居民消费价格指数的时间序列分析
时间序列分析论文

时间序列分析在我国居民消费价格指数预测上的引用摘要:时间序列是按照时间顺序取得的一系列数据,大多数的经济时间序列存在惯性,通过这种惯性分析可以由时间序列的历史数值对未来值进行预测。
文章主要利用时间序列的趋势外推方法对我国目前居民消费价格指数(CPI)进行了建模析和预测,以达到合理预期和分析的目的。
关键词:时间序列CPI 趋势预测1.我国居民消费价格指数的现状居民消费价格指数(Consumer Price Index,CPI)是一个反映居民家庭一般所购买的消费商品和服务价格水平变动情况的指标。
一般说来当CPI>3% 的增幅时我们称为通货膨胀;而当CPI>5% 的增幅时我们把他称为严重的通货膨胀。
如果消费价格指数升幅过大,表明通胀已经成为经济不稳定因素,央行会有紧缩货币政策和财政政策的风险,从而造成经济前景不明朗。
从国家统计局公布的2003年5月到2012年3月的数据可以明显的看出我国已经进入通货膨胀期,从2007年3月开始就超过3%的警戒线,然而从2007年7月开始更是每月都超过5%的严重通货膨胀的警戒线。
尽管国家已经采取了紧缩的货币政策如2007年6次上调存贷款基准利率;10次上调存款准备金率;加大央行票据发行力度和频率;以特别国债开展正回购操作等。
但是2011年3月以来我国还是维持在高的通货膨胀水平,因此进行居民消费价格指数的预测分析更显得尤为必要。
2.趋势模型的选择(时间数列分解模型)为了对我国CPI的变化有更加全面和深入的把握和认识,现观测从1994—2011年居民消费价格指数的全部数据,见表1。
表1 中国1994—2011 年居民消费价格指数由以上数据可以看出,因为居民消费价格指数受到如经济增长、特别是国家宏观货币政策等因素的影响,分析我国居民消费价格指数的变动不能简单地用一个线性模型来解释。
但是可以看出在一定的时期内,宏观经济波动不大的情况下,居民消费价格指数基本还是呈线性的。
因此笔者将这时间数列分段用线性模型分别分析居民消费价格指数在1994—1999 年、1999—2004年以及2004—2011 年这三个不同的经济状况下的变动情况。
ARIMA模型在广西消费价格指数分析与预测中的应用

( ) 型 的预 测 及 结 果 分 析 五 模
我们利用上述 模型 A I R MA( , , ) 广西居 民消费 价格指 1 1 1对 数做预测 , 得到预测值 序列 图( 见图 5 。 )
L- ■
…
r
图 4一 阶差 分 后 的 P CF图 A
观察 残差序列 函数 的 自相关图 ( 3 与偏 自相 关图( 4 , 图 ) 图 ) 发现拖尾 和截尾 的现象不是很明显 , 可知序列有很 强的短期相关 性 ,除 l 2阶外其 自相关 函数与偏 自相关函数基本都在 2倍标准 差 内, 而在 一阶以后偏相关 函数趋 于 0并呈现拖尾性 , 以可以 所 初步认 为一阶差分后序列平稳。 且残差序列延迟除一 、 、 、 、 二 八 九
根据上述数据 : 预测值 与真实值的误差都 在 3 内, 以说 %以 可
模型 的预测效果 比较好 。2 1 年广西居 民消费价格指数将保持 01 持续增长 , 同比增长约 51%一 .3 . 6 5 %。 7 本文的预测结果表明 ,0 年广 西 C I 21 1 P 的涨幅将维持在 5 %
广
西
0
. 口
本文使用 时间序列分析法 ,通过 S S 1. P S3 0软件 建立求和 自 回归移动模 型( R MA)对广西壮族 自治 区 2 0 A I , 0 3年 1月到 2 1 00 年 1 的居 民消费价格指数 ( P ) 2月 C I月度数据进行计量拟合 , 并与
其预测结 果进行 比较 , 比较结果精准度较 高 , 从而可 以在 短期 内 ( 0 1 4月到 1 ) 广西居 民消费价 格指数 ( P ) 行一个 21 年 2月 对 C I进 较为准确 的预测 , 为广西政府拟定 和实施宏 观经 济调控政策提供
