第22讲 长度与角度的计算
【七年级奥数】第22讲 加法原理和乘法原理(例题练习)

第22讲加法原理和乘法原理——练习题一、第22讲加法原理和乘法原理(练习题部分)1.书架上有三排书.第一排共有12本书.第二排共有20本书,第三排共有15本书.小明从中取一本书来阅读.问他有几种不同的取法?2.某班有男生18人,女生15人.从中选出一人去参加夏令营,问有多少种不同的选法?3.第一个口袋中装2个球,第二个口袋中装4个球,第三个口袋中装5个球,球各不相同.(1)从口袋中任取一个小球,有多少种不同的取法?(2)从三个口袋中各取一个球,问有多少种不同的取法?4.如图,从甲地到乙地有两条路.从乙地到丙地有三条路.从甲地到丙地有四条路.问从甲地到丙地共有多少种不同的走法?5.把多项式(a1+a2+a3)(b1+b2+b3+b4)(c1+c2) 展开,展开式中有多少种不同的项?6.求2000的正约数的个数.7.用1、2、3、4这四个数字可组成多少个不同的三位数?8.将6个人分成甲、乙两组,每组至少1人.有多少种不同的分法?9.从南京到上海的某次快车,中途要停靠六个大站.铁路局要为这次快车准备多少种不同的车票?这些车票中最多有多少种不同的票价?10.4个人站成一排合影,共有多少种不同的排法?11.用2、3、4这三个数字组成没有重复数字的三位数.(1)求这些三位数的数字和的和;(2)求这些三位数的和.12. 2000的正约数中,有多少个偶数?13.用数字0、1、2、3、4可以组成多少个(1)四位数?(2)四位偶数?(3)没有重复数字的四位数?(4)没有重复数字的四位偶数?(5)没有重复数字的正整数?14.三封信,随机地投入四个信箱中.有多少种不同的投信方法?15. 5人站成一排照相,其中一人必须站在中间.有多少种站法?16.有多少个被3整除并且含有数字9的三位数?17.如图,对地图中的A、B、C、D、E这五个部分用四种不同的颜色染色.相邻的部分不能用相同的颜色,不相邻的部分可以用相同的颜色.有多少种不同的染色方法?答案解析部分一、第22讲加法原理和乘法原理(练习题部分)1.【答案】解:小明从中取一本,共有三种方法:一种是从第一排取,共12种不同的取法;一种是从第二排取,共20种不同的取法;一种是从第三排取,共15种不同的取法;∴12+20+15=47(种),答:他有47种不同的取法.【解析】【分析】做一件事情,完成它有n类办法;在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,在第三类办法中有m3种不同的方法,……在第n类办法中有m n种不同的方法,那么完成这件事情共有m1+m2+m3+……+m n.根据加法原理计算即可.2.【答案】解:从中选一人,共有两种选法:一种是从男生选,共有18种选法;一种是从女生选,共有15种选法;∴18+15=33(种),答:有33种不同的选法.【解析】【分析】做一件事情,完成它有n类办法;在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,在第三类办法中有m3种不同的方法,……在第n类办法中有m n种不同的方法,那么完成这件事情共有m1+m2+m3+……+m n.根据加法原理计算即可.3.【答案】(1)解:从口袋中任取一个小球有三种办法:第一种是从第一个口袋中取球,共有2种不同的方法;第二种是从第二个口袋中取球,共有4种不同的方法;第三种是从第三个口袋中取球,共有5种不同的方法;∴2+4+5=11(种).答:有1种不同的取法.(2)解:从三个口袋中各取一个球,可分三步进行:第一步是从第一个口袋中取一球,有2种不同的方法;第二步是从第二个口袋中取一球,有4种不同的取法;第三步是从第三个口袋中取一球,有5种不同的方法;∴2×4×5=40(种).答:有40种不同的取法.【解析】【分析】使用乘法原理与加法原理的不同之处在于:用加法原理时,完成一件事情有n类办法,不论用哪一类办法,都能完成这件事.而用乘法原理时,完成一件事情可分为n步,但不论哪一步,都只是完成这件事情的一部分,只有每一步都完成了;这件事情才得以完成.因此,这n步缺一不可.这就是使用乘法原理还是使用加法原理的主要区别.4.【答案】解:从甲地到丙地有两种不同的走法:第一种是从甲地到丙地,有4条路;第二种是从甲地到乙地有2条路,从乙地到丙地有3条路,故共有2×3=6条路;∴4+2×3=10(种).答:从甲地到丙地共有10种不同的走法.【解析】【分析】从甲地到丙地有两种不同的走法:第一种是从甲地到丙地,有4条路;第二种需要分成两步:先从甲地到乙地有2条路,再从乙地到丙地有3条路,根据加法原理和乘法原理计算即可.5.【答案】解:多项式含a的有3项,含b的有4项,含c的有2项,∴展开式中不同的项有:3×4×2=24(种).【解析】【分析】这个多项式的乘积是有三个部分组成:第一部分含a的有3项,第二部分含b的有4项,第三部分含c的有2项,根据乘法原理计算即可.6.【答案】解:∵2000=24×53,∴2000的正约数个数是:(4+1)×(3+1)=20(个).【解析】【分析】对于一个大于1的正整数分解质因数:n=p1a1·p2a2·……·p k a k,可知n的正约数有(a1+1)(a2+1)……(a k+1)个;所以先将2000分解质因数,再依此计算即可.7.【答案】解:百位数字有4种选法,十位数字有4种选法,个位数字有4种选法,∴4×4×4=64.∴可组成64个不同的三位数.【解析】【分析】三位数分成三步:第一步选百位数字有4种选法,第二步选十位数字有4种选法,第三步选个位数字有4种选法,根据乘法原理计算即可.8.【答案】解:∵每个人都可分在甲组,也可分在乙组,即有2种分法,根据乘法原理可得:2×2×2×2×2×2=64(种),又∵这64种方法种,有1种是6个人全在甲组,有1种是6个人全在乙组,∴64-1-1=62(种).答:有62种不同的分法.【解析】【分析】每个人都可以分在甲组或乙组,即有2种分法,根据乘法原理算出所有分法;然后去掉一些不符题意的;这种做法常常有很好的效果.9.【答案】解:∵中途有6个大站,∴一共有6+2=8(站),∴7+6+5+4+3+2+1=28(种),∴两个车站的往返车票各一种,即两种,∴28×2=56(种),答:铁路局要为这次快车准备56种不同的车票;这些车票中最多有28种不同的票价.【解析】【分析】根据题意可知从南京到上海一共8个站,从第一站到其他各站有7种,从第二站到下边各站有6种,从第三站到下边各站有5种,……,从第七站到下边各站有1种,根据加法原理计算单程车票的种类,即可计算往返车票的种类和票价.10.【答案】解:第一个人有4种不同站法,第二个人有3种不同的站法,第三个人有2种不同的站法,第四个人有1种不同的站法,∴4×3×2=24(种).答:共有24种不同的排法.【解析】【分析】根据题意可知第一个人有4种不同站法,第二个人有3种不同的站法,第三个人有2种不同的站法,第四个人有1种不同的站法,根据乘法原理计算即可得出答案.11.【答案】(1)解:百位数字有3种方法,十位数字与百位数字不同,有2种方法,个位数字与百位、十位数字不同,有1种方法,∴3×2×1=6(种),∴这些三位数的数字和的和为:(2+3+4)×6=54.答:这些三位数的数字和的和为54.(2)解:依题可得三位数为:432,423,324,342,234,243,∴这些三位数的和为:432+423+324+342+234+243=1998.