标准实验报告(1)
标准制定_实验报告(3篇)

第1篇一、实验背景随着化工、化学、医药、催化等行业和材料学科的快速发展,市场对纯铂及其电子产品的需求快速增长。
铂中杂质元素含量的高低直接影响其材料、产品的电学性能、力学性能、加工工艺和使用寿命。
因此,催化、医药、材料研究和生产经营都需要更快、更准确的掌握其杂质元素含量的信息,这就对铂中杂质元素分析提出了快速、准确的要求。
目前国内在铂纯度检测的标准方法均为直流电弧发射光谱法。
该方法主要分析对象为粉末试样,对海绵状样品的处理相对简单,但对金属块屑状样品的处理就相对复杂繁琐了。
全过程至少需要3个工作日。
此外,该方法粉末标准样品的配制,不但要消耗大量昂贵的高纯贵金属作为基体,而且还需花费大量的人力、物力和时间。
为了提高铂中杂质元素分析的速度和准确性,本实验旨在制定一套国家标准《铂化学分析方法杂质元素的测定电感耦合等离子体质谱法》。
二、实验目的1. 制定一套快速、准确、简便的铂中杂质元素分析方法;2. 提高铂中杂质元素分析的速度和准确性;3. 为我国铂材料的生产、科研和进出口贸易提供技术支持。
三、实验方法1. 实验原理电感耦合等离子体质谱法(ICP-MS)是一种高效、灵敏、多元素同时检测的仪器分析方法。
该方法通过电感耦合等离子体产生的高温、高能等离子体将样品中的元素原子激发,产生电离状态,然后通过质谱仪对电离后的离子进行检测。
2. 实验步骤(1)样品制备:将铂样品用酸溶解,制成溶液。
(2)仪器准备:将电感耦合等离子体质谱仪调至最佳工作状态。
(3)标准溶液配制:根据需要检测的杂质元素,配制相应的标准溶液。
(4)样品分析:将制备好的样品溶液和标准溶液分别注入电感耦合等离子体质谱仪,进行检测。
(5)数据处理:将检测结果进行数据处理,得出铂中杂质元素的含量。
四、实验结果与分析1. 实验结果通过实验,成功制定了一套国家标准《铂化学分析方法杂质元素的测定电感耦合等离子体质谱法》。
该方法具有以下优点:(1)快速:样品分析时间缩短至数小时,相比传统方法大大提高。
最新实验报告(实验一)

最新实验报告(实验一)实验目的:本实验旨在探究特定条件下物质的热分解行为,通过定量分析,了解温度、时间、催化剂等因素对反应速率和产物分布的影响。
实验方法:1. 材料准备:选取适量的待分解物质样品,记录其初始质量。
2. 设备设置:使用热重分析仪(TGA)进行实验,设定升温程序为从室温升至800℃,升温速率为10℃/分钟。
3. 实验操作:将样品置于坩埚中,开启TGA设备,记录质量变化数据。
4. 数据收集:实验结束后,收集TGA曲线图,记录各个阶段的质量损失和残留物情况。
实验结果:1. TGA曲线显示,在200℃时,样品开始有轻微的质量损失,推测为水分的蒸发。
2. 当温度升至400℃时,样品质量迅速下降,表明发生了明显的热分解反应。
3. 在600℃时,质量损失趋于稳定,此时残留物质量约为初始样品的30%。
4. 通过对比实验,发现在添加特定催化剂后,热分解起始温度降低,反应速率加快。
实验讨论:1. 实验观察到的初步质量损失与预期的水分蒸发相符,进一步证实了样品中含有一定量的结合水。
2. 热分解阶段的质量快速下降表明样品在高温下不稳定,容易发生分解。
3. 残留物的组成分析表明,分解产物主要包括氧化物和其他无机盐类。
4. 催化剂的加入显著改变了反应动力学,这可能与催化剂降低了反应的活化能有关。
结论:本次实验成功地模拟并分析了物质在不同条件下的热分解行为。
通过TGA分析,我们确定了样品的热稳定性和分解产物,同时发现催化剂的使用对提高反应效率具有重要意义。
未来的工作将进一步探索不同催化剂和反应条件下的分解行为,以优化工业生产过程。
标准实验_准实验报告

实验名称:探究不同光照强度对植物生长的影响实验目的:通过本实验探究不同光照强度对植物生长的影响,了解光照强度与植物生长之间的关系。
实验原理:植物生长过程中,光照是必不可少的因素之一。
光照强度直接影响植物的光合作用、呼吸作用和生长激素的合成。
本实验通过设置不同光照强度,观察植物的生长情况,分析光照强度与植物生长之间的关系。
实验材料:1. 实验植物:小麦种子2. 培养基:营养土3. 培养容器:塑料盆4. 光照设备:LED灯5. 温度计:用于测量培养室温度6. 电子秤:用于称量植物生长情况7. 计时器:用于记录植物生长时间实验方法:1. 将小麦种子在温水中浸泡24小时,使种子充分吸水。
2. 将浸泡好的小麦种子均匀撒在营养土中,覆土厚度约为1cm。
3. 将种植好的小麦盆放置在培养室内,保持温度在20-25℃。