2010年-2020年cpi指标

标题:2010年-2020年CPI指标分析和趋势预测一、概述CPI(Consumer Price Index,用户价格指数)是衡量物价水平变动的重要指标,对于了解经济的通胀压力和用户生活水平至关重要。
本文将对2010年至2020年的CPI指标进行分析,并展望未来的趋势。
二、2010年-2020年CPI指标变动概况1. 2010年CPI指标2010年,我国CPI指标为104.2,同比上涨3.3,主要受食品价格上涨的影响。
在全球经济复苏的情况下,我国经济发展态势良好,通货膨胀压力较小。
2. 2011年-2015年CPI指标2011年至2015年期间,我国CPI指标呈现出明显的波动,其中2012年CPI指标达到104.5,同比增长2.6,2014年CPI指标则下降至101.5。
这一时期受国际金融危机影响,国内经济增速放缓,CPI指标波动较为剧烈。
3. 2016年-2020年CPI指标2016年至2020年期间,我国CPI指标逐渐回升。
2019年CPI指标为102.5,同比增长2.9,2020年CPI指标则为103.4,同比增长3.5。
在国内外经济形势复杂多变的情况下,我国经济保持了相对稳定的增长,并且通货膨胀风险受到有效控制。
三、CPI指标变动的影响分析1. 经济增长和CPI指标CPI指标的波动和经济增长密切相关,经济放缓往往会导致CPI指标下降,而经济复苏则有可能带来CPI指标的上升。
通过对CPI指标变动的影响分析,可以更好地了解经济运行的趋势和特点。
2. 行业影响和CPI指标不同行业的发展和政策调整也会对CPI指标产生影响,例如能源、房地产和食品等行业的发展和价格波动,都可能直接影响CPI指标的变动情况。
3. 政策调控和CPI指标政府的宏观调控政策对CPI指标的控制起着至关重要的作用,通过货币政策、财政政策和产业政策等手段,政府可以有效地调控CPI指标的变动。
四、未来CPI指标趋势预测1. 国内经济形势未来几年,我国经济仍将保持中高速增长的态势,国内消费市场需求将继续扩大,这将对CPI指标产生一定的上升压力。
我国居民的消费水平时间序列分析及预测

我国居民的消费水平时间序列分析及预测作者:刘敏来源:《商场现代化》2014年第21期摘要:本文采用时间序列分析及预测的方法对我国居民的消费水平的发展趋势进行分析预测。
通过EViews7.0建立时间序列模型,选择合适模型进行拟合,并作出预测。
利用二次型模型和指数型模型,用最小二乘法进行参数估计。
利用拟合优度大小和拟合图相结合,选出最优模型及预测值。
关键词:消费水平;时间序列;二次型模型;指数型模型一、引言居民消费水平是指居民在物质产品和劳务的消费过程中,对满足人们生存、发展和享受需要方面所达到的程度。
通过消费的物质产品和劳务的数量和质量反映出来。
现在物价上涨,我国的消费水平和消费能力提高,对我国的经济发展有一定的推动作用。
所谓时间序列是按照时间的顺序排列的统计数据。
对时间序列进行观察,研究,找出一定的规律,预测将来的趋势。
在日常生活,生产中,时间序列随处可见,时间序列分析的应用领域很广泛。
本文将运用于经济领域。
二、样本与数据处理本文选用1993年-2012年的居民的消费水平年度数据作为样本。
(数据来源:中国统计年鉴2012)根据EViews7.0得到时序图,知样本总体呈现出不断上升的趋势。
进一步做单位根检验可得:P值为1,P值大于0.05,故不能拒绝原假设,即存在单位根,该序列不平稳。
由于序列不平稳,所以对样本数据进行差分处理。
经过一阶差分后的单位根检验结果中,P值为0.4349,P值大于0.05,故接受原假设,即存在单位根,该序列不平稳。
经过二阶差分后的单位根检验结果中,P值为0.01,P值小于0.05,故拒绝原假设,即不存在单位根,该序列平稳。
