平面的基本性质教学设计

合集下载

《平面的基本性质》第1课时示范课教学设计【高中数学教案】

《平面的基本性质》第1课时示范课教学设计【高中数学教案】

《平面的基本性质》教学设计第1课时◆教学目标了解平面的基本事实与推论,能用图形、文字、符号三种语言描述三个基本事实,理解三个基本事实的地位与作用;会用平面的基本事实正面点共线、线共点、点线共面三个典型问题,熟悉符号语言、文字语言、图形语言之间的转换.◆教学重难点◆教学重点:掌握平面的基本事实及推论.教学难点:能用图形、文字、符号三种语言描述平面的基本事实,并能解决空间线面的位置关系问题.◆课前准备PPT课件.◆教学过程一、问题导入前面我们通过几何体的学习,已经直观地认识了点、线、面之间的位置关系,从本节开始,我们将在直观认识的基础上来论证它们之间的关系,以期进一步培养大家的空间想象能力和逻辑能力.问题1:观察如图11-2-2,的凳子,把凳子看成一个平面,思考(1)如果把一个平面固定在空间中,至少需要固定几个点?(2)有多少个平面能通过空间中指定的一点?有多少平面能通过空间中指定制定的两点?引语:要解决这个问题,就需要进一步学习平面的基本事实与推论.(板书:平面的基本事实与推论)【新知探究】问题2:确定平面的依据是什么?师生活动:学生分析解题思路,给出答案.追问:基本事实1的作用是什么?预设的答案:基本事实1: 文字表示:经过不在一条直线上的3个点,有且只有一个平面.符号表示:A ,B ,C 三点不共线⇒存在唯一的平面α使A ,B ,C ∈α图形表示:注:(1)可以简单地说成“不共线的3点确定一个平面”(2)过不共线的3点A ,B ,C 的平面,通常记作平面ABC ,用图象直观地表示平面时,为了增加立体感,习惯上讲平面用平行四边形表示.(3)如图的平面α可以看成由不共线的3点A ,B ,C 确定的,此时显然有:,,A B C ααα∈∈∈(4)如果给定的3个点同在一直线上,那么有无数个平面通过这3个点,也就是说,此时这三个点不能“确定”一个平面,例如,如果给定的3个点都在长方体的一条棱上,那么过这三个点就会有无数个平面.作用:①确定平面的依据;②判定点、线共面设计意图:通过对生活简单事实出发,通过观察分析归纳出平面基本事实.发展学生数学抽象和直观想象的核心素养.问题3:尝试与发现:这就是说,如果A B αα∈∈, ,那么直线AB α∈,如图11-2-4所示.师生活动:学生分析解题思路,给出答案追问:基本事实2的作用是什么?预设的答案:基本事实2:文字表示:如果一条直线上的两个点在一个平面内,那么这条直线在这个平面内. 符号表示:A ∈α,B ∈α⇒AB ⊂α图形表示:作用:①判定直线是否在平面内;②判断一个面是否是平面注:基本事实2可以作为判断一个面是否是平面的依据:如果一个面内的任意两点所确定的直线都在这个平面内,那么这个面就是平面.例如,球面不是一个平面,因为球面上任意两点所确定的直线中,只有两个点在球面上.设计意图:培养学生分析和归纳的能力.问题4:如图11-2-6所示,当用裁纸刀裁纸时,可以认为刀锋是在一个平面内运动的.(1)裁纸刀裁出的是什么样的痕迹?(2)两个平面相交时,公共点具有什么特点?师生活动:学生分析解题思路,给出答案追问:基本事实3的作用是什么?预设的答案:基本事实3:文字表示:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线符号表示:P∈α,且P∈β⇒α∩β=l,且P∈l图形表示:注:(1)基本事实3说明,两个不重合的平面,只要有一个公共点,就一定有无数个公共点,而且这无数个公共点能构成一条直线,这条直线通常也称为两个平面的交线,如图所示,有,A a a αβ∈=;(2)在画两个平面相交时,其中一个平面被另一个平面遮住的部分应该画出虚线或不画,如图所示;(3)根据基本事实3可知,棱柱中,有公共棱的两个面所在的平面一定是相交的,而且公共棱是交线的一部分.作用:①判定两个平面相交的依据;②判定点在直线上设计意图:培养学生分析和归纳的能力. 【巩固练习】例1. 用符号语言表示下列语句,并画出图形:(1)三个平面α、β、γ相交于一点P ,且平面α与平面β交于P A ,平面α与平面γ交于PB ,平面β与平面γ交于PC ;(2)平面ABD 与平面BCD 相交于BD ,平面ABC 与平面ADC 交于AC .