答:这些三位数的和为1998.【解析】【分析】(1)选三位数分成三步:第一步百位数字有3种方法,第二步十位数字与百位数字不同,有2种方法,第三步个位数字与百位、十位数字不同,有1种方法,根据乘法原理计算即可.(2)根据题意写出所有的三位数,再将这些数字加起来即可得出答案.12.【答案】解:∵2000=24×53,∴2000的正约数个数是:(4+1)×(3+1)=20(个),∴奇约数有:3+1=4(个),∴偶约数有:20-4=16(个).【解析】【分析】对于一个大于1的正整数分解质因数:n=p1a1·p2a2·……·p k a k,可知n的正约数有(a1+1)(a2+1)……(a k+1)个;所以先将2000分解质因数,再依此计算即可.13.【答案】(1)解:千位数字有4种不同的选法,百位数字有5种不同的选法,十位数字有5种不同的选法,个位数字有5种不同的选法,∴4×5×5×5=500(个).答:可以组成500个四位数.(2)解:个位数字从0、2、4数字中选有3种不同的选法,则十位数字有5种不同的选法,百位数字有5种不同的选法,千位数字有4种不同的选法,∴3×5×5×4=300(种).答:可以组成300个四位偶数.(3)解:∵数字不能重复,∴千位数字有4种不同的选法,百位数字与千位数字不同,则有4种不同的选法,十位数字与千位、百位数字不同,则有3种不同的选法,个位数字与千位、百位、十位数字不同,则有2种不同的选法,∴4×4×3×2=96(种).答:没有重复数字的四位数有96种.(4)解:∵数字不能重复且为偶数,∴①若个数数字为0时,则十位数字与个位数字不同,则有4种不同的选法;百位数字与个位、十位数字不同,则有3种不同的选法;千位数字与个位、十位、百位数字不同,则有2种不同的选法,∴4×3×2=24(种),②个位数字从2、4数字中选有2种不同的选法,则千位数字与个位数字不同,则有3种不同的选法,百位数字与个位、千位数字不同,则有3种不同的选法;十位数字与个位、百位、千位数字不同,则有2种不同的选法,∴2×3×3×2=36(种),∴24+36=60(种).答:没有重复数字的四位偶数有60种.(5)解:①一位数有4个;②两位数有4×4=16(个);③三位数有4×4×3=48(个);④四位数有4×4×3×2=96(个);⑤五位数有4×4×3×2×1=96(个);∴没有重复数字的正整数有:4+16+48+96+96=260(个).答:没有重复数字的正整数有260.【解析】【分析】(1)千位数字有4种不同的选法,百位数字有5种不同的选法,十位数字有5种不同的选法,个位数字有5种不同的选法,根据乘法原理计算即可.(2)个位数字从0、2、4数字中选有3种不同的选法,则十位数字有5种不同的选法,百位数字有5种不同的选法,千位数字有4种不同的选法,根据乘法原理计算即可.(3)由于数字不能重复,从而千位数字有4种不同的选法,百位数字与千位数字不同,则有4种不同的选法,十位数字与千位、百位数字不同,则有3种不同的选法,个位数字与千位、百位、十位数字不同,则有2种不同的选法,根据乘法原理计算即可.(4)根据题意分情况分析:①若个数数字为0时,分别写出十位、百位、千位数字的不同选法,根据乘法原理计算即可;②个位数字从2、4数字中选有2种不同的选法,分别写出十位、百位、千位数字的不同选法,根据乘法原理计算即可;再将两种选法加起来即可.(5)根据题意分情况讨论:①一位数;②两位数;③三位数;④四位数;⑤五位数;再分别求出个数,求和即可.14.【答案】解:每封信都有4种投法,依题可得:4×4×4=64(种).答:有64种不同的投信方法.【解析】【分析】根据题意可知每封信都有4种投法,根据乘法原理计算即可.15.【答案】解:∵一人必须站在中间,∴第一个人有4种不同的排法,第二个人有3种不同的排法,第四个人有2种不同的排法,第五个人有1种不同的排法,∴4×3×2=24(种).答:有24种站法.【解析】【分析】根据题意可知一个人的位置已经固定,再将剩余的4人排列,根据乘法原理计算即可.16.【答案】解:依题可分类讨论:①9在个位:由于需被3整除且个位是9,根据被3整除的数,其各位数字之和也能被3整除的定理,百位和十位数字之和能被3整除;所以百位和十位组成的两位数也能被3整除.百位和十位从10到99,共有90个数,每3个数一组,必有一个被3整除,共30个.②9在十位:同上分析,有30个.③9在百位:与上面不同的是,个位和十位组成的两位数应该从00到99,共100个数,能被3整除的有34个.以上三种情况有重复的,那就是9不止一个的时候.④□99,有3个.⑤9□9,有4个.⑥99□,有4个.⑦999,有1个.∴共有30+30+34-3-4-4+1 =84(个).【解析】【分析】根据题意分情况讨论:①9在个位;②9在十位;③9在百位,根据被3整除的数的特征分析得出各部分数的个数,再把其中重复的找出来,计算即可.17.【答案】解:根据题意可知:A有4种不同的染色方法,则B不能和A相同,有3种不同的染色方法;C不能和A、B相同,有2种不同的染色方法;D不能和B、C相同,有2种不同的染色方法;E不能和C、D相同,有2种不同的染色方法;∴4×3×2×2×2=96(种).答:有96种不同的染色方法.【解析】【分析】根据题意可知A有4种不同的染色方法,则B不能和A相同,有3种不同的染色方法;C不能和A、B相同,有2种不同的染色方法;D不能和B、C相同,有2种不同的染色方法;E不能和C、D相同,有2种不同的染色方法;由乘法原理计算即可.。
四年级上册数学第三单元角的度量知识点

四年级上册数学第三单元角的度量知识点
四年级上册数学第三单元《角的度量》知识点包括以下几个方面:
1. 角的基本定义:角是由两条射线从一个公共端点出发所形成的图形。
这个公共端点称为角的顶点,而这两条射线称为角的边。
2. 角的度量单位:角的度量单位是“度”,用符号“°”表示。
将一个圆平
均分成360份,每份所对的角的大小是1度。
3. 量角器的使用:用量角器测量角的大小时,需确保量角器的中心与角的顶点重合,0°刻度线与角的一边重合。
然后观察角的另一边所对着的刻度,即为该角的度数。
4. 角的分类:根据度数大小,角可以分为锐角(小于90°)、直角(等于90°)、钝角(大于90°且小于180°)、平角(等于180°)和周角(等于360°)。
5. 画指定度数的角:首先画一条射线,使量角器的中心和射线的端点重合,0°刻度线与射线重合。
然后在量角器上找到所画角的度数的地方点一个点。
最后以画出的射线的端点为端点,通过刚画的点,再画一条射线,即可完成。
以上是四年级上册数学第三单元《角的度量》的主要知识点,掌握这些知识点有助于更好地理解和学习角的度量。
2023版新教材高考历史一轮总复习第七单元第22讲中古时期的世界课件

政治 经济
最高统治者是 ___苏__丹___,他既是宗教领袖,又是国家和军 队的主宰,还是全国土地的最高所有者
15-16世纪,帝国一度经济繁荣,伊斯坦布尔成为东西方经 济文化交流中心。帝国控制了连接亚欧的商路,对过往商品 征收重税,东西方之间的贸易受到一定影响
【名师指津】奥斯曼帝国灭亡拜占庭帝国后,定都伊斯坦布尔,并 以拜占庭帝国的继承人自居。奥斯曼帝国继承了拜占庭帝国的文化及伊 斯兰文化,东西文明在此得以统合。奥斯曼帝国位处东西文明交汇处, 并掌握东西文明的陆上交通线达6个世纪之久。
土地、矿藏和牲畜归国家所有 加
全国划分为四大政区,每个政区设立一个长官,由贵族充任。政区之 文统
下,再按照人口多少设置各级官员 明治
