时间序列的指标分析法时间序列的指标分析法包括水平指标分析法与
时间序列分析指标

6月3日
6月4日
6月5日
收盘价
16.2元
16.7元
17.5元
18.2元
17.8元
解: 股票平均价格
a a
n
16.216.717.518.217.817.28(元)
10.08.2019
5
12
B.间隔不相等的连续时点数列(只 记录变动情况)
例:某企业7月1日职工人数140人, 7月11日新录用40人。
10.08.2019
14
由此可以得到一般的计算方法
aa1f1a2f2 anfn f1f2f3 fn
af f
加权算术平均法
10.08.2019
15
②由间断时点数列计算
每隔一段时间登 记一次,表现为
期初或期末值
【例】某商业企业2019年度某商品库存资料如下, 求该年度的季平均库存额。
2、说明的内容不同
前者表明总体内部各单位变量值的一般水平,后 者表明总体指标在不同时期内的一般水平。
10.08.2019
8
(二)平均发展水平的计算 1、总量指标时间数列平均发展水平的计算 (1)时期数列平均发展水平的计算
aa1a2a3 an n
a n
简单算术平均法
10.08.2019
2
2
2
2
a一 1 2a2a般 2 2a3a 有 a3 2a 2 a1 4 : aa 42 2a 5 a21 aa 2 n a1 3 a4a 2 na25
10.08.2019
4
n1 51 17
时间
库存量 (百件)
1季度初 2季度初 3季度初 4季度初 次年1季度初
变化情况,则2019年是报告期,2019年是基 期。
时间序列是将社会经济现象的某一指标在不同时期或时点上的指标数值按时间的先后顺序加以排列而形成的序列

时间序列是将社会经济现象的某一指标在不同时期或时点上的指标数值按时间的先后顺序加以排列而形成的序列,又称为动态序列。
可见,时间序列是由两个互相配对的序列构成的:一是现象所属的时间,即反映时间变化的序列;二是现象在不同时间上的指标值,即反映指标数值变化的序列。
指标值若以月的顺序进行排列,称月份时间序列;若以季、年、日为序排列,则分别称季时间序列、年时间序列、日时间序列。
时间序列的作用(1)时间序列可以描述社会经济现象的发展变化过程和结果。
(2)时间序列可以用于研究社会经济现象的发展趋势和发展速度。
(3)对时间序列进行长期趋势测定,可以揭示社会经济现象发展变化的规律性。
(4)不同时间序列的对比,是对社会经济现象间的相互联系进行分析的重要方法按时间序列中统计指标表现形式的不同,时间序列一般可以分为总量指标时间序列、相对指标时间序列和平均指标时间序列三种类型。
其中,总量指标时间序列是最基本的时间序列。
(一)总量指标时间序列把某一总量指标在不同时期或时点上的指标数值按时间的先后顺序排列而形成的序列就是总量指标时间序列,也称为绝对数时间序列。
因总量指标有时期指标和时点指标之分,所以总量指标时间序列又分为时期指标时间序列和时点指标时间序列,简称为时期序列和时点序列时期序列的特点主要有:(1)时期序列中各个观察值可以相加,相加后的观察值表示现象在更长时期内发展过程的总量。
(2) 时期序列中每个指标值的大小与时期的长短有直接关系,即具有时间长度。
“时期”是指时间序列中每个指标值所包括的时间长度。
除个别指标值可能出现负数外,一般来讲,时期愈长,指标值愈大;反之,指标值愈小。
(3)时期序列中的指标值,一般采用连续登记办法获得。
因为时期序列各观察值是反映现象在一段时间内发展过程的总量,它就必须对在这段时间内所发生的数量逐一登记后进行累计。
时点序列的特点主要有:(1)不可加性,即时点序列中各时点上的同一空间的数值不具有可加性。
时间序列分析