师生活动:学生分析解题思路,给出答案.预设的答案: (1)符号语言表示:α∩β∩γ=P ,α∩β=P A ,α∩γ=PB ,β∩γ=PC .用图形表示如图①.(2)符号语言表示:平面ABD ∩平面BDC =BD .平面ABC ∩平面ADC =AC .图形表示如图②.设计意图:用符号语言表示语句. 例2. 证明:两两相交且不过同一个点的3条直线必在同一个平面内.师生活动:学生分析解题思路,给出答案.预设的答案:证明:设直线,,AB BC AC 两两相交,交点分别是,,A B C显然,,,A B C 3点不共线,因此它们能确定一个平面α.因为,,A B αα∈∈ 那么直线AB α⊂同理,AC BC αα⊂⊂即直线,,AB BC AC 都在平面α内.设计意图:基本事实1的运用.例3. 如图所示的正方体1111ABCD A B C D -中,E 是棱1CC 上的一点,试说明1,,D A E 3点确定的平面与平面ABCD 相交,并画出这两个平面的交线.师生活动:学生分析解题思路,给出答案.预设的答案:因为A ∈面1D AE ,A ∈面ABCD所以面1D AE ABCD ≠∅,即面1D AE 与面ABCD 相交.延长1D E 与DC ,设它们相交于F ,如图所示,则:F ∈直线1D E ,直线1D E ⊂面1D AE .F ∈直线DC ,直线DC ⊂面ABCD .则F ∈面1D AE 面ABCD ,从而AF 为面1D AE 与面ABCD 的交线,如图所示.设计意图:基本事实3的运用.【课堂小结】问题:(1)三个基本事实的作用有哪些?(2)证明几点共线的方法有哪些?(3)证明证明多线共点的方法有哪些?师生活动:学生尝试总结,老师适当补充.预设的答案:1.三个基本事实的作用基本事实1——判定点共面、线共面的依据;基本事实2——判定直线在平面内的依据;基本事实3——判定点共线、线共点的依据.2.证明几点共线的方法:先考虑两个平面的交线,再证有关的点都是这两个平面的公共点.或先由某两点作一直线,再证明其他点也在这条直线上.3.证明多线共点的方法:先证两线共点,再证这个点在其他直线上,而“其他”直线往往归结为平面与平面的交线.设计意图:通过梳理本节课的内容,能让学生更加明确平面的基本事实的有关知识.布置作业:【目标检测】1. 下列说法正确的是()A.三点可以确定一个平面B.若直线上有一个点在一个平面内,则这条直线在这个平面内C.把三角板的一个角立在课桌面上,三角板所在平面与桌面所在平面相交于一点D.如果两个平面有三个不共线的点,那么这两个平面重合设计意图:基本事实的运用.2. 若A ∈平面α,B ∈平面α,C ∈直线AB ,则( )A .C ∈αB .C ∉α C .AB ⊄αD .AB ∩α=C设计意图:用符号语言表示语句.3. 经过空间任意三点作平面( )A .只有一个B .可作二个C .可作无数多个D .只有一个或有无数多个设计意图:基本事实的运用.4. 如图所示,在正方体1111ABCD A B C D 中.画出平面1AC 与平面1BC D 及平面1ACD 与平面1BDC 的交线.设计意图:基本事实的运用.5. 如图,已知E ,F ,G ,H 分别是四面体A -BCD 的棱AB ,BC ,CD ,DA 的中点.求证:E ,F ,G ,H 四点共面.设计意图:基本事实的运用.参考答案: 1. D A 错误,不共线的三点可以确定一个平面;B 错误,直线上的两个点在一个平面内,则这条直线在这个平面内;C 错误,三角板所在平面与桌面所在平面相交于一条直线;D 正确,过不共线的三个点有且只有一个平面.2. A 因为A ∈平面α,B ∈平面α,所以AB ⊂α.又因为C ∈直线AB ,所以C ∈α.3. D 当三点在一条直线上时,过这三点的平面能作无数个;当三点不在同一条直线上时,过这三点的平面有且只有一个.4. 如图,∵AC BD O ⋂=,1C DC E ⋂=.∴O ∈平面1AC ,O ∈平面1BC D .又1C ∈平面1AC ,1C ∈平面1BC D .∴平面 1AC ⋂平面11BC D OC =.同理平面1ACD ⋂平面1BDC OE =.A A 15. 在△ABD 中,∵E ,H 分别是AB ,AD 的中点,∴EH ∥BD .同理FG ∥BD ,则EH ∥FG .故E ,F ,G ,H 四点共面.。