为征税和征兵,政府编制了详细的 _人__口__调__查__表____ 修建了完善的道路系统,用于传递政府的命令和情报以及调动军队 将征服地区的部分或全部居民迁移到新地区,以防止他们反抗
10—15世纪,在东非沿海地区产生了一系列国家 东
代表 桑给巴尔、蒙巴萨和摩加迪沙等 非
广泛使用奴隶,经济上以种植瓜果蔬菜的 __园__艺____业为主, 文
对外贸易发达,城市繁荣。阿拉伯商人从印度、波斯和中国 明 概况
等地把瓷器、纺织品等各种手工业品输入非洲。作为交换, 当地出口黄金、象牙和奴隶等
土联系在一起
制度 内涵 授予土地者为封君,领取土地者为封臣
义务 封臣必须效忠封君,主要义务是 _服__兵__役___
封君
国王或皇帝是名义上的最高统治者,通过封君封臣制度与
封臣 制度
各级封建主联系起来,成为西欧社会的统治阶级 影响
__封__建__主__作为领主,在各自的领地内独立行使权力,政
初三数学培优竞赛精讲精练-第22讲 几何最值

例2第22讲 几何最值知识纵横几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积等)的最大值或最小值。
求几何最值问题的基本方式有:1.特殊位置与极端位置法:先考虑特殊位置或极端位置,确定最值的具体数据,在进行一般情况下的推证。
2.几何定理(公理)法:应用几何中的不变量性质、定理.3.数行结合法:揭示问题中变动元素的代数关系,构造一元二次方程、二次函数等。
例题求解【例1】 如图,在锐角ABC ∆中,24=AB ,45=∠BAC ,BAC ∠的平分线交BC 于点D ,点M 、N 分别是AD 和AB 上的动点,则BN BM +的最小值 。
(陕西省中考题)思路点拨 画折线为直线,综合运用轴对称、垂线段最短等知识。
【例2】 如图,在ABC ∆中,AB=10,AC=8,BC=6,经过点C 且与AB 相切的动圆与CB 、CA 分别相交于点E 、F ,则线段EF 的最小值( )。
A.24 B.4.75 C.5 D4.8(兰州市中考题) 思路点拨 设O 与AB 相切与T ,连OC 、OT,EF 为O 直径,则EF=OE+OF=OC+OT,将问题转化为求OC+OT 的最小值。
【例3】 如图,正方形ABCD 的边长为4cm ,点P 是BC 边上不与点B 、C 重合的任意一点,连接AP ,过点P 作PQ ⊥AP 交DC 于点Q ,设BP 的长为x cm ,CQ 的长为y cm.(1) 求点P 在BC 上运动的过程中y 的最大值;例1(2) 当41=y cm 时,求x 的值. (河南省中考题)思路点拨 利用相似形建立y 与x 的函数关系式,由此导出y 的最大值【例4】 如图,已知平行四边形ABCD ,AB=a ,BC=b (a>b ),P 为AB 边上的一动点,直线DP 交CB 的延长线于Q ,求AP=BQ 的最小值. (永州市竞赛题) 思路点拨设AP=x ,把AP 、BQ 分别用x 的代数式表示,运用不等式ab b a 222≥+或ab b a 2≥+(当且仅当a=b 时取等号)来求最小值.【例5】 如图,在四边形ABCD 中,AD=DC=1,∠DAB=∠DCB=90,BC 、AD 的延长线交于P ,求AB ·S △PAB 的最小值.图形折叠【例6】 在等腰ABC ∆中,AB =AC =5,BC =6.动点M 、N 分别在两腰AB 、AC 上(M 不与A 、B 重合,N 不与A 、C 重合),且MN//BC ,将△AMN 沿MN 所在的直线折叠,使点A 的对应点为P.(1)当MN 为何值时,点P 恰好落在BC 上? (2)设x MN =,MNP ∆与等腰ABC ∆重叠部分的面积为y ,试写出y 与x 的函数关系式.当x 为何值时,y 的值最大,最大值是多少?.(2011年宁夏中考题)例3例4例5第1题学力训练基础夯实1.如图,菱形ABCD 的两条对角线分别长为6和8,点P 是对角线AC 上的一个动点,点M 、N 分别是边AB 、BC 的中点,则PM+PN 的最小值是_______。
【备考2023】高考生物一轮复习:第22讲 生物的进化(共71张PPT)

素养目标
一、达尔文的生物进化论 1.达尔文的生物进化论的主要组成
原始的共同祖先
生物进化
适应的形成
物种形成
2.生物有共同祖先的证据 (1)地层中陈列的证据——化石
遗体、遗物或生活痕迹
种类及其形态、结构、行为
(2)比较解剖学
共同祖先
答案 ABC 解析 分析题图可知,不同生物的细胞色素c氨基酸序列有差异,故可以作为 分子指标来判断不同种生物亲缘关系的远近,A项正确;已知细胞色素c氨 基酸序列表现为高度的保守性,说明生物可能是由共同的祖先进化而来,B 项正确;位于线粒体内的电子传递链(有氧呼吸第三阶段)中,细胞色素c可 能位于线粒体的内膜上,参与有氧呼吸第三阶段,C项正确;细胞色素c从线 粒体释放到细胞质中后,会激活凋亡程序,间接控制细胞凋亡,D项错误。
生物 黑猩猩 恒河猴 兔
差异 0
1
9
牛、羊、猪 10
果蝇 小麦 酵母 27 35 45
下列说法正确的是( ) A.细胞色素c可以作为分子指标来判断不同种生物亲缘关系的远近 B.细胞色素c氨基酸序列的高度保守性说明生物可能是由共同的祖先进化 而来 C.细胞色素c可能位于线粒体的内膜上,参与有氧呼吸第三阶段 D.细胞色素c直接控制细胞凋亡
易错辨析 基于现代生物进化理论的基本观点,判断下列表述是否正确。 (1)一个种群中某基因占所有基因的比值叫作基因频率。( × ) (2)基因突变产生的有利变异决定生物进化的方向。( × ) (3)种群内基因频率改变,生物一定发生进化。( √ ) (4)基因突变和基因重组使生物发生定向改变。( × ) (5)在环境条件保持稳定的前提条件下,种群的基因频率不会发生变化。
2024年新高一数学讲义(人教A版2019必修第一册)弧度制(解析版)

第22讲弧度制模块一思维导图串知识模块二基础知识全梳理(吃透教材)模块三核心考点举一反三模块四小试牛刀过关测1.理解角度制与弧度制的概念,能对弧度和角度进行正确的转换;2.体会引入弧度制的必要性,建立角的集合与实数集的一一对应关系;3.掌握并能应用弧度制下的弧长公式和扇形面积公式.知识点1角度制与弧度制的概念1、角度制:规定周角的1360为1度的角,这种用度作为单位来度量角的单位制叫做角度制.2、弧度制的有关概念为了使用方便,数学上采用另一种度量角的单位制——弧度制.(1)1弧度的角:长度等于半径长的弧所对的圆心角叫做1弧度的角.(2)弧度制:①定义:以弧度作为单位来度量角的单位制.②记法:用符号rad表示,读作弧度.如图,在单位圆O中, AB的长度等于1,∠AOB就是1弧度的角.3、弧度制与角度制的区别与联系区别(1)单位不同,弧度制以“弧度”为度量单位,角度制以“度”为度量单位;(2)定义不同.联系不管以“弧度”还是以“度”为单位的角的大小都是一个与圆的半径大小无关的定值.【注意】用弧度制表示角时,“弧度”二字可以省略不写;用角度制表示角时单位“°”不能丢.知识点2角度制与弧度制之间的互化1、角度制与弧度制的换算2度0°30°45°60°90°120°135°150°180°270°360°弧度6π4π3π2π32π43π65ππ23ππ23、角的集合与实数集R 的关系角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应的关系,如图,每个角都是唯一的实数(等于这个角的弧度数)与它对应;反之,每一个实数也都有唯一的一个角(即弧度数等于这个实数的交)与之对应.