第四章时间序列分析【案例导入】1在同行业中,路口煤矿自2000年以来的生产经营状况一直不错,尤其自2005年以来正经历着快速的发展。
然而,2007年5月,煤矿出现了渗水和倒塌事故,尽管没有造成人员伤亡,却导致生产停顿,一直到同年8月份才恢复正常生产。
幸运的是该煤矿办理了相关保险,然而与固定资产索赔不同的是,停业期间的收入损失很难确定,致使保险索赔工作陷入僵持状态。
此时,煤矿收入的历史资料为解决这一问题提供了依据,即根据表4-1的时序资料,煤矿确定了收入增长的长期趋势,并测算出5~7月可能实现的收入,最终为保险索赔奠定了基础,也为保险公司所接受。
单位:万元些历史资料,可以发现收入的变动趋势,即收入随时间增长或下降的趋势。
对这些资料的进一步观察,可以显示出收入的长期趋势,进而做出较好的推断。
从某种角度上看,这种方法就是观察现象发展的历史“足迹”,即过去是这样“走”的,则今后也许仍然会这样“走”。
通过上述方法有利于我们判断现象的未来发展,显然是一种预测思路。
通过本章学习,要明确时间序列的概念、作用、种类和编制原理,掌握各种动态分析指标的涵义、计算方法和应用条件;掌握动态趋势分析中长期趋势的测定与季节变动规律的计算和分析方法,以便在今后的实际工作中,运用这些方法进行统计分析。
本章的重点是时间序列的水平指标和速度指标,以及这些指标的计算和运用;难点是时间序列的各种趋势分析方法和预测模型。
第一节时间序列的概念和种类一、时间序列的概念社会经济现象总是随着时间的推移而变动的。
任何一个企业管理部门或研究机构或国家机关,要掌握社会活动或经济活动的变化过程及其发展趋势,就必须及时掌握和分析有关的时间序列资料。
所谓时间序列,亦称时间数列或动态数列,是社会经济指标的数值按时间顺序排列而形成的一种数列。
它反映社会经济现象发展变化的过程和特点,是研究现象发展变化的趋势和规律以及对未来状态进行科学预测的重要依据。
表4-2是某市社会劳动者、国内生产总值、第三产业比重和社会劳动生产率依时间顺序排列形成的数列,即为时间序列。
统计学文档时间序列分析

第5章时间序列分析5.1时间序列的基本问题5.1.1时间序列的概念时间序列是指反映客观现象的同一指标在不同时间上的数值,按时间先后顺序排列而形成的序列,它由两个基本要素组成:一个是现象的所属时间;另一个是反映该现象的同一指标在不同时间条件下的具体数值。
也称为时间数列,或动态数列。
时间序列的一般形式是:例如,表5.1是一个国内生产总值及其部分构成统计表。
表时间序列可以描述客观现象发展变化的状况、过程和规律,利用时间序列资料可以计算一系列动态分析指标,通过时间序列分析,可以揭示客观现象发展变化的趋势,为预测、决策提供依据。
5.1.2时间序列的分类时间序列可以分为绝对数时间序列、相对数时间序列和平均数时间序列三种。
其中绝对数时间序列是最基本的时间序列,其余两种是在其基础上派生的。
1、绝对数时间序列,简称绝对序列:它是把同一总量指标在不同时间上的数值按时间先后顺序排列而形成的时间序列。
绝对序列反映现象在不同时间上所达到的总量及其增减变化的过程。
绝对序列有时期序列和时点序列两种。
时期序列是由时期绝对数数据所构成的时间序列,其中的每个数值反映现象在一段时间内发展过程的总量。
时点序列是由时点绝对数数据所构成的时间序列,其中的每个数值反映现象在某一时点上所达到的水平。
时期序列中的各个数数值可以相加,各个数数值的和表示了在所对应的时期之内事物及其现象的发展总量。
而时点序列中各个数数值相加通常没有明确的意义;时期序列中各项数值的大小与所包括的时期长短有直接关系,时点序列中各数数值与其时点间隔长短没有直接关系。
2、相对数时间序列:它是把一系列同类的统计相对数按照时间先后顺序排列起来而形成的时间序列,反映事物之间对比关系的变化情况。
3、平均数时间序列:它是把一系列同类的统计平均数按照时间先后顺序排列起来而形成的时间序列,表现事物一般水平的变化过程的发展趋势。
参看上表格。
5.1.3编制时间序列的原则编制时间序列的目的是要通过对序列中各个时期指标值进行比较,以达到研究客观现象的发展变化状况、过程及其规律。
时间序列的分析方法