5.3平面(教学设计)-中职2024年《数学》(高教版)

5.3平面(教学设计)-中职2024年《数学》(高教版)

§5.3平面一、学习要求:1、了解平面的表示方法;2、理解并记住平面的基本性质。

二、学习重点、难点:重点:平面的基本性质难点:用集合符号表示空间点、直线和平面的关系三、学时安排:共2学时四、学习过程:第一课时(一)课前尝试:1、学习方法(1)认真阅读教材P.232-P.233并理解相关概念。

(2)通过合作学习、主动探究尝试解决课内练习。

2、尝试练习:作出一个平面、两个平面相交(二)课堂探究:1、探究问题:如何将空间图形在平面上表示出来?2、知识链接:(1)平面的概念及表示方法;(2)空间点、线、面的关系用集合关系如何表示?3、拓展练习:例1、作出空间两个平行平面例2、作出空间两个平面垂直相交4、当堂训练:(1)作出一直线与一平面相交并用集合符号表示(2)作出一直线在一平面内并用集合符号表示(3)作出两相交直线与一平面平行并用集合符号表示5、归纳总结:(三)课后拓展平面的概念空间点、线、面的关系用集合符号表示的方法认真看书P.232—233并完成课内练习1作出房屋墙角的图形(四)格言警句:要用心感受物体的美。

第二学时(一)课前尝试:1、学习方法:认真阅读教材P.233-P.234并理解相关概念。

2、尝试练习:(1)作出一直线上有两个点在一平面内(2)作出两平面相交于一个公共点(二)课堂探究:1、探究问题:从上述作图过程中有什么体会?2、知识链接:(1)如果一直线上有两个点在一平面内,则这条直线上的所有点都在这个平面内。

图形表示数学符号表示(2)如果两个平面有一个公共点,则它们相交于经过这个公共的一条直线地。

图形表示数学符号表示(3)经过不在同一直线上的任意三点,可以作一平面,且只能作一平面。

图形表示推论:3、拓展练习:例1、作三个平面相交并用数学符号表示。

(多种情况)4、当堂训练:(1)作出一本书打开的图形并用数学符号表示(多种情况)5、归纳总结:(三)课后拓展平面的基本性质用数学符号表示平面的基本性质:认真看书P.233—234并完成课内练习2 作出平时常见的空间图形。