知识点3弧长与扇形面积公式1、弧长与扇形面积公式的两种表示类别/度量单位角度制弧度制扇形的弧长180n R l π=l R α=扇形的面积2360n R S π=21122S lR R α==【注】扇形的半径为R ,弧长为l ,)20(παα<<或n °为其圆心角.2、弧长公式与扇形面积公式的注意事项(1)在应用公式时,要注意α的单位是“弧度”;(2)在弧度制下的扇形面积公式12S lR =,与三角形面积公式12S ah =的形式相似,可类比记忆.考点一:角度制与弧度制概念辨析例1.(23-24高一下·陕西·月考)已知相互啮合的两个齿轮,大轮50齿,小轮20齿,当小轮转动一周时大轮转动的弧度数是()A.4π5B.5π4C.π5D.5π【答案】A【解析】小齿轮转动一周时,大齿轮转动202 505=周,故其转动的弧度数是24π2π55⨯=.故选:A.【变式1-1】(23-24高一上·全国·专题练习)(多选)下列各说法,正确的是()A.半圆所对的圆心角是πradB.圆周角的大小等于2πC.1弧度的圆心角所对的弧长等于该圆的半径D.长度等于半径的弦所对的圆心角的大小是1弧度【答案】ABC【解析】由弧度制的定义可知:长度等于半径的弧所对的圆心角的大小是1弧度,则长度等于半径的弦所对的圆心角的大小不是1弧度,D的说法错误,根据弧度的定义及角度与弧度的换算可知,ABC的说法正确.故选:ABC【变式1-2】(22-23高一上·上海松江·期末)下列命题中,正确的是()A.1弧度的角就是长为半径的弦所对的圆心角B.若α是第一象限的角,则π2α-也是第一象限的角C .若两个角的终边重合,则这两个角相等D .用角度制和弧度制度量角,都与圆的半径有关【答案】B【解析】1弧度的角就是长为半径的弧所对的圆心角,A 选项错误;若α是第一象限的角,则α-是第四象限的角,所以π2α-+是第一象限的角,B 选项正确;当30α= ,390β= 时,α与β终边重合,但两个角不相等,C 选项错误;不论是用角度制还是弧度制度量角,由角度值和弧度值的定义可知度量角与所取圆的半径无关,D 选项错误.故选:B【变式1-3】(22-23高一下·江西萍乡·期中)(多选)下列说法中正确的是()A .度与弧度是度量角的两种不同的度量单位B .1度的角是周角的1360,1弧度的角是周角的12πC .根据弧度的定义,180︒一定等于π弧度D .不论是用角度制还是用弧度制度量角,角的大小均与圆的半径长短有关【答案】ABC【解析】根据角度制和弧度制的定义可知,度与弧度是度量角的两种不同的度量单位,所以A 正确;由圆周角的定义知,1度的角是周角的1360,1弧度的角是周角的12π,所以B 正确;根据弧度的定义知,180一定等于π弧度,所以C 正确;无论是用角度制还是用弧度制度量角,角的大小均与圆的半径长短无关,只与弧长与半径的比值有关,故D 不正确.故选:ABC.考点二:角度制化为弧度制例2.(23-24高一下·北京房山·期中)300o 化成弧度是()A .5π3B .π611C .7π6D .7π4【答案】A【解析】因为180π= ,所以3π5π300300180=⨯=.故选:A 【变式2-1】(23-24高一上·安徽亳州·期末)将315- 化为弧度制,正确的是()A .3π4-B .7π4-C .45π-D .5π3-【答案】B【解析】7π3153151804π-=-⨯=-.故选:B 【变式2-2】(23-24高一上·新疆乌鲁木齐·月考)(多选)把495- 表示成2πk θ+,Z k ∈的形式,则θ值可以是()A .5π4B .5π4-C .3π4D .3π4-【答案】AD【解析】根据角度制与弧度制的互化公式,可得11π4954-=-,再由终边相同角的表示,可得11π3π5π2π4π444-=--=-,所以11π4-与3π4-和5π4的终边相同.故选:AD.【变式2-3】(23-24高一上·广东·月考)(多选)下列各角中,与角495︒终边相同的角为()A .3π4B .5π4-C .9π4-D .13π4【答案】AB【解析】对于A ,495360135︒=︒+︒,3π1354︒=,故A 正确;对于B ,与3π4终边相同的角为324k παπ=+,k ∈Z ,当1k =-时,5π4α=-,故B 正确;对于C ,令3π9π2π44k +=-,解得32k =-∉Z ,故C 错误;对于D ,令3π13π2π44k +=,解得54k =∉Z ,故D 错误.故选:AB.考点三:弧度制化为角度制例3.(23-24高一上·湖南株洲·月考)把5π4化成角度是()A .45︒B .225︒C .300︒D .135︒【答案】B【解析】5π5π18022544π︒=⨯=︒.故选:B 【变式3-1】(23-24高一上·广东汕头·月考)5π12化为角度是()A .60︒B .75︒C .115︒D .135︒【答案】B 【解析】5π5180751212=⨯︒=︒.故选:B 【变式3-2】(23-24高一上·广东汕头·月考)3rad 是第()象限角A .一B .二C .三D .四【答案】B【解析】π180rad = ,540903180πrad ⎛⎫∴<=< ⎪⎝⎭为第二象限角.故选:B【变式3-3】(22-23高一上·北京·期末)下列与7π4的终边相同的角的表达式中,正确的是()A .()2π315Z k k +∈B .()36045Z k k ⋅-∈C .()7π360Z 4k k ⋅+∈D .()5π2πZ 4k k +∈【答案】B【解析】因为7πrad 3154=,终边落在第四象限,且与45- 角终边相同,故与7π4的终边相同的角的集合{}{}31536045360S k k αααα==+⋅==-+⋅ 即选项B 正确;选项AC 书写不规范,选项D 表示角终边在第三象限.故选:B.考点四:扇形弧长的相关计算例4.(23-24高一上·云南曲靖·月考)半径为3cm ,圆心角为210°的扇形的弧长为()A .630cmB .7cm6C .7πcm 6D .7πcm 2【答案】D【解析】圆心角210︒化为弧度为7π6,则弧长为7π7π3cm 62⨯=.故选:D 【变式4-1】(23-24高一上·广东深圳·期末)若扇形的面积为1,且弧长为其半径的两倍,则该扇形的周长为()A .1B .2C .4D .6【答案】C【解析】设扇形的半径为r ,圆心角为α,则弧长2l r r α==,所以2α=,扇形的面积22112S r r α===,解得1r =或1r =-(舍去),所以2l r α==,则该扇形的周长为24r l +=.故选:C【变式4-2】(23-24高一下·江西景德镇·期中)古代文人墨客与丹青手都善于在纸扇上题字题画,题字题画的扇面多为扇环形.已知某纸扇的扇面如图所示,其中外弧长与内弧长之和为89cm ,连接外弧与内弧的两端的线段长均为18cm ,且该扇环的圆心角的弧度数为2.5,则该扇环的外弧长为()A .63cmB .65cmC .67cmD .69cm【答案】C【解析】设该扇环的内弧的半径为r cm ,则外弧的半径为()18cm r +,圆心角 2.5α=,所以()1889r r αα++=,即()2.5 2.51889r r ++=,解得8.8r =,所以该扇环的外弧长()()2.518 2.58.81867cm l r =+=+=.