KN 简支梁剪力包络图取为斜直线。
即: l
x V V V V d d d dx 2)
(2/1,02/1,-+=
剪力分配见图2所示。
§3.4 箍筋设计
:箍筋间距按下列公式计算:
2
02
0,62321)()6.02(102.0d k cu v V bh f p S ξγαα+⨯=
-
需设置弯起钢筋的区段长度(距支座中心)
mm
l 52102/195008444076
.2494402=⨯--=
4全梁承载力校核
各弯起钢筋计算列于下表
各排钢筋弯起后,相应的梁的正截面抗弯承载力计算如下表:
正截面抗弯承载力及斜截面抗弯承载力校核见图5。
矩形、T 形和工字形截面受弯构件,当配有箍筋和弯起钢筋时,其斜截面抗剪承载力验算采用下列公式:
)
(sin 1075.0)()6.02(1045.03,033210kN A f V kN f f p bh V V V V V s sb sd sb sv sv k cu cs sb
cs u d θραααγ∑--⨯=+⨯=+=≤。