4. 设置不同光照强度:低光照(L1)、中光照(L2)、高光照(L3)。
5. 每组设置3个重复,共计9个培养盆。
6. 每天定时浇水,保持土壤湿润。
7. 每隔3天测量植物的生长情况,包括株高、叶面积、鲜重等指标。
8. 实验周期为30天。
实验结果:1. 不同光照强度对小麦株高的影响在实验周期内,低光照组(L1)的小麦株高增长速度明显低于中光照组(L2)和高光照组(L3)。
在实验结束时,L1组的株高平均为20cm,L2组平均为25cm,L3组平均为30cm。
2. 不同光照强度对小麦叶面积的影响实验结果显示,低光照组(L1)的叶面积明显小于中光照组(L2)和高光照组(L3)。
在实验结束时,L1组的叶面积平均为50cm²,L2组平均为80cm²,L3组平均为100cm²。
3. 不同光照强度对小麦鲜重的影响实验结果显示,低光照组(L1)的小麦鲜重明显低于中光照组(L2)和高光照组(L3)。
在实验结束时,L1组的鲜重平均为10g,L2组平均为15g,L3组平均为20g。
实验结论:1. 在本实验中,随着光照强度的增加,小麦的株高、叶面积和鲜重均呈上升趋势。
实验报告1

实验一创建链表和链表操作一、实验目的掌握线性表的基本操作:插入、删除、查找、以及线性表合并等操作在顺序存储结构和链式存储结构上的实现。
二、实验内容:1. 创建单链表2.在链表上进行插入、删除操作;3.设计一个程序,用两个单链表分别表示两个集合,并求出这两个集合的并集。
四、测试数据:∙(3,9,5,6,11,8);在5之前插入4,7,并删除11∙求集合{1,12,8,6,4,9}和{2,5,12,7,4}的并集五、概要设计:本操作应完成如下功能:(1)创建链表说明:分配一定的空间,根据给定的链表长度输入值,创建链表。
(2)合并链表说明:将两个链表合并为一个链表只需修改链表头、尾指针即可实现。
(3)在链表中插入值说明:将给定的值插入到指定位置上,只需修改插入位置的前后结点的指针即可。
(4)在链表中删除值说明:将指定位置的值删除,只需修改删除位置的前后结点的指针即可。
六、详细设计:源代码:#include<stdio.h>#include<conio.h>#include<stdlib.h>#include<iostream.h>#define OK 1#define ERROR 0#define OVERFLOW 0//线性链表的存储结构,一个结点typedef struct LNode{int data; // 数据域struct LNode *next; // 指针域}LNode,*LinkList; //结点结构类型和指向结点的指针类型int TraverseList_L(LinkList L) //遍历单链表{LinkList p;p=L->next;while(p){printf("-->%d",p->data);p=p->next;}return OK;}//尾插法创建的带头结点的单链表。
void CreateList_L(LinkList &L,int &n){L=(LinkList)malloc(sizeof (LNode));//建立一个空链表L。
实验报告内容格式范文5篇

实验报告内容格式范文5篇实验报告内容格式范文5篇实验报告的分析讨论,主要分析实验结果和数值是否匹配,如果有误差,分析具体原因。
下面是小编为大家整理的实验报告格式范文,如果大家喜欢可以分享给身边的朋友。
实验报告格式内容范文【篇1】准备材料:一个玻璃杯、一枚硬币、小半杯水(最好是有颜色的)、蜡烛和一个平底的容器。
实验内容:在一个盘子里倒半杯水,放入一枚硬币。
手既不许接触到水,又不能把水倒出来,怎样才能把硬币取出来呢?实验过程:第1次:我们首先在平底的容器中倒入小半杯水,淹没硬币。
然后点燃一节蜡烛放在盘子里,罩上玻璃杯,蜡烛会因为缺氧停止燃烧,这时,外面的水便源源不断地涌进玻璃杯。
(可惜吸水不够多,所以没有把硬币取出来)结果:失败。
第2次:和第一次一样,失败。
第3次:我们换了一根大一点的蜡烛,这次流进去的水很多,成功。
第4次:我们用了两根蜡烛,不过因为杯子扣的太紧,杯口被盘子吸住,水没能流进玻璃杯,失败。
第5次:我把杯子扣下去的速度慢了一点点,导致蜡烛提前熄灭,失败。
第6次:同样是放了两根蜡烛,这次很正常,成功。
实验总结:我做这个实验是为了证实气体冷却后,能让压力下降,于是外面正常的大气压把盘子中的水挤进了杯中。
另外,在实验中,我观察到,用玻璃杯盖住蜡烛的时候,火焰不是马上熄灭,是继续燃烧一会儿才熄灭,说明玻璃杯的空气也是含有一定量的氧气的。