故选:C【变式4-3】(23-24高一下·山东烟台·月考)《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把郑铁饼者张开的双臂近似看成一张拉满弦的“弓”,郑铁饼者的手臂长约为π4米,肩宽约为π8米,“弓”所在圆的半径约为1.25米,则郑铁饼者双手之间的距离约为)1.41≈()A.1.01米B.1.76米C.2.04米D.2.94米【答案】B【解析】由题意可知,“弓”所在圆的弧长为 ππ5π2488BC=⨯+=,由弧度数公式得5ππ81.252lBOCr∠===,即BOC为等腰直角三角形,所以π4OBC∠=,则掷铁饼者双手之间的距离()5 1.41 1.76mπ44sin4rBC==≈⨯≈.故选:B.考点五:扇形面积的相关计算例5.(23-24高一下·广东韶关·月考)已知扇形的圆心角为2弧度,其弧长为8m,则该扇形的面积为()A.28m B.212m C.216m D.232m【答案】C【解析】由扇形的圆心角为2弧度,其弧长为8m,得扇形所在圆半径4m=r,所以该扇形的面积148162S=⨯⨯=(2m).故选:C【变式5-1】(23-24高一上·云南昆明·期末)已知某扇形的圆心角是3π8,半径为4,则该扇形的面积为.【答案】3π【解析】由扇形的圆心角是3π8,半径为4,则该扇形的面积为23π43π812S ⨯⨯==.故答案为:3π.【变式5-2】(22-23高一下·河南南阳·期中)圆环被同圆心的扇形截得的一部分叫做扇环.如图所示,扇环ABCD 的内圆弧AB 的长为2π3,外圆弧CD 的长为4π3,圆心角2π3AOB ∠=,则该扇环的面积为()A .πB .π2C .4π3D .2π3【答案】A【解析】由扇形面积公式2122l S lr α==(其中l 为扇形弧长,α为扇形圆心角,r 为扇形半径)可得,扇环面积22214π2π34ππ2334π3S α⎡⎤⎛⎫⎛⎫'=-=⨯=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦.故选:A 【变式5-3】(23-24高一下·河南驻马店·月考)如图,在菱形ABCD 中,45A ∠=︒,1A ,1B ,1C ,1D 分别是边AB ,BC ,CD ,DA 的中点,以点A 为圆心,以1AA ,2AA 为半径作出两段圆弧,与AD 分别交于点1D ,3A ,分别以B ,C ,D 为圆心,用同样方法作出如图阴影部分的扇环,其中121212121A A B B C C D D ====.若扇环1231A A A D 的周长为7π24+,则扇环1231B B B A 的面积为()A .3πB .21π8C .7π8D .3π4【答案】B【解析】设2AA r =,则11AA r =+,因为扇环1231A A A D 的周长为7π24+,所以:()ππ7π122444r r +++=+⇒3r =.所以扇环1231B B B A 的面积为:2213π13π432424⋅⋅-⋅⋅21π8=.故选:B考点六:扇形周长、面积的最值例6.(23-24高一下·重庆璧山·月考)已知某扇形的周长是24,则该扇形的面积的最大值是()A .28B .36C .42D .50【答案】B【解析】设扇形的弧长为l ,半径为r ,则224l r +=,所以扇形的面积22111212123624424l r S lr l r +⎛⎫==⋅≤=⨯= ⎪⎝⎭,当且仅当2l r =,即12,6l r ==时取等号,所以该扇形的面积的最大值是36,故选:B【变式6-1】(23-24高一上·江苏南京·期末)(多选)已知扇形的半径为r ,弧长为l .若其周长的数值为面积的数值的2倍,则下列说法正确的是()A .该扇形面积的最小值为8B .当扇形周长最小时,其圆心角为2C .2r l +的最小值为9D .2214r l+的最小值为12【答案】BCD【解析】由题意,知2r l rl +=,则(),22lr l l =>-,所以扇形面积22111(2)4(2)422222l l l S rl l l -+-+==⋅=⋅--1411[(2)4]4)(44)42222l l =-++≥⨯=⨯+=-,当且仅当422l l -=-,即4l =时,等号成立,选项A 错误;扇形周长为()()22242422222l l l l r l l l l l -+-++=+==---4(2)44482l l =-++≥+=-,当且仅当422l l -=-,即4l =时,等号成立,此时,圆心角为422l r==,选项B 正确;()()()222522222522222l l l l l l r l l l -+-+=-+=+=--++-5459≥=+=当且仅当()2222l l -=-,即3l =时,等号成立,选项C 正确;()22222222144841118421l r l l l l l l -⎛⎫+=+=-+=-+ ⎪⎝⎭,当114l =时,上式取得最小值为12,选项D 正确.故选:BCD.【变式6-2】(23-24高一上·云南曲靖·期末)已知一扇形的圆心角为α(α为正角),周长为C ,面积为S ,所在圆的半径为r .(1)若36α=︒,10cm r =,求扇形的弧长;(2)若4cm C =,求S 的最大值及此时扇形的半径和圆心角.【答案】(1)()2πcm ;(2)S 的最大值为1,此时扇形的半径是1cm ,圆心角2rad .【解析】(1)π13636rad πrad 1805α=⨯=︒=,扇形的弧长()1π102πcm 5l r α==⨯=;(2)设扇形的弧长为l ,半径为r ,则24r l +=,()4202l r r ∴=-<<,则()()22114221122S lr r r r r r ==-=-+=--+,当1r =时,2max 1cm S =,此时4212cm l =-⨯=,2lrα==,S ∴的最大值是21cm ,此时扇形的半径是1cm ,圆心角2rad α=.【变式6-3】(23-24高一下·河南南阳·月考)已知一扇形的圆心角为()0αα>,半径为R ,面积为S ,周长为L .(1)若24cm S =,则扇形圆心角α为多少弧度时,L 最小?并求出L 的最小值;(2)若10cm L =,则扇形圆心角α为多少弧度时,S 最大?并求出S 的最大值.【答案】(1)2rad α=,最小值为8cm ;(2)2rad α=,最大值为225cm 4.【解析】(1)2214cm 2S R α== ,28Rα∴=则288222L R R R R R R Rα=+=+⋅=+.由基本不等式可得828R R +≥=,当且仅当82R R =,即2R =时等号成立,此时2822α==.∴当2rad α=时,L 最小,最小值为8cm .(2)210cm L R R α=+= ,102RRα-∴=.22221110252552224R S R R R R R R α-⎛⎫==⋅⋅=-+=--+ ⎪⎝⎭.当52R =,即2α=时,max 254S =.∴当2rad α=时,S 最大,最大值为225cm 4.一、单选题1.(23-24高一上·贵州黔南·315︒化为弧度是()A .π4-B .7π4C .11π6D .5π3【答案】B 【解析】3157315ππ1804︒==.故选:B 2.(23-24高一上·江苏徐州·月考)把2π3弧度化成角度是()A .30︒B .60︒C .90︒D .120︒【答案】D【解析】因为π180=︒,所以22π18012033=⨯︒=︒.故选:D.3.