三、模型的选择1. 二次型模型的建立由于原序列经过二阶差分得到平稳序列可知,此序列可能为二次型序列,所以对其进行二次型模型处理。
(1)确定二次型模型由EViews7.0图对原序列的二次型拟合图由图1可得到二次型模型,但也需要对其残差自相关等分析,而后对残差进行模型拟合。
影响我国居民消费价格指数变动的两大因素

(,2 ct ) ,
一. l 一. I 平稳 58 37 4 5
由此可 知 , 残差 序列的 A DF检验统计 量为 一 . , 5 8 小于显 4 著水平的 临界值 , 因此可 以认为残 差序列 E是平稳 的 , 表明 这 选取的变 量之间存 在协整关 系 , 且是唯一 的 , 而 说明食 品生产
趋势和滞后期。)
3 协 整 检 验 、
由于物价的稳定 、 就业 充分及经 济增 长等是我 国最 重要的 社 会经济 目标 , 此 , 究影响 C I 因 研 P 的变动因素 对于我 国宏观 经济调控具有深远意 义。 资料显示 ,0 0 第一季度 GDP较上 21 年 年同期增长 1 . 9 1 %,大大高于 20 年 第一季 度修 正后 的 62 09 . %。 而与此 同时 ,0 0年第一季度 C I 21 P 较上年 同期增长 22 全 国 . %, 房地产价格较上年同期上涨 1 . 7 1 %,食品类价格 与去年同期比 平均上涨 1 %。本文认为关系百姓 日常生活的食品价格指数 、 . 9
动 02%, L x 变 动 1 L ci . 8 而 m 2每 %,np 变动 ( 6 ) %。 . 0
4 误 差 修 正 模 型 、
协整检验结果表明食品生产价格 指数 、 屋销售价格指数 房 和居民消费价格指数存在长期稳定 的均衡关系 , 是变量的这 但 种长期均衡与其短期波动之间 的关系 , 以及三变量之间短期波 动的关系 , 还需要进 一步验证 。因此 , 在协 整分析的基础上 , 需
【 要 】本 文 以 我 国 20 -2 0 摘 0 2 09年 的经 济 数 据 为依 据 , 通过
建 立 回 归模 型 , 析 经 济 因 素 中食 品 类 生 产 价 格 、 屋 销 售 价 分 房 格 对我 国居 民 消 费价 格 的 影 响 。并 建 立 无 约 束性 向 量 自回 归模 型 , 用脉 冲 响 应 函数 和 方 差分 解 方 法 分 析 食 品 类 价 格 和 房 屋 利
我国居民消费价格指数时间序列研究

t St ts i P o . — a itc r b
A u m e t d Dik y Fu l r t s t ts i 一 9 3 9 6 0 0 0 g ne ce - l e t s a itc e . 5 7 1 . 00 Te tc ii a a u s 1 1 v l s r t 1v l e : c e e 5 lv l e e 1 lv l 0 e e 一 2 5 5 8 .857 一 1 9 3 8 .468 一 1 6 4 5 . 1 80
摘 要 :0 1 以来, 国的居 民消 费价格 指数 不断创新 高 , 内通 胀压 力很 大 , 21 年 我 国 这主要 是 因 为 2 0 0 8年底 以来执 行 的
投 资拉 动 经 济 的 方 针 , 得 信 贷 投 放 大 量 增 加 , 动 性 过 剩 导 致 。 对 居 民 消 费 价 格 月 环 比 指 数 ( 月 一 i 0 时 间 序 列 进 行 使 流 上 0) 研 究 , 用 AR( ) 型进 行 实证 分 析 。结 果 说 明 了本 期 居 民 消 费 价 格 月环 比指 数 受 前 4期 居 民 消 费 价 格 月 环 比 指 数 的 影 使 P模 响 , 且 受 上 一 期 的 影 响 最 大 。这 反 映 出 通 胀 预 期 对 居 民 消 费 价 格 的 推 动 作 用 , 控 制 居 民 消 费 价 格 , 定 要 改 变居 民 的 并 要 一
2 消 费价格 指 数 时 间序 列 的特 征 分析