高三数学一轮复习精品教案2:空间点、直线、平面之间的位置关系教学设计

高三数学一轮复习精品教案2:空间点、直线、平面之间的位置关系教学设计

第三节 空间点、直线、平面之间的位置关系考纲传真1.理解空间直线,平面位置关系的定义,并了解可以作为推理依据的公理和定理. 2.能运用公理,定理和已获得的结论证明一些空间图形的位置关系的简单命题.1.平面的基本性质公理1:如果一条直线上的两点在一个平面内,那么这条直线在这个平面内. 公理2:过不共线的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.空间点、直线、平面之间的位置关系直线与直线直线与平面平面与平面平行 关系图形 语言符号 语言 a ∥ba ∥αα∥β相交 关系图形 语言符号 语言 a ∩b =Aa ∩α=Aα∩β=l 独有关系 图形 语言符号 语言a ,b 是异面直线a ⊂α3.异面直线所成的角(1)定义:设a ,b 是两条异面直线,经过空间中任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角或直角叫做异面直线a 与b 所成的角.(2)范围:(0,π2』.4.平行公理平行于同一条直线的两条直线平行. 5.等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.1.(人教A 版教材习题改编)下列命题正确的个数为( )①梯形可以确定一个平面;②若两条直线和第三条直线所成的角相等,则这两条直线平行;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.A .0B .1C .2D .3『解析』 ②中两直线可以平行、相交或异面,④中若三个点在同一条直线上,则两个平面相交,①③正确.『答案』 C2.已知a 、b 是异面直线,直线c ∥直线a ,那么c 与b ( ) A .一定是异面直线 B .一定是相交直线 C .不可能是平行直线 D .不可能是相交直线『解析』 若c ∥b ,∵c ∥a ,∴a ∥b ,与a ,b 异面矛盾. ∴c ,b 不可能是平行直线. 『答案』 C3.平行六面体ABCD —A 1B 1C 1D 1中,既与AB 共面也与CC 1共面的棱的条数为( ) A .3 B .4 C .5 D .6『解析』 与AB 平行,CC 1相交的直线是CD 、C 1D 1;与CC 1平行、AB 相交的直线是BB 1,AA 1;与AB 、CC 1都相交的直线是BC ,故选C.『答案』 C4.(2013·宁波模拟)若直线l 不平行于平面α,且l ⊄α,则( ) A .α内的所有直线与l 异面 B .α内不存在与l 平行的直线 C .α内存在唯一的直线与l 平行 D .α内的直线与l 都相交『解析』 由题意知,直线l 与平面α相交,则直线l 与平面α内的直线只有相交和异面两种位置关系,因而只有选项B 是正确的.『答案』 B图7-3-15.(2012·四川高考)如图7-3-1,在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是棱CD 、CC 1的中点,则异面直线A 1M 与DN 所成的角的大小是________.『解析』 如图,取CN 的中点K ,连接MK ,则MK 为△CDN 的中位线,所以MK ∥DN .所以∠A 1MK 为异面直线A 1M 与DN 所成的角.连接A 1C 1,AM .设正方体棱长为4,则A 1K =(42)2+32=41,MK =12DN =1242+22=5,A 1M =42+42+22=6,∴A 1M 2+MK 2=A 1K 2,∴∠A 1MK =90°. 『答案』 90°平面的基本性质图7-3-2如图7-3-2所示,四边形ABEF 和ABCD 都是梯形,BC 綊12AD ,BE 綊12F A ,G 、H 分别为F A 、FD 的中点.(1)证明:四边形BCHG 是平行四边形; (2)C 、D 、F 、E 四点是否共面?为什么? 『思路点拨』 (1)证明GH 綊BC 即可. (2)法一 证明D 点在EF 、CH 确定的平面内.法二 延长FE 、DC 分别与AB 交于M ,M ′,可证M 与M ′重合,从而FE 与DC 相交证得四点共面.『尝试解答』 (1)由已知FG =GA ,FH =HD , 得GH 綊12AD .又BC 綊12AD ,∴GH 綊BC ,∴四边形BCHG 是平行四边形. (2)法一 由BE 綊12AF ,G 为F A 中点知BE 綊GF , ∴四边形BEFG 为平行四边形, ∴EF ∥BG . 