(22-23高一上·广东深圳·期末)在半径为2的圆中,弧长为π的弧所对的圆心角为()A .60︒B .90︒C .120︒D .180︒【答案】B【解析】弧长为π的弧所对的圆心角为πrad 902︒=,故选:B 4.(23-24高一下·辽宁大连·月考)已知扇形的弧长为2π,半径为3,则扇形的面积为()A .πB .3π2C .3πD .6π【答案】C【解析】由扇形的面积可得,112π33π22S lr ==⨯⨯=.故选:C 5.(23-24高一下·内蒙古赤峰·月考)已知扇形的半径为2,圆心角为2弧度,则此扇形的弧长为()A .4B .6C .8D .10【答案】A【解析】因为半径2r =,圆心角=2α,所以根据弧长公式l r α=得4l =.故选:A.6.(23-24高一上·陕西铜川·月考)已知一扇形的周长为40,当扇形的面积最大时,扇形的圆心角等于()A .2B .3C .1D .4【答案】A【解析】设扇形所在圆半径为r ,则该扇形弧长402l r =-,020r <<,于是该扇形的面积21(20)(10)1001002S rl r r r ==-=--+≤,当且仅当10r =时取等号,所以当10r =时,扇形的面积最大,此时扇形的圆心角等于2lr=.故选:A 二、多选题7.(23-24高一下·安徽淮北·)A .120-︒化成弧度是2πrad3-B .πrad 10化成角度是18°C .1 化成弧度是180rad D .10πrad 3-化成角度是60-︒【答案】AB【解析】对于A 项,因π2120120πrad 1803-︒=-⨯=-,故A 项正确;对于B 项,因ππ180rad=(181010π⨯=,故B 项正确;对于C 项,因ππ11rad rad 180180=⨯=,故C 项错误;对于D 项,因1010180πrad π(60033π-=-⨯=-,故D 项错误.故选:AB.8.(23-24高一下·湖南·期中)已知某扇形的周长和面积均为18,则扇形的圆心角的弧度数可能为()A .4B .3C .2D .1【答案】AD【解析】设扇形的半径为r ,弧长为l ,圆心角为α,根据扇形的周长和面积均为18,则2181182l r lr +=⎧⎪⎨=⎪⎩,解得312r l =⎧⎨=⎩或66r l =⎧⎨=⎩,则4lrα==或1.故选:AD .三、填空题9.(23-24高一下·河南驻马店·月考)已知某扇形的半径为42,周长为122,则该扇形的面积为.【答案】16【解析】设扇形的弧长为l ,依题意,242122l ⨯+=,解得42l =.故该扇形的面积为14242162⨯⨯=.故答案为:16.10.(23-24高一下·河南南阳·月考)以密位作为角的度量单位,这种度量角的单位制,叫作角的密位制.在角的密位制中,采用四个数码表示角的大小,单位名称密位二字可以省去不写.密位的写法是在百位数与十位数之间画一条短线,如5密位写成“005-”,235密位写成“235-”,1246密位写成“1246-”.1周角等于6000密位,写成“6000-”.已知某扇形中的弧的中点到弧所对的弦的距离等于弦长的36,则该扇形的圆心角用密位制表示为.【答案】2000-【解析】如图,C 是弧AB 的中点,由题意可得3363CD AB BD ==,即3=BD CD .因为AB CD ⊥,所以π6CBD ∠=,所以同弧所对圆心角π3AOC ∠=,所以2π2π60002000332πAOB ∠==⨯=,即该扇形的圆心角用密位制表示为2000-.故答案为:2000-11.(23-24高一下·江西乙醇·dm ,宽为1dm 的长方体木块在桌面上作无滑动翻滚,翻滚到第四次时被小木块挡住,此时长方体木块底面与桌面所成的角为π6,求点A 走过的路程为.()dm【解析】第一次是以B 为旋转中心,以2BA ==为半径旋转90︒,此次点A 走过的路径是π2π2⨯=,第二次是以C 为旋转中心,以11CA =为半径旋转90︒,此次点A 走过的路径是ππ122⨯=,第三次是以D 为旋转中心,以2DA =60︒,此次点A 走过的路径是π3=∴点A 三次共走过的路径是()3π9πdm 236++=,()dm .四、解答题12.(23-24高一下·辽宁辽阳·期中)如图,这是一个扇形环面(由扇形OCD 挖去扇形OAB 后构成)展台,4=AD 米.(1)若2π3COD ∠=,2OA =米,求该扇形环面展台的周长;(2)若该扇形环面展台的周长为14米,布置该展台的平均费用为500元/平方米,求布置该扇形环面展台的总费用.【答案】(1)16π83+米;(2)6000元【解析】(1)弧AB 的长度14π3l =,弧CD 的长度212π3l =,所以扇形环面展台周长为:1216π2483l l ++⨯=+米;(2)设COD θ∠=,OA r =米,则弧AB 的长度1l r θ=,弧CD 的长度()244l r r θθθ=+=+,因为该扇形环面的周长为14米,所以124214l l ++⨯=,即4814r r θθθ+++=,整理得23r θθ+=,则该扇形环面展台的面积:()2211(4)48421222S r r r r θθθθθθ=+-=+=+=平方米,所以布置该扇形环面展台的总费用为:125006000⨯=元.13.(23-24高一上·安徽淮北·月考)已知扇形的圆心角是α,半径为R ,弧长为l .(1)若3πα=,10cm R =,求扇形的弧长l .(2)若扇形的周长是20cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?(3)若,2cm 3R πα==,求扇形的弧所在的弓形的面积.【答案】(1)10cm 3π;(2)2α=时,面积最大;(3)23π⎛⎝cm 2.【解析】(1)由,10cm 3R πα==,则扇形的弧长101033l R ππα==⨯=(cm).(2)由已知得,220l R +=,则202l R =-,∴()()22022111202252242R R S lR R R -+⎡⎤==-⋅≤=⎢⎥⎣⎦当且仅当2022R R -=,即5R =时扇形的面积最大,此时圆心角1025α===l R .(3)设弓形面积为S 弓形,由,2cm 3R πα==,得()2cm 3l R πα==,所以22121222sin cm 23233S πππ⎛=⨯⨯-⨯⨯= ⎝弓形.。
初中数学 如何计算角的度数
初中数学如何计算角的度数
要计算一个角的度数,你可以使用以下方法:
1. 度数的定义:一个完整的圆共有360度。
所以,一个角的度数表示了它所占据的圆的比例。
2. 已知角度:如果你已经知道了一个角的度数,那么计算它的度数就非常简单了,直接使用已知的度数即可。
3. 通过边的长度和半径计算:如果你有一个扇形或弧形的角,并且已知边的长度和圆的半径,那么你可以使用以下公式来计算角的度数:
度数= (边的长度/ 圆的周长) * 360
4. 通过弧长计算:如果你知道一个角的弧长和圆的半径,那么可以使用以下公式来计算角的度数:
度数= (弧长/ 圆的周长) * 360
5. 通过角的弧度计算:在高中数学中,角的度数也可以用弧度来表示。
弧度是一个角所对应的圆的弧长与半径之比。
如果你知道一个角的弧度,可以使用以下公式来计算它的度数:度数= 弧度* (180 / π)
这些是计算角度的一些基本方法。
根据具体情况,你可以选择适合的方法进行计算。
高考数学复习知识点讲解教案第22讲 同角三角函数的基本关系式与诱导公式
(2)
5
−
π
1
[2023·全国乙卷] 若 ∈ 0, ,tan = ,则sin − cos =_______.