时间序列的分析方法时间序列分析是指通过对时间序列数据进行统计学和数学模型的建立和分析,以预测和解释时间序列的未来走势和规律。
它是应用统计学和数学方法研究时间序列数据特点、规律、变化趋势,以及建立模型进行分析和预测的一种方法。
时间序列数据是按照时间顺序记录的数据,比如月度销售额、季度GDP增长率、年度股票收盘价等。
时间序列分析的目的是从历史数据中发现数据的模式,以便更好地理解现象、做出预测和制定决策。
时间序列分析主要有以下几种方法:1. 数据可视化方法数据可视化是分析时间序列数据的重要方法,可以通过绘制数据的折线图、柱状图、散点图等来观察数据的趋势、周期性、季节性等特点。
2. 描述性统计方法描述性统计是对时间序列数据的集中趋势、离散程度和分布形态进行描述的方法。
常用的描述性统计指标有均值、标准差、最大值、最小值等。
3. 平稳性检验方法平稳性是时间序列分析的重要假设,即时间序列在长期内的统计特性保持不变。
平稳性检验可以通过观察数据的图形、计算自相关函数、进行单位根检验等方法来判断时间序列是否平稳。
4. 时间序列分解方法时间序列分解是将时间序列数据分解为趋势成分、周期成分和随机成分的方法。
常用的时间序列分解方法有经典分解法和X-11分解法。
5. 自回归移动平均模型(ARMA)方法ARMA模型是时间序列的常用统计学模型,可以描述时间序列数据的自相关和滞后移动平均关系。
ARMA模型包括两个部分,AR(p)模型用来描述自回归关系,MA(q)模型用来描述移动平均关系。
6. 自回归积分滑动平均模型(ARIMA)方法ARIMA模型是ARMA模型的扩展,加入了差分操作,可以处理非平稳时间序列。
ARIMA模型通常用于对非平稳时间序列进行平稳化处理后的建模和预测。
7. 季节性模型方法对于具有明显季节性的时间序列数据,可以采用季节性模型进行分析和预测。
常用的季节性模型有季节性ARIMA模型、季节性指数平滑模型等。
8. 灰色模型方法灰色模型是一种适用于少量样本的时间序列建模和预测方法,它主要包括GM(1,1)模型和GM(2,1)模型。
统计学原理第5章:时间序列分析

a a
n 118729 129034 132616 132410 124000 5
127357.8
②时点序列
若是连续时点序列: 计算方法与时期序列一样; 若是间断时点序列: 则必须先假设两个条件,分别是 假设上期期末水平等于本期期初水平; 假设现象在间隔期内数量变化是均匀的。 间隔期相等的时点序列 采用一般首尾折半法计算。 例如:数列 a i , i 0,1,2, n 有 n 1 个数据,计算 期内的平均水平 a n a n 1 a 0 a1 a1 a 2
(3)联系
环比发展速度的乘积等于相应的定基发展速度,
n n i 0 i 1 i 1
相邻两期的定基发展速度之商等于后期的环比发展速度
i i 1 i 0 0 i 1
(二)增减速度
1、定义:增长量与基期水平之比 2、反映内容:现象的增长程度 3、公式:增长速度
0.55
二、时间序列的速度分析指标
(一)发展速度 (二)增长速度 (三)平均发展水平
(四)平均增长速度
(一)发展速度
1、定义:现象两个不同发展水平的比值 2、反映内容:反映社会经济现象发展变化快慢相对程度 3、公式:v 报告期水平 100%
基期水平
(1)定基发展速度
是时间数列中报告期期发展水平与固定基期发展水平对比所 得到的相对数,说明某种社会经济现象在较长时期内总的发 展方向和速度,故亦称为总速度。 (2)环比发展速度 是时间数列中报告期发展水平与前期发展水平之比,说明某 种社会经济现象的逐期发展方向和速度。
c
a
b
均为时期或时点数列,一个时期数列一个时点数列,注意平均的时间长度 ,比如计算季度的月平均数,时点数据需要四个月的数据,而时期数据则 只需要三个月的数据。
时间序列数据分析的方法与应用