本 文 研 究 居 民 消 费 价 格 指 数 的 时 间 序 列 特 征 , 实 证 从 的 角 度 研 究 居 民 消 费 价 格 指 数 , 期 得 到 居 民 消 费 价 格 指 以 数 序 列 的 内在 关 系 。 本 文 采 用 自 2 0 0 1年 1月 至 2 1 0 1年 5 月 的居 民 消 费 价 格 月 环 比指 数 进 行 实 证 研 究 。 本 文 采 用 居 民 消 费 价 格 月 环 比 指 数 。 之 所 以采 用 居 民 消 费 价 格 月 环 比 指 数 , 为 这 更 具 有 实 际 意 义 。 如 果 使 用 因 同 比增 长 数 据 , 么 两 个 数 据 之 间 相 差 1 那 2个 月 , 样 的 比 这 较 不 具 有 实 时 意 义 。 目前 居 民 消 费 价 格 变 化 很 快 , 民 也 居 更 看 重 价 格 的 近 期 涨 幅 , 不 会 关 注 现 在 的 消 费 价 格 与 上 而
1994—2012年江苏省居民消费价格指数的时间序列分析

1994-2012年江苏省居民消费价格指数的时间序列分析班级:统计1班姓名:陈晶晶学号:09704122摘要居民消费价格指数(CPI)是宏观经济分析和决策,价格总水平监测和调控以及国民经济核算的重要指标。
本文利用1994-2012年江苏省居民消费价格指数的月度数据,运用Eviews 软件建立一个乘积季节模型,并用这个模型对江苏省未来的居民消费价格指数进行合理的预测。
关键词居民消费价格指数时间序列分析乘积季节模型预测分析一.引言居民消费价格指数(CPI)是用来测定一定时期内居民支付所消费商品和服务价格变化程度的相对数指标。
它既是反映通货膨胀程度的重要指标,也是国民经济核算中的缩减指标。
一般说来,当CPI>3% 的增幅时,我们称为通货膨胀;而当CPI>5% 的增幅时,我们把它称为严重的通货膨胀。
这一指标影响着政府制定货币、财政、消费、价格、工资、社会保障等政策,同时,也直接影响居民的生活水平及评价。
居民消费价格指数反映的市场价格信号真实.带动价格舆论导向正确,有利于改善价格总水平调控。
首先,它有利于维护正常的经济生活和市场价格信息秩序。
其次,有利于引导消费形成合理的消费价格,促进有效需求。
再次,它有利于综合运用价格和其他经济手段,实现价格总水平调控目标。
【1】所以,对该指标的分析与预测是非常有意义的工作。
本人在阅读与之有关的参考文献时,发现很多学者采用全国的CPI数据进行时间序列分析,就某个省份或某个城市的CPI数据研究很少,而且采用的模型也各不相同,所以本人就用江苏省1994-2012年的居民消费价格指数进行了时间序列分析。
二.数据描述和模型说明1.数据描述1994年1月——2012年3月江苏省居民消费价格指数如下表:(数据来源:/data/mac/jmxf_dq.php?symbol=320000)1月2月3月4月5月6月7月8月9月10月11月12月1994年123.9 125.9 122.6 121.4 119.8 120.6 122.3 123.4 125.5 125.6 124.9 121.61995年120.8 119.6 119.1 118.1 118.4 117.4 115.4 113.1 112.5 112.1 111.6 1121996年112.6 111.9 111.8 111.5 109.9 108.9 109.3 109.2 107.6 106.9 106.6 105.51997年104.2 104.3 103.1 103 102.4 101.8 101 100.8 100.9 100.1 99.7 99.41998年99.5 99.5 100.4 99.5 99.4 99 99 99.6 99.2 99.4 99.5 99.21999年98.9 98.8 98.1 97.6 97.9 98.7 99.3 98.9 98.9 99.3 99.2 