5
2
2
sin
1
[解析] 方法一:因为tan =
= ,所以cos = 2sin ,
cos
2
1
2
2
2
代入sin + cos = 1得sin = ,
5
π
5
2 5
5
因为 ∈ 0, ,所以sin = ,则cos =
,所以sin − cos = − .
2
5
5
5
2sin cos
2tan
2
方法二: sin − cos = 1 − 2sin cos = 1 − 2
=1−
2
sin +cos
1+tan2
1
π
π
cos
−cos
sin
−sin
_________
正切
tan
tan
_______
−tan
−tan
续表
公式一
口诀
记忆规
律
公式二
公式三
公式四
函数名不变,符号看象限
奇变偶不变,符号看象限
公式五
公式六
函数名改变,符号
看象限
常用结论
1.同角三角函数关系式的常用变形
2
2
(1)sin = 1 − cos = 1 + cos 1 − cos ;
3
π
2
+ = −cos =
2013届中考数学考前热点冲刺《第22讲 相似三角形及其应用》课件 新人教版
第22讲┃ 归类示例 ► 类型之三 三角形相似的判定方法及其应用 命题角度: 1.利用两个角判定三角形相似; 2.利用两边及夹角判定三角形相似; 3.利用三边判定三角形相似.
第22讲┃ 归类示例
[2012· 凉山州] 如图 22-3,在矩形 ABCD 中,AB=6, AD=12,点 E 在 AD 边上,且 AE=8,EF⊥BE 交 CD 于 F. (1)求证:△ABE∽△DEF; (2)求 EF 的长.
第22讲┃ 归类示例
解:(1)证明:∵四边形ABCD是矩形, ∴∠A=∠D=90°, ∴∠AEB+∠ABE=90°. ∵EF⊥BE, ∴∠AEB+∠DEF=90°, ∴∠DEF=∠ABE, ∴△ABE∽△DEF; BE AB (2)∵△ABE∽△DEF,∴ = . EF DE ∵AB=6,AD=12,AE=8, ∴BE= AB2+AE2=10,DE=AD-AE=12-8=4, 10 6 20 ∴ = ,解得EF= . EF 4 3
图 22-5 1 1 1 2 A. B. C. D. 6 3 2 3
第22讲┃ 归类示例
[解析] 延长A′B′交BC于点E,根据大正方形的对角线 长求得其边长,然后求得小正方形的边长后即可求两个正 方形的相似比.
∵在正方形ABCD中,AC=3 2, ∴BC=AB=3.
第22讲┃ 归类示例
延长A′B′交BC于点E, ∵点A′的坐标为(1,2), ∴OE=1,EC=3-1=2=A′E, ∴正方形A′B′C′D′的边长为1, 1 ∴正方形A′B′C′D′与正方形ABCD的相似比是 . 3 故选B.
第22讲┃ 归类示例
判定两个三角形相似的常规思路:①先找两对对应角相 等;②若只能找到一对对应角相等,则判断相等的角的两夹 边是否对应成比例;③若找不到角相等,就判断三边是否对 应成比例,否则可考虑平行线分线段成比例定理及相似三角 形的“传递性”.
2012年高考总复习一轮《名师一号-数学》第22讲
答案:A
第19页
高考总复习(文、理)
→ → 4. (2009· 名校模拟)若平面四边形 ABCD 满足AB+CD =0,→ (AB → AC → -AD)· =0,则该四边形一定是( A.直角梯形 C.菱形 ) B.矩形 D.正方形
→ → 解析: 四边形 ABCD 满足AB+CD =0 知其为平行四边形, → (AB → AC → → AC → -AD)· =0 即DB· =0,该平行四边形的对角线互相垂直,从 而知四边形 ABCD 一定是菱形.
所求向量与已知向量建立直接联系.(3)要注意方程思想的应用,有时可 正难则反,用所求向量来表示已知向量,建立方程后,解方程即可求出
未知向量.
第33页
高考总复习(文、理)
类型三
共线问题
解题准备:用几个基本向量表示某个向量问题的基本技巧是:①
观察各向量的位置;②寻找相应的三角形或多边形;③高考总复习(文、理)
2012高考调研
考纲要求
1.理解向量的概念,掌握向量的几何表示,了解共线向量的概念 . 2.掌握向量的加法和减法. 3.掌握实数与向量的积,理解两个向量共线的充要条件.
4.了解平面向量的基本定理,理解平面向量的坐标的概念,掌握
平面向量的坐标运算. 5.掌握平面向量的数量积及其几何意义,了解用平面向量的数量 积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.
[分析]
本题考查向量知识的综合应用.
第35页
高考总复习(文、理)
[解析]
→ (1)设OM=ma+nb,
→ → → 则AM=OM-OA=ma+nb-a=(m-1)a+nb. → =OD-OA=1b-a=-a+1b. AD → → 2 2 → → ∵A,M,D 三点共线,∴AM与AD共线. m-1 n ∴ = ,∴m+2n=1.① -1 1 2 → =OM-OC=ma+nb-1a=m- 1a+nb, 而CM → → 4 4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.(两星)如图22-23所示, , , . 等于多少度?
答案:30°
解答三角形AOB和三角形COD的边BO、OC在一条直线上,所以 .
同理 ,所以 .
在三角形AOB和COD中, , .
已知 ,所以 .因此, .
12.(两星)如图22-24所示, , , . 等于多少度?
长方形的长等于 ,宽等于 .
因此长方形的周长等于 .
5.(两星)长方形的院子里有一条“6”字形的小路,路宽1米。具体情况如图22-5所示.现要在小路上铺满砖,其余地方种草,那么砖地的周长是多少米?
答案:50米
解答
从图中可以看出, .
都等于 减去路宽,即 .
等于 减去2倍的路宽, 等于 减去2倍的路宽,均为 .
因此,他行走的总路程是 .
5.(两星)如图22-16,把长为2厘米、宽为1厘米的6个长方形摆成3层.摆成的图形周长是多少厘米?
答案:18厘米
解答将该图形补成一个大长方形,把它的各边都平移到大长方形的边上,总长度等于大长方形的周长.
这个大长方形的宽为 ,长为 ,周长为 .
所求图形的周长是18厘米.
6.(两星)如图22-17所示,将3个边长为8厘米的正方形叠放在一起,后一个正方形的顶点恰好落在前一个正方形的正中心.那么它们覆盖住的图形周长是多少厘米?
答案:22°
解答在左图中, , ,所以 .
在右图中, .
拓展篇
1.(两星)如图22-12所示,5个同样大小的小长方形拼成了一个大长方形.已知小长方形的边长是12厘米,求大长方形的周长.
答案:88厘米
解答
如图所示, ,可得 .
那么 , .
所以大长方形的周长为
.
2.(三星)如图22-13.用一个边长是4厘米的小正方形和4个相同的长方形,一起拼成一个边长是20厘米的大正方形.请问:长方形的长和宽分别是多少厘米?
答案:64厘米
解答
方法一:如上图所示,AB、AD、IJ、JK都是正方形的边,又由于E、C、G都是正方形的中心,所以剩余的每条边都等于4厘米.因此所求图形的周长等于 .
方法二:此题也可以用平移的方法得到答案(如下图所示),解题过程略.
7.(三星)如图22-18,有一个八边形,任意相邻的两条边都互相垂直.已知其中3条边的长度,这个八边形的周长是多少厘米?(单位:厘米)
CD是小长方形的长减去小长方形的长,为 .AF是大长方形的宽,为5厘米.