而做这个实验应注意:1、杯子不要扣的太慢,否则会让火焰提前熄灭导致实验失败。
2、水最好是有颜色的水,我选择在水中滴蓝墨水,效果不错,这样方便观看。
3、可以用燃烧的纸片代替蜡烛,但是水一定要放少一点,放多了难吸光。
4、要保持距离,让火焰离自己远一点。
实验报告格式内容范文【篇2】电路实验课已经结束,请按题目要求认真完成实验报告,并要仔细检查一遍,以免退回,具体要求如下:一、绘制电路图要工整、选取适宜比例,元件参数标注要准确、完整。
二、计算题要有计算步骤、解题过程,要代具体数据进行计算,不能只写得数。
实验报告范文模板3篇

实验报告范文模板3篇Experimental report template编订:JinTai College实验报告范文模板3篇小泰温馨提示:实验报告是把实验的目的、方法、过程、结果等记录下来,经过整理,写成的书面汇报。
本文档根据实验报告内容要求展开说明,具有实践指导意义,便于学习和使用,本文下载后内容可随意修改调整及打印。
本文简要目录如下:【下载该文档后使用Word打开,按住键盘Ctrl键且鼠标单击目录内容即可跳转到对应篇章】1、篇章1:实验报告范文模板2、篇章2:实验报告范文模板3、篇章3:实验报告范文模板篇章1:实验报告范文模板例一定量分析实验报告格式(以草酸中h2c2o4含量的测定为例)实验题目:草酸中h2c2o4含量的测定学习naoh标准溶液的配制、标定及有关仪器的使用;学习碱式滴定管的使用,练习滴定操作。
h2c2o4为有机弱酸,其ka1=5.9×10-2,ka2=6.4×10-5。
常量组分分析时cka1>10-8,cka2>10-8,ka1/ka2<105,可在水溶液中一次性滴定其两步离解的h+:h2c2o4+2naoh===na2c2o4+2h2o计量点ph值8.4左右,可用酚酞为指示剂。
naoh标准溶液采用间接配制法获得,以邻苯二甲酸氢钾标定:此反应计量点ph值9.1左右,同样可用酚酞为指示剂。
一、naoh标准溶液的配制与标定用台式天平称取naoh1g于100ml烧杯中,加50ml蒸馏水,搅拌使其溶解。
移入500ml试剂瓶中,再加200ml蒸馏水,摇匀。
准确称取0.4~0.5g邻苯二甲酸氢钾三份,分别置于250ml锥形瓶中,加20~30ml蒸馏水溶解,再加1~2滴0.2%酚酞指示剂,用naoh标准溶液滴定至溶液呈微红色,半分钟不褪色即为终点。
二、h2c2o4含量测定准确称取0.5g左右草酸试样,置于小烧杯中,加20ml 蒸馏水溶解,然后定量地转入100ml容量瓶中,用蒸馏水稀释至刻度,摇匀。
实验报告模板 (1)

再一次,老师将指令细化,同学更具指令动作
睁开眼睛,展开纸,发现只有1个、2个,两种情况,且2个的情况占大多数
三、实验心得(结合理论知识谈谈自己的心得和收获,请着重论述)
信息的处理具有主观性,所以相同的指令会造成不同的结果。但是如果将指令细化,尽量考虑到细节,则最终的差异将会大大减少。所以在公司的决策传达时应考虑指令的清晰明确,以便尽量减少理解上的差异,以便于更好的完成决策
管理学实验报告
实验名称
信息的传达
专业班级
酒店管理一班
姓名学号
胡晶旌2014064138
小组号
5
1、实验接收和处理信息的准确性
二、实验内容(对实验过程及结果进行描述和说明)
每人一张白纸,闭上眼睛,听从老师的指令
老师说出指令,同学闭上眼睛听从指令折叠白纸,撕下指令中所指的纸角。
科学实验报告必备15篇

科学实验报告必备15篇科学实验报告1材料:一个有窄口的塑料瓶、黏土、一段塑料软管、几个硬币、胶带。
1、在塑料瓶的一侧挖二三个洞。
在瓶子的同一侧,用胶带把三四个硬币固定上去。
这些硬币有重量,可使潜水艇往下沉。
2、把塑料软管放入塑料瓶的窄口里,再用黏土把软管和瓶口的缝隙封好。
3、把这个玩具潜水艇放到一盆水里,让潜水艇灌满水。
4、从软管把空气吹入潜水艇。
在你吹气的时候,潜水艇内的'水会从洞口被逼出来。
5、当潜水艇充气到一定程度时,它会慢慢升到水面上。
操作:你只要控制潜水艇内空气的量,就可以使潜水艇在水中浮沉了。
原因:怎么会这样?空气的重量比水轻,当你把潜水艇装满气时,潜水艇变得比水还轻,所以会上升到水面上。
科学实验报告2实验组别:实验合作者:指导老师:实验日期:20××年×月×日第×节实验名称:调查污染的来源实验目的':通过调查污染的来源,让学生知道水是如何被污染的。
实验器材:实验步骤:采访当地政府部门。
家庭生活污染物。
采访家用物资销售部。
医院采访。
实验现象:农药、化肥,洗涤剂等都会污染水。