由(1)知BG ∥CH , ∴EF ∥CH , ∴EF 与CH 共面.又D ∈FH ,∴C 、D 、F 、E 四点共面.法二 如图所示,延长FE ,DC 分别与AB 交于点M ,M ′, ∵BE 綊12AF ,∴B 为MA 中点, ∵BC 綊12AD ,∴B 为M ′A 中点,∴M 与M ′重合,即FE 与DC 交于点M (M ′), ∴C 、D 、F 、E 四点共面.,1.解答本题的关键是平行四边形、中位线性质的应用.2.证明共面问题的依据是公理2及其推论,包括线共面,点共面两种情况,常用方法有:(1)直接法:证明直线平行或相交,从而证明线共面.(2)纳入平面法:先确定一个平面,再证明有关点、线在此平面内.(3)辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α、β重合.图7-3-3已知:空间四边形ABCD (如图7-3-3所示),E 、F 分别是AB 、AD 的中点,G 、H 分别是BC 、CD 上的点,且CG =13BC ,CH =13DC .求证:(1)E 、F 、G 、H 四点共面;(2)三直线FH 、EG 、AC 共点.『证明』 (1)连接EF 、GH , ∵E 、F 分别是AB 、AD 的中点, ∴EF ∥BD .又∵CG =13BC ,CH =13DC ,∴GH ∥BD , ∴EF ∥GH ,∴E 、F 、G 、H 四点共面.(2)易知FH 与直线AC 不平行,但共面, ∴设FH ∩AC =M ,∴M ∈平面EFHG ,M ∈平面ABC . 又∵平面EFHG ∩平面ABC =EG , ∴M ∈EG ,∴FH 、EG 、AC 共点.空间两条直线的位置关系图7-3-4(1)如图7-3-4,在正方体ABCD —A 1B 1C 1D 1中,M ,N 分别是BC 1,CD 1的中点,则下列判断错误的是( )A .MN 与CC 1垂直B .MN 与AC 垂直 C .MN 与BD 平行 D .MN 与A 1B 1平行(2)在图中,G 、N 、M 、H 分别是正三棱柱的顶点或所在棱的中点,则表示直线GH 、MN 是异面直线的图形有________.(填上所有正确答案的序号)图7-3-5『思路点拨』(1)连接B1C,则点M是B1C的中点,根据三角形的中位线,证明MN ∥B1D1.(2)先判断直线GH、MN是否共面,若不共面再利用异面直线的判定定理判定.『尝试解答』(1)连接B1C,B1D1,则点M是B1C的中点,MN是△B1CD1的中位线,∴MN∥B1D1,∵CC1⊥B1D1,AC⊥B1D1,BD∥B1D1,∴MN⊥CC1,MN⊥AC,MN∥BD.又∵A1B1与B1D1相交,∴MN与A1B1不平行,故选D.(2)图①中,直线GH∥MN;图②中,G、H、N三点共面,但M∉面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G、M、N共面,但H∉面GMN,因此GH与MN异面.所以图②、④中GH与MN异面.『答案』(1)D(2)②④,1.判定空间两条直线是异面直线的方法(1)判定定理:平面外一点A与平面内一点B的连线和平面内不经过该点B的直线是异面直线.(2)反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.2.对于线线垂直,往往利用线面垂直的定义,由线面垂直得到线线垂直.3.画出图形进行判断,可化抽象为直观.图7-3-6如图7-3-6所示,正方体ABCD —A 1B 1C 1D 1中,M 、N 分别为棱C 1D 1、C 1C 的中点,有以下四个结论:①直线AM 与CC 1是相交直线; ②直线AM 与BN 是平行直线; ③直线BN 与MB 1是异面直线; ④直线MN 与AC 所成的角为60°.其中正确的结论为________(注:把你认为正确的结论序号都填上).『解析』 由图可知AM 与CC 1是异面直线,AM 与BN 是异面直线,BN 与MB 1为异面直线.因为D 1C ∥MN ,所以直线MN 与AC 所成的角就是D 1C 与AC 所成的角,且角为60°.『答案』 ③④异面直线所成的角图7-3-7(2012·上海高考改编题)如图7-3-7,在三棱锥P —ABC 中,P A ⊥底面ABC ,D 是PC 的中点.已知∠BAC =π2,AB =2,AC =23,P A =2.求:(1)三棱锥P —ABC 的体积;(2)异面直线BC 与AD 所成角的余弦值.『思路点拨』 (1)直接根据锥体的体积公式求解.