如下图所示:
因此所求图形的周长为 .
方法二:将CD平移到上方,DE平移到右边,如下图所示:
因此所求的周长就大长方形的周长,即 .
7.(一星)22-7所示,这个多边形任意相邻的两条边都互相垂直,请根据图中所给出的数,求出这个多边形的周长.(单位:厘米)
由题意, ,所以 .
因此 .
14.(三星)如图22-26所示,纸上已经画有一个正方形,请你用一块三角板做工具,在纸上画出一个 的角.
答案:
解答连结正方形的对角线,得一个45°的角.与三角板的30°角拼在一起即得到75°的角.
超越篇
1.(两星)从一张长15厘米、宽9厘米的长方形纸片上剪下一个边长尽可能大的正方形,剩下了一块长方形.然后从剩下的长方形中再剪下一个边长尽可能大的正方形……按此方式不断重复,直到剩下一个正方形无法再继续剪为止.请问:所有剪下的正方形的周长之和是多少厘米?
答案:28厘米
解答将所有短的横边都平移到上方,拼成大长方形的长;
将所有短的竖边都平移到右边,拼成大长方形的宽.
多边形的周长就变成了一个大长方形的周长.
大长方形长8厘米,宽6厘米,周长等于 .
因此,原来多边形的周长为28厘米.
8.(一星)图22-8中有几个锐角?几个直角?几个钝角?
答案:5个;1个;2个
第22讲长度与角度的计算
内容概述
掌握长度与角度的概念和基本计算方法.学会运用平移、标方向等方法处理某些长度计算问题;掌握多边形的内角和公式,并进行相关的计算.
典型问题
兴趣篇
1.(一星)根据长方形长、宽与周长的关系,把图22-1填完整.
答案:
解答周长为 ;长为 ;宽为 .
2.(一星)如图22-2,用16个周长为8厘米的小正方形拼成了一个大正方形,大正方形的周长是多少厘米?
答案:长12厘米,宽8厘米
解答如图所示,小长方形的一条长和一条宽拼成了大正方形的一条边.
所以, .又小长方形的长比宽长,因此图中心空出了一个小正方形,长的这一段就是小正方形的边长4厘米,即 .
又 ,所以 , .
3.(两星)如图22-14所示,在一个长为8厘米、宽为6厘米的长方形纸片上剪去一个边长为3厘米的正方形.
答案:84厘米
解答如图所示,剪下一个边长为9厘米的正方形①.
剩下部分是一个长、宽分别为9厘米和6厘米的长方形.
然后剪下一个边长为6厘米的正方形②.
剩下的部分是一个长、宽分别为6厘米和3厘米的长方形.
最后把剩下的部分剪成两个边长为3厘米的正方形③④.
综上所述,所有正方形的周长之和为
.
2.(三星)有一个长20厘米、宽15厘米的长方形,用2条平行于长方形边界的直线可以将其划分成3个或4个小长方形.这些小长方形周长之和最大是多少厘米?
答案:48厘米
解答将GF、DE平移到HJ、IJ、,有
.
所以图中所以横向的边长度总和是
.
竖向的边 .CD比CI少一段ID,从GH上平移一段HK,GH剩下的一段GK等于EF.因此,
所以竖向边的总长为
综上所述,这个八边形的周长是 .
(注:此题也能用标向法快速求出答案.)
8.(三星)(1)如图22-19所示,从一个大长方形的边上挖去一个正方形得到一个多边形.大长方形的长是6厘米,宽是4厘米,正方形的边长是2厘米.这个图形的周长是多少厘米?
阴影部分长方形的宽等于 .
因此所求图形的周长等于 .
(注:此题也能用标向法快速求出答案.)
9.(四星)如图22-21,这个多边形任意相邻的两条边都互相垂直.这个多边形的周长是多少?
答案:64
解答
将多边形的各边标上箭头.由标向法可知,标向下箭头的边长总和等于标向上箭头的边长总和,标向左箭头的边长总和等于标向右箭头的边长总和.
图中所有标向上箭头的边和标向左箭头的边都给出了长度.其中,标向上箭头的边他4条,长度分别是2、5、6、6,标向左箭头的边有6条,长度分别是2、3、2、1、2、3.
因此,多边形的周长为
.
10.(三星)如图22-22所示,一张边长为10厘米的正方形纸片,被横着剪了一刀,竖着剪了两刀,分成了6块小长方形纸片.这6个小长方形的周长总和等于多少厘米?
同理可求得它们的周长之和等于 .
(3)两条直线一条平行于长方形的长,另一条平行于长方形的宽,如图3,此时大长方形被分成4个小长方形.
将左右对应的两个长方形组合在一起,它们的长加起来等于大长方形的长.
同样的上下对应两个长方形的宽之和等于大长方形的宽.
所以这4个小长方形的周长之和等于 .
因此,这些小长方形周长之和最大是150厘米.
答案:32厘米
解答小正方形的周长等于8厘米.由正方形的周长公式得,小正方形的边长等于 .
又大正方形的边由4条小正方形的边组成,那么大正方形的边长等于 .
利用正方形周长公式得,大正方形的周长等于 .
3.(一星)20个边长为3厘米的小正三角形按如图22-3中的方式拼成一个平行四边形,这个平行四边形的周长是多少厘米?
(1)如果剪去的正方形在右上角,那么剩下的图形周长是多少厘米?
(2)如果剪去的正方形在右边,那么剩下的图形周长是多少厘米?
答案:(1)28厘米;(2)34厘米
解答(1)
方法一:把长方形补齐,则
.
同理, .
所以 .
方法二:将CD平移到BG,BC平移到DG,所以多边形的周长就是大长方形的周长,即 .
(2)将标有长度为3的正方形移至长方形的右侧,则多边形比原长方形多两条正方形的边,因此, .
答案:150厘米
解答按两条直线的方向可以有以下3种划分方法:
(1)两条直线均平行于长方形的长,如图,此时大长方形被分成3个小长方形.
这3个小长方形的长都等于大长方形的长,即20厘米.它们的宽加起来等于大长方形的宽,即15厘米.所以这3个小长方形的周长之和等于 .
(2)两条直线均平行于长方形的宽,如图2,此时大长方形也被分成3个小长方形.
答案:110°
D.
因为 , , .
所以 , .
方法二:如上图所示,因为任意多边形的外角和等于360°,即 ,所以 .
13.(三星)如图22-25所示,在三角形 中, , , . 等于多少度?
答案:80°
解答因为 ,可得 .
4.(两星)如图22-15,正方形树林边长1000米,树林中种有白杨树和榆树.小明从树林的西南角走入树林,向正东方前进.他每碰见一株白杨树就往正北走,每碰到一株榆树就往正东走,最后他走到了东北角上.问小明一共走了多少米?
答案:2000米
解答小明在行走过程中,向东和向北的距离都等于树林每边的长度,即1000米.
答案:100厘米
解答如下图,小长方形横向的一组边(加粗部分)可以拼成大正方形的一条边,因此总长等于大正方形的边长.同样的,另外三组横向边的总长等于大正方形的边长.
因此,所有小长方形横向的边总长为正方形纸片边长的4倍,即40厘米.所有小长方形的纵向边长之和是 .
综上所述,这6个小长方形的周长总和等于 .
(2)如图22-20所示,四个长方形组成了一个多边形,如果图中所标数值的单位都是厘米,那么这个多边形的周长是多少厘米?
答案:24厘米;56厘米
解答(1)按箭头方向将实线段移到虚线位置以后,所求图形的周长就变成了大长方形的周长加上正方形的两条边的边长.