实验结论:我发现水污染来自于××××××问题讨论:科学实验报告3实验内容:光的反射能力实验地点:五年级教室实验目的:认识光的反射及应用实验器材:卡纸(红、黄、绿、黑、白)各一张,手电筒一支,夹子实验步骤:1、夹子夹住卡纸2、将夹横立在桌上,并在桌面上放一页有字的'纸。
3、打开手电筒开关,对着卡纸,观察文字实验现象:黑色反光弱,红色反红光,黄色反黄光,绿色反绿光,白色反光能力强。
实验结论:深色反光弱,浅色反光能力强。
实验效果:好!实验人:xxx实验人实验时间:20xx年xx月xx日仪器管理员签字:xxx科学实验报告4今天上午,我去参加小记者活动,科学实验之染色工艺。
活动开始了,老师先告诉我们什么叫染色工艺。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告(一)一、实验室名称:信息对抗系统专业实验室二、实验项目名称:典型数字通信调制信号生成实验三、实验学时:4学时四、实验原理:MATLAB软件具有编程实现简单、使用方便等优点,是目前应用广泛的计算机仿真软件,并且提供各种常用数字通信信号源生成函数的使用帮助文件。
因此让学生通过实际上机实验,熟悉MATLAB计算机仿真软件,可实现各种通信信号产生及分析仿真,从而加深对常规数字通信信号的理解。
五、实验目的:利用MATLAB软件编程实现各种常用数字通信信号源的产生。
让学生通过实际上机实验,熟悉MATLAB计算机仿真软件,并加深对通信信号的理解。
六、实验内容:(1)产生比特率为200bits/s,载频为200Hz 的复BPSK信号,采样频率为2000Hz,时间长度为2s,成形滤波器用根升余弦滤波器实现,滤波器阶数为60,滚降因子为0.3。
要求画出BPSK信号的时域波形与频谱图,并分别画出滤波前、滤波后、调制载频后的星座图,思考它们具有差异的原因。
(2)产生符号率为200symbol/s,载频为200Hz的复QPSK信号,采样频率为2000Hz,时间长度为2s,成形滤波器用根升余弦滤波器实现,滤波器阶数为60,滚降因子为0.3。
要求画出QPSK信号的时域波形与频谱图,并分别画出滤波前、滤波后、调制载频后的星座图,思考它们具有差异的原因。
(3)产生比特率为200bits/s,调制指数为0.6,载频为400Hz的复2FSK信号,采样频率为1200Hz,时间长度为2s。
成形滤波器用根升余弦滤波器实现,滤波器阶数为60,滚降因子为0.3。
要求画出信号源的时域波形与频谱图,并分别画出滤波前、滤波后、调制载频后的星座图。
改变调制指数大小,观察频谱变化情况。
(4)产生比特率为200bits/s,载频为300Hz 的2ASK信号,采样频率为2000Hz,时间长度为2s,成形滤波器用根升余弦滤波器实现,滤波器阶数为60,滚降因子为0.3。
要求画出2ASK信号的时域波形与频谱图,并分别画出滤波前、滤波后、调制载频后的星座图,思考它们具有差异的原因。
七、实验器材(设备、元器件):计算机、Matlab仿真软件八、实验步骤:1.学习MATLAB软件的使用并学习其通信信号帮助工具箱;2.利用MATLAB语言编写各种数字信号源,并画图分析各种信号的时域和频域等特性。
实验Matlab程序:(1)clear all;clc;close all;M=2;N=400;fs=2000;fd=200;fc=200;r=fs/fd;filtorder=60;a=0.3;delay=filtorder/(r*2);h=rcosfir(a, delay, r,1,'sqrt');h=sqrt(r)*h/norm(h);SNR=40;s=randsrc(N,1,[0:M-1]);s_mod=pskmod(s,M);scatterplot(s_mod);s_base=zeros(r,N);s_base(1,:)=s_mod.';s_base=s_base(:);s_base=conv(h.',s_base);scatterplot(s_base);y_x=s_base.*exp(j*(2*pi*fc/fs*[0:length(s_base)-1].'));noise=sqrt(1/10^(SNR/10)/2)*(randn(size(s_base))+j*randn(size(s_b ase)));%Generate noise signaly=y_x+noise; %% 产生中频发射信号scatterplot(y);figure;subplot(2,1,1);plot(real(y));title('passband signal of square root raised cosine pulse shaped in time