(2)取PB 的中点,利用三角形的中位线平移BC 得到异面直线所成的角.(或其补角) 『尝试解答』 (1)S △ABC =12×2×23=23,三棱锥P ­ABC 的体积为 V =13S △ABC ·P A =13×23×2=433.(2)如图,取PB 的中点E ,连接DE ,AE ,则ED ∥BC ,所以∠ADE (或其补角)是异面直线BC 与AD 所成的角.在△ADE 中,DE =2,AE =2,AD =2,cos ∠ADE =22+22-22×2×2=34.,1.求异面直线所成的角常用方法是平移法,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移. 2.求异面直线所成的角的三步曲为:即“一作、二证、三求”.其中空间选点任意,但要灵活,经常选择“端点、中点、等分点”,通过作三角形的中位线,平行四边形等进行平移,作出异面直线所成角,转化为解三角形问题,进而求解.3.异面直线所成的角范围是(0,π2』.直三棱柱ABC —A 1B 1C 1中,若∠BAC =90°,AB =AC =AA 1,则异面直线BA 1与AC 1所成的角等于( )A .30°B .45°C .60°D .90°『解析』 分别取AB 、AA 1、A 1C 1的中点D 、E 、F ,则BA 1∥DE ,AC 1∥EF . 所以异面直线BA 1与AC 1所成的角为∠DEF (或其补角), 设AB =AC =AA 1=2,则DE =EF =2,DF =6,由余弦定理得,∠DEF =120°. 『答案』 C两种方法异面直线的判定方法:(1)判定定理:平面外一点A与平面内一点B的连线和平面内不经过该点的直线是异面直线.(2)反证法:证明两直线不可能平行、相交或证明两直线不可能共面,从而可得两直线异面.三个作用1.公理1的作用:(1)检验平面;(2)判断直线在平面内;(3)由直线在平面内判断直线上的点在平面内;(4)由直线的直刻画平面的平.2.公理2的作用:公理2及其推论给出了确定一个平面或判断“直线共面”的方法.3.公理3的作用:(1)判定两平面相交;(2)作两平面相交的交线;(3)证明多点共线.空间点、直线、平面的位置关系是立体几何的理论基础,高考常设置选择题或填空题,考查直线、平面位置关系的判断和异面直线所成的角的求法.在判断线、面位置关系时,有时可以借助常见的几何体做出判断.思想方法之十三借助正方体判定线面位置关系(2012·四川高考)下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行『解析』如图,正方体ABCD—A1B1C1D1中,A1D与D1A和平面ABCD所成的角都是45°,但A1D与D1A不平行,故A错;在平面ABB1A1内,直线A1B1上有无数个点到平面ABCD的距离相等,但平面ABB1A1与平面ABCD不平行,故B错;平面ADD1A1与平面DCC1D1和平面ABCD都垂直,但两个平面相交,故D错,从而C正确.『答案』C易错提示:(1)盲目和平面内平行线的判定定理类比,从而误选A.(2)不会利用正方体作出判断,考虑问题不全面,从而误选B或D.防范措施:(1)对公理、定理的条件与结论要真正搞清楚,以便做到准确应用,类比得到的结论不一定正确,要想应用,必须证明.(2)点、线、面之间的位置关系可借助长方体为模型,以长方体为主线直观感知并认识空间点、线、面的位置关系,准确判定线线平行、线线垂直、线面平行、线面垂直、面面平行、面面垂直.1.(2013·济南模拟)l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1⊥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面『解析』如图长方体ABCD—A1B1C1D1中,AB⊥AD,CD⊥AD但有AB∥CD,因此A不正确;又AB∥DC∥A1B1,但三线不共面,因此C不正确;又从A出发的三条棱不共面,所以D不正确;因此B正确,且由线线平行和垂直的定义易知B正确.『答案』B2.(2012·大纲全国卷)已知正方体ABCD-A1B1C1D1中,E、F分别为BB1、CC1的中点,那么异面直线AE与D1F所成角的余弦值为________.『解析』连接DF,则AE∥DF,∴∠D1FD即为异面直线AE与D1F所成的角.设正方体棱长为a , 则D 1D =a ,DF =52a ,D 1F =52a , ∴cos ∠D 1FD =(52a )2+(52a )2-a 22·52a ·52a =35. 『答案』 35。