99.32000年100.4 101.4 100.4 100.1 99.7 99.6 99.7 99.4 99.5 99.4 100.3 100.72001年101.6 100.4 101 101.9 102 101.4 101.4 101.2 100.3 100 99.4 99.32002年99.2 99.9 99.3 98.6 99 99.5 99.3 99.4 99.1 99 99.1 99.42003年100 100.2 100.6 100.7 100.1 99.6 100.3 101 101.2 102.2 103.2 103.22004年103.2 102.4 103.6 104.3 105.1 105.6 105.3 105.5 105.1 104.1 102.5 102.12005年102.2 104.4 103 102 101.5 101.4 101.8 101.3 101.4 102.1 102 102.32006年102.5 101.2 100.9 101.4 101.5 101.4 101.3 101.5 101.3 101 102 103.12007年102 102 102.5 102.7 103.1 104 105.2 106 105.9 106.2 106.5 105.62008年106.1 107.7 107.7 107.6 107.1 106.9 106 104.6 104.3 103.5 101.9 101.42009年101.4 99.5 99.6 98.9 98.8 98.3 98 98.8 99.3 99.6 100.6 102.12010年101.7 102.4 102.4 103.2 103.7 103.5 104.1 103.9 104.6 105.2 106.1 1052011年105.1 105.7 105.6 105.3 105.7 106.9 106.4 106 105.4 104.8 103.5 103.62012年103.9 102.9 103.5首先,做出序列时序图和自相关图,如下:X13012512011511010510095949698000204060810可以看出该序列是不平稳的序列,做1阶12步差分dx=d(x,1,12)得到如下时序图:DX4321-1-2-3-4949698000204060810可以看出差分后的序列是平稳序列。
居民消费价格指数影响因素分析

居民消费价格指数影响因素分析商品价格:商品价格是居民消费价格指数的最直接反映。
随着商品价格的涨跌,居民消费价格指数也会随之变化。
商品价格受到市场供需关系、生产成本、流通环节等多方面因素的影响。
例如,食品、居住、衣着等生活必需品价格的波动,将直接影响到居民消费价格指数的变化。
劳动力成本:劳动力成本是指生产过程中消耗的人工成本。
随着劳动力成本的增加,企业将不得不提高产品或服务价格,以覆盖增加的成本,从而导致居民消费价格指数的上升。
相反,如果劳动力成本下降,企业则可能降低产品或服务价格,进而导致居民消费价格指数的下降。
技术变化:技术的进步和变革也会对居民消费价格指数产生影响。
技术的进步可以降低生产成本,提高生产效率,从而使商品价格下降,导致居民消费价格指数下降。
相反,如果技术变革不大,生产成本和商品价格可能保持相对稳定,从而居民消费价格指数也会较为稳定。
以水果市场为例,如果水果供应减少,导致市场供需失衡,水果价格可能上涨,进而带动居民消费价格指数升高。
如果劳动力成本上升,例如水果采摘及销售环节人力成本增加,企业可能不得不提高水果价格,进而使居民消费价格指数上升。
而如果通过技术变革提高水果生产效率,降低生产成本,水果价格则可能下降,导致居民消费价格指数下降。
通过对居民消费价格指数影响因素的分析,我们可以看到,商品价格、劳动力成本和技术变化是影响居民消费价格指数的主要因素。