domain');xlabel('sample');ylabel('In amplitude');subplot(2,1,2);plot(imag(y));title('passband signal of square root raised cosine pulse shaped in time domain');xlabel('sample');ylabel('Qn amplitude');figure;NN2=length(y);FF2=linspace(-fs/2,fs/2,NN2);YF_yc=fftshift(abs(fft(y)));plot(FF2,YF_yc);title('passband signal of pulse shaped in frequency domain');xlabel('nomalized frequency');ylabel('amplitude');(2)clear all;clc;close all;M=4;N=400;fs=2000;fd=200;fc=200;r=fs/fd;filtorder=60;a=0.3;delay=filtorder/(r*2);h=rcosfir(a, delay, r,1,'sqrt');h=sqrt(r)*h/norm(h);SNR=30;s=randsrc(N,1,[0:M-1]);s_mod=pskmod(s,M);scatterplot(s_mod);s_base=zeros(r,N);s_base(1,:)=s_mod.';s_base=s_base(:);s_base=conv(h.',s_base);scatterplot(s_base);y_x=s_base.*exp(j*(2*pi*fc/fs*[0:length(s_base)-1].'));noise=sqrt(1/10^(SNR/10)/2)*(randn(size(s_base))+j*randn(size(s_b ase)));%Generate noise signaly=y_x+noise; %% 产生中频发射信号scatterplot(y);figure;subplot(2,1,1);plot(real(y));title('passband signal of square root raised cosine pulse shaped in time domain');xlabel('sample');ylabel('In amplitude');subplot(2,1,2);plot(imag(y));title('passband signal of square root raised cosine pulse shaped in time domain');xlabel('sample');ylabel('Qn amplitude');figure;NN2=length(y);FF2=linspace(-fs/2,fs/2,NN2);YF_yc=fftshift(abs(fft(y)));plot(FF2,YF_yc);title('passband signal of pulse shaped in frequency domain');xlabel('nomalized frequency');ylabel('amplitude');(3)%2FSKclear all;close all;clc;M=2;N=400;fs=1200;fd=200;fc=400;m=0.6;f1=(2*fc-m*fd)/2;f2=(m*fd+2*fc)/2;r=fs/fd;filtorder=60;a=0.3;delay=filtorder/(r*2);h=rcosfir(a, delay, r,1,'sqrt');h=sqrt(r)*h/norm(h);SNR=40;s=randsrc(N,1,[0:M-1]);s_mod=s;scatterplot(s_mod);s_base=zeros(r,N);s_base(1,:)=s_mod.';%赋给第一列s_base=s_base(:);s_base=conv(h.',s_base);scatterplot(s_base);y_x=s_base.*exp(j*(2*pi*f1/fs*[0:length(s_base)-1].'))+(1-s_base) .