时间序列数据分析的方法与应用时间序列数据是指按照时间顺序记录的一系列数据,根据时间序列数据可以分析出数据的趋势、周期和季节性等特征。
时间序列数据分析是一种重要的统计方法,广泛应用于经济学、金融学、气象学、交通运输等领域。
时间序列数据的特点是有时间的先后顺序,时间上的变化会对数据产生影响。
时间序列数据分析一般包括两个主要步骤:模型识别与模型估计。
模型识别是指根据时间序列数据的特点来选择适当的模型,而模型估计是指利用已有的时间序列数据对模型中的参数进行估计。
下面主要介绍时间序列数据分析的方法和应用。
一、时间序列数据分析的方法1.时间序列图时间序列图是最简单、直观的分析方法,通过画出时间序列数据随时间的变化趋势,可以直观地观察到数据的趋势、季节性和周期性等信息。
2.平稳性检验平稳性是时间序列数据分析的基本假设,平稳时间序列具有恒定的均值和方差,不随时间而变化。
平稳性检验是为了验证时间序列数据是否平稳,常用的平稳性检验方法有ADF检验和KPSS检验等。
3.拟合ARIMA模型在时间序列数据分析中,ARIMA模型是一种常用的预测模型,它是自回归移动平均模型的组合,用来描述时间序列数据的自相关和滞后相关关系。
通过对已有的时间序列数据进行拟合ARIMA模型,可以得到时间序列数据的参数估计,从而进行未来的预测。
4.季节性调整时间序列数据中常常存在季节性变动,为了剔除季节性影响,可以进行季节性调整。
常用的季节性调整方法有季节性指数法和X-11法等。
5.平滑法平滑法是一种常用的时间序列数据分析方法,通过计算移动平均值或指数平滑法对数据进行平滑处理,可以减小数据的波动性,更好地观察到数据的趋势和周期性。
二、时间序列数据分析的应用1.经济学领域时间序列数据在宏观经济学和微观经济学中有广泛的应用。
例如,对GDP、通胀率、失业率等经济指标进行时间序列数据分析,可以发现经济的周期性波动和长期趋势,为经济政策的制定提供参考。
2.金融学领域金融市场中的价格、交易量等数据都是时间序列数据,通过时间序列数据分析可以揭示金融市场的规律。
时间序列的指标分析法

(二)增减速度
增减量 报告期水平 基期水平 增减速度 基期水平 基期水平 发展速度 1 环比增减速度 = 环比发展速度-1
定基增减速度 = 定基发展速度-1
环比增减速度的连乘积不等于相应时期的定基增减速度; 两相邻定基增减速度之商也不等于相应时期的环比增减速度。 增减速度不能直接进行计算。已知增减速度,必须加1变 成发展速度;若求增减速度,必须先求发展速度再减1而得。
R
以期初水平,则又有:
x
a n a0
三个公式中的n都是指环比发展速度的个数,也即时间序 列项数减1。
例 1 、十六大报告指出:全面建设小康社会最主要的目标之 一,是国内生产总值2020年力争比2000年翻两番(2000年为 89404 亿元),那么年平均增长速度和年均增长额至少为多 少才能达此目标?
时间序列的指标分析法
时间序列分析方法
(一)时间序列指标分析法 通过计算一系列时间序列分析指标(水平指标,速度 指标)来揭示现象的发展变化状况和发展变化程度。 (二)时间序列构成因素分析法 通过对时间序列构成因素的分解分析,揭示现象随时 间变化而演变的规律;并在假定事物今后的发展也遵循 这些规律的基础上, 对事物的未来发展做出预测。
发展水平 水平指标平均发展水平 增减量 平均增减量 指标分析 发展速度 增减速度 速度指标 时间数列分析 平均发展速度 平均增减速度 长期趋势分析 季节变动分析 构成要素分析 循环变动分析 不规则变动分析
该公式称为“首末折半法”。
适用于间隔相等的时点序列求平均发展水平。
已知某地区最近5年年末社会劳动者人数(万人)如下表所 示,求年平均社会劳动者人数。 第1年 第2年 第3年 第4年 第5年