针对这些因素,可以采取以下措施更好地理解和预测居民消费价格指数的变化:商品市场动态:各类商品的市场供需关系、生产成本等,以了解商品价格的走势,从而更好地预测居民消费价格指数的变化。
分析劳动力市场:了解劳动力市场的供需状况、工资水平等,以判断劳动力成本的变化趋势,从而更好地预测居民消费价格指数的变化。
重视技术变革:各行业的技术进步和发展趋势,分析技术变革对生产成本和商品价格的影响,从而更好地预测居民消费价格指数的变化。
多因素综合考虑:除了上述因素外,还需要综合考虑其他因素的影响,如政策调整、自然灾害等,以更全面地了解居民消费价格指数的变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
居民消费价格指数的时间序列分析摘要:时间序列分析是一种根据动态数据揭示系统动态结构和规律的统计方法。
本文以我国2007年1月至2011年4月居民消费价格指数为研究对象,基于居民消费价格指数存在明显的非平稳性和季节性特征,运用自回归移动平均季节模型进行建模分析,并利用SPSS建立了居民消费价格指数时间序列的相关关系模型,并对其进行预测,取得较好的效果。
关键词:居民消费价格指数 SPSS软件时间序列分析预测一、引言(一)问题的基本情况及背景居民消费价格指数的调查范围和内容是居民用于日常生活消费品的全部商品和服务项目价格。
包括食品、烟酒及用品、衣着、家庭设备用品及维修服务、和个人用品、交通和通讯、娱乐教育文化用品及服务、居住等八大类商品及服务项目价格。
既包括居民从商店、工厂、集市所购买的价格,也包括从购买的价格。
该指数以实际调查的综合平均单价和根据住户调查有关资料确定的权数,按加权算术平均公式计算。
全国居民消费价格指数是反映居民家庭购买生活消费品和支出服务项目费用价格变动趋势和程度的相对数。
其目的在于观察居民生活消费品及服务项目价格的变动对城乡居民生活的影响,为各级党政领导掌握居民消费状况,研究和制定居民消费价格政策、工资政策以及为新国民经济核算体系中有消除价格变动因素的不变价格核算提供科学依据。
居民消费价格指数还是反映通货膨胀的重要指标。
当居民消费价格指数上升时,表明通货膨胀率上升,消费者的生活成本提高,货币的购买能力减弱;相反,当居民消费价格指数下降时,表明通货膨胀率下降,亦即消费者的生活成本降低,货币的购买能力增强。
居民消费价格指数的高低直接影响居民的生活水平,因此,准确的分析并及时的对居民消费价格指数做出合理的预测,对国家制定相应的经济政策,实行宏观调控,稳定物价,保证经济的增长平稳发展具有重要意义。
(二)问题的提出时间序列是指同一种现象在不同时间上的相继观察值排列而成的一组数字序列。
时间序列预测方法的基本思想是:预测一个现象的未来变化时,用该现象的过去行为来预测未来。
即通过时间序列的历史数据揭示现象随时间变化的规律,将这种规律延伸到未来,从而对该现象的未来做出预测。
对此希望建立相关居民消费价格指数的数学模型并预测居民消费价格指数的走势。
(三)问题分析居民消费价格指数是一个滞后性的数据,根据居民消费价格指数的这一特点,我们可以运用时间序列分析的方法对居民消费价格指数进行拟合,从而对未来的居民消费价格指数走势做出合理的预测。
二、模型的介绍及说明(一)时间序列模型的介绍时间序列是按时间顺序取得的一系列数据,时间序列分析方法有很多,本文主要讨论ARMA模型即自回归移动平均模型的方法。
ARMA模型是一类常用的随机时序模型,由博克斯(Box)、詹金斯(Jenkins)创立,简称B—J方法。
在B—J方法中,只有平稳的时间序列才能直接建立ARMA模型,这就要求时间序列满足假设条件:(1)对任意时间t,其均值恒为常数;(2)对任意时间t和s,其自相关系数只与时间间隔t-s有关,而与t和s 的起始点无关。
这样时间序列的统计特征不随时间推移而变化,称为平稳时间序列。
时间序列建模基本步骤是:(1)用观测、调查、统计、抽样等方法取得被观测系统时间序列动态数据。