*exp(j*(2*pi*f2/fs*[0:length(s_base)-1].'));noise=sqrt(1/10^(SNR/10)/2)*(randn(size(s_base))+j*randn(size(s_b ase)));%Generate noise signaly=y_x+noise;scatterplot(y);figure;subplot(2,1,1);plot(real(y));title('passband signal of square root raised cosine pulse shaped in time domain');xlabel('sample');ylabel('In amplitude');subplot(2,1,2);plot(imag(y));title('passband signal of square root raised cosine pulse shaped in time domain');xlabel('sample');ylabel('Qn amplitude');figure;NN2=length(y);FF2=linspace(-fs/2,fs/2,NN2);YF_yc=fftshift(abs(fft(y)));plot(FF2,YF_yc);title('passband signal of pulse shaped in frequencydomain');xlabel('nomalized frequency');ylabel('amplitude');(4)clear all;close all;M=2;N=200;fs=2000;fd=200;fc=300;r=fs/fd;filtorder=60;a=0.3;delay=filtorder/(r*2);h=rcosfir(a, delay, r,1,'sqrt');h=sqrt(r)*h/norm(h);SNR=30;s=randsrc(N,1,[0:M-1]);s_mod=s;scatterplot(s_mod);s_base=zeros(r,N);s_base(1,:)=s_mod.';%赋给第一列s_base=s_base(:);s_base=conv(h.',s_base);scatterplot(s_base);y_x=s_base.*exp(j*(2*pi*fc/fs*[0:length(s_base)-1].'));noise=sqrt(1/10^(SNR/10)/2)*(randn(size(s_base))+j*randn(size(s_b ase)));%Generate noise signaly=y_x+noise; %% 产生中频发射信号scatterplot(y);figure;subplot(2,1,1);plot(real(y));title('passband signal of square root raised cosine pulse shaped in time domain');xlabel('sample');ylabel('In amplitude');subplot(2,1,2);plot(imag(y));title('passband signal of square rootraised cosine pulse shaped in time domain');xlabel('sample');ylabel('Qn amplitude');figure;NN2=length(y);FF2=linspace(-fs/2,fs/2,NN2);YF_yc=fftshift(abs(fft(y)));plot(FF2,YF_yc);title('passband signal of pulse shaped in frequency domain');xlabel('nomalized frequency');ylabel('amplitude');九、实验数据及结果分析根据上述实验程序得到的实验数据及结果如下:(1)BPSK信号时域和频域图:成型滤波前、成型滤波后、调制载波后的星座图:(2)QPSK信号时域和频域图:成型滤波前、成型滤波后、调制载波后的星座图:(3)FSK信号时域和频域图:成型滤波前、成型滤波后、调制载波后的星座图:(4)ASK信号时域和频域图:成型滤波前、成型滤波后、调制载波后的星座图:十、实验结论(1)信号星座图具有差异的原因:滤波前的原始信号是随机非极性码,只有1、0两种状态,映射到复基带上分别是0和pi两个频点;滤波后由于经过过采样,原信号的频域信号周期延拓,由于没有正交分量,故在同相分量上延拓,形成一条不连续的直线;调制载频后,由于载波信号的频率为2*pi*fc/fs即(2pi)/10,使滤波后信号的频点以此间隔旋转。