(2)根据动态数据作相关图,进行相关分析,求自相关函数。
相关图能显示出变化的趋势和周期。
(3)辨识合适的随机模型,进行曲线拟合,即用通用随机模型去拟合时间序列的观测数据。
对于短的或简单的时间序列,可用趋势模型和季节模型加上误差来进行拟合。
对于平稳时间序列,可用通用ARIMA模型(自回归滑动平均模型)及其特殊情况的自回归模型、滑动平均模型或组合-ARIMA模型等来进行拟合。
当观测值多于50个时一般都采用ARIMA模型。
对于非平稳时间序列则要先将观测到的时间序列进行差分运算,化为平稳时间序列,再用适当模型去拟合这个差分序列。
通常情况下,自回归移动平均模型的建模过程分为以下几个步骤:(1)对原序列进行平稳性检验,若非平稳序列则通过差分消除趋势;(2)判断序列是否具有季节性,若有季节波动,则通过季节差分消除季节性;(3)进行模型识别;(4)进行模型定阶;(5)对模型的参数进行估计;(6)对模型的适合性进行检验,即对残差序列进行白噪声检验。
P阶自回归序列记作AR(p),形如X t=φ1X t−1+⋯+φp X t−p,φ称为自回归系数,是模型的待估参数。
q阶移动平均序列记作MA(q),形如X t=a t−θ1a t−1−⋯−θq a t−q,θ为移动平均系数,是模型的待估参数。
建立平稳时间序列的ARMA(p,q)模型,其具体形式如下:X t−φ1X t−1−⋯−φp X t−p=a t−θ1a t−1−⋯−θq a t−q其中:φ与θ为模型的待估参数。
求和自回归移动平均模型(autoregressive integrated moving average model )简称ARIMA (p,d,q )模型,其中AR (p )为自回归模型,MA (q )为滑动平均模型,p 、q 为各自对应阶数,I 表示两种模型结合,d 为对含有长期趋势、季节变动、循环变动的非平稳时间序列进行差分处理的次数。
ARIMA 模型的通式如下:()()()()()d 20,,0,0,t t t t t s s t B x B E Var E s t Ex s t εεεεσεεε⎧Φ∇=Θ⎪===≠⎨⎪=∀<⎩式中,()d 1d B ∇=-,()11p p B B B φφΦ=---,为平稳可逆ARMA (p,q )模型的自回归系数多项式;()11q q B B B θθΘ=---,为移动平滑系数多项式,{εt }为零均值白噪声序列[10]。
ARIMA 模型的实质就是差分运算与ARMA 模型的组合,任何非平稳序列只要通过适当阶数差分实现差分后平稳,就可以对差分后序列进行ARMA 模型拟合。
(二)模型的说明时间序列分析主要用于:①系统描述。
根据对系统进行观测得到的时间序列数据,用曲线拟合方法对系统进行客观的描述。
②系统分析。
当观测值取自两个以上变量时,可用一个时间序列中的变化去说明另一个时间序列中的变化,从而深入了解给定时间序列产生的机理。
③预测未来。
一般用ARMA 模型拟合时间序列,预测该时间序列未来值。
④决策和控制。
根据时间序列模型可调整输入变量使系统发展过程保持在目标值上,即预测到过程要偏离目标时便可进行必要的控制。
拟合好的模型对短期预测有比较好的预测效果,但随着时间的延长,它呈现出较差的预测效果。
三、我国居民消费价格指数的时间序列模型拟合(一)数据的选取及说明本文选取的数据主要来源于国家统计局网站,数据已经进行中心化处理,并在原数据基础上减100以简化计算。
(二)时间序列模型1.数据的录入我国2007年1月至2011年4月居民消费价格指数月度数据表1 我国居民消费价格指数月度数据2.时间序列数据图及平稳性检验图1 居民消费价格指数序列图用SPSS软件做出数据序列图(图1)并对序列的平稳性进行游程检验。
在表2中,概率的P值为0.000,如果显著性水平为0.05,由于概率P值小于显著性水平,因此拒绝零假设,即认为序列非随机。
其检验的SPSS输出结果如下:表2 时间序列数据是否平稳的游程检验结果Runs Test居民物价指数Test Value a-.02Cases < Test Value 26Cases >= Test Value 26Total Cases 52Number of Runs 4Z -6.443Asymp. Sig. (2-tailed) .0003.时间序列的预处理为消除序列的趋势同时减少序列的波动,可以对原有时间序列做二阶逐期差分,并绘制差分后的时序图(见图2)。
可以看出经过差分处理后的序列趋势基本上消除。
为了更好地描述月度数据时间序列并进行模拟,需对该序列再进行季节差分,进一步消除季节性(见图3)。
图2 居民消费价格指数二阶差分后时序图图3 居民消费价格指数一阶差分和一阶季节差分后时序图在表3中,概率的P值为1.000,如果显著性水平为0.05,由于概率P值大于显著性水平,因此接受零假设,即认为序列随机。
表3 一阶差分和一阶季节差分后数据自相关与偏自相关函数的数据统计Runs TestDIFF(居民物价指数,1) SDIFF(居民物价指数_1,1,12)Test Value a.20 .00Cases < Test Value 25 19Cases >= Test Value 26 20Total Cases 51 39Number of Runs 26 20Z -.139 .000Asymp. Sig. (2-tailed) .890 1.000a. Median4.模型的建立经过一阶差分和一阶季节差分后数据已经平稳化,下面对平稳后的数据进行平稳时间序列的ARMA(p,q)模型的拟合。
(1)模型的识别画自相关系数(图4)和偏自相关系数(图5)图图4 居民物价指数自相关系数图图5 居民物价指数偏自相关系数由图4和图5可以看出k ρ∧序列与kk ϕ∧序列皆不截尾,但都被负指数函数控制收敛到零,此时时间序列有可能为ARMA 序列。
(2)模型定阶及模型的参数估计通过SPSS 软件中的结果对季节差分改进后的时间序列模型ARIMA(p ,d ,q)(P ,D ,Q)12进行拟合效果的比较,从而最终确定模型的阶数(见表4)。
表4 各模型参数估计及检验结果0.327 0.715 0.776 0.8610.8780.370.163 -0.585 0.08 - - -0.23 - - - - --0.503 -0.494 -0.503 -0.496 -0.515 -0.540.117 0.624 0.56 0.669 0.62 -0.052 -0.997 - -0.092 - -0.959 0.956 0.958 0.958 0.958 0.954BIC -0.458 -0.498 -0.633 -0.634 -0.729 -0.745 RMSE 0.631 0.643 0.625 0.624 0.619 0.638 MAPE 71.88 88.922 76.282 75.702 76.64 80.298根据表4中调整后的样本决定系数 ,以及BIC准则,考察模型的整体拟合效果,力求简洁、有效。
表6 时间序列模型的参数估计ARIMA Model ParametersEstimate SE t Sig.居民物价指数-模型_1 居民物价指数NoTransformationAR Lag1.370 .137 2.699 .010Difference 1AR,SeasonalLag1-.540 .122 -4.439 .000模型ARMA(1,0)的BIC值较小,且系数均通过检验(见图6),所以最终确定改进后的ARIMA(1,1,0)(1,0,0)12模型为时间序列X t的最佳预测模型:(1−0.37B)(1+0.54B12)(1−B)X t=a t(3)模型的诊断和检验对模型进行适应性检验,SPSS输出的模型适应性检验的Ljung-Box结果如下(见表7):表7 时间序列模型的检验P值表明ARIMA(1,1,0)(1,0,0)12模型是合适的。