《平面》教学设计(优质课)

《平面》教学设计(优质课)

平面(一)教学目标1.知识与技能(1)利用生活中的实物对平面进行描述;(2)掌握平面的表示法及水平放置的直观图(3)掌握平面的基本性质及作用;(4)培养学生的空间想象能力.2.过程与方法(1)通过师生的共同讨论,使学生对平面有了感性认识;(2)让学生归纳整理本节所学知识.3.情感、态度与价值观使用学生认识到我们所处的世界是一个三维空间,进而增强了学习的兴趣.(二)教学重点、难点重点:1、平面的概念及表示;2、平面的基本性质,注意他们的条件、结论、作用、图形语言及符号语言.难点:平面基本性质的掌握与运用.(三)教学方法师生共同讨论法教学过程教学内容师生互动设计意图新课导入日常生活中有哪些东西给我们以平面的形象?师:生活中常见的如黑板、平整的操场、桌面,平静的湖面等,都给我们以平面的印象,培养学生感性认识你们能举出更多的例子吗?引导学生观察、思考、举例和相交交流,教师对学生活动给予评价,点出主题.探索新知1.平面的概念随堂练习判定下列命题是否正确:①书桌面是平面;②8个平面重叠起来要比6个平面重叠起来厚;③有一个平面的长是50m,宽是20m;④平面是绝对的平,无厚度,可以无限延展的抽象的数学概念.师:刚才大家所讲的一些物体都给我们以平面的印象,几何里所说的平面就是从这样的一些物体中抽象出来的,但是,几何里的平面是向四周无限伸展的,现在请大家判定下列命题是否正确?生:平面是没有厚度,无限延展的;所以①②③错误;④正确.加深学生对平面概念的理解.探索新知2.平面的画法及表示(1)平面的画法通常我们把水平的平面画成平行四边形,用平行四边形表示平面,其中平行四边形的锐角通常画成45°,且横边长等于其邻边长的2倍.如果一师:在平面几何中,怎样画直线?(一学生上黑板画)师:这位同学画的实质上是直线的部分,通过想象两端无限延伸而认为是一条直线,仿照直线的画法,我们可以怎样画一个平面?加深学生对平面概念的理解,培养学生知识迁移能力,空间想象能力和发散思想能力.个平面被另一个平面遮挡住. 我们常把被遮挡的部分用垂线画出来.(2)平面的表示法1:平面α,平面β.法2:平面ABCD,平面AC或平面BD.(3)点与平面的关系平面内有无数个点,平面可看成点的集合. 点A在平面α内,记作:Aα∈. 点B在平面外,记作:Bα∉. 生:画出平面的一部分,加以想象,四周无限延展,来表示平面.师:大家画一下.学生动手画平面,将有代表性的画在黑板上,教师给予点评,并指出一般画法及注意事项(作图)探索新知3.平面的基本性质公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内(1)公理1的图形如图(2)符号表示为:A lB llABααα∈⎫⎪∈⎪⇒⊂⎬∈⎪⎪∈⎭(3)公理1的作用:判断直线是否在平面内.师:我们下面学习平面的基本性质的三个公理.所谓公理,就是不必证明而直接被承认的真命题,它们是进一步推理的出发点和根据. 先研究下列问题:将直线上的一点固定在平面上,调整直线上另一点的位置,观察其变化,指出直线在何时落在平面内.生:当直线上两点在一个平面内时,这条直线落在平面内.师:这处结论就是我们要讨论通过实验,培养学生观察、归纳能力.加深学生对公理的理解与记忆.公理2:过不在一条直线上的三点有且只有一个平面.(1)公理2的图形如图(2)符号表示为:C ∉直线AB ⇒存在惟一的平面α,使得ABCααα∈⎧⎪∈⎨⎪∈⎩注意:(1)公理中“有且只有一个”的含义是:“有”,是说图形存在,“只有一个”,是说图形惟一,“有且只有一个平面”的意思是说“经过不在同一直线上的三个点的平面是有的,而且只有一个”,也即不共线的三点确定一个平面.“有且只有一个平面”也可以说成“确定一个平面.”(2)过A、B、C三点的平面可记作“平面ABC”的公理1(板书)师:从集合的角度看,公理1就是说,如果一条直线(点集)中有两个元素(点)属于一个平面(点集),那么这条直线就是这个平面的真子集.直线是由无数个点组成的集合,点P在直线l上,记作P∈l;点P在直线l外,记作P ∉l;如果直线l上所有的点都在平面α内,就说直线l在平面α内,或者说平面α经过直线l,记作lα⊂,否则就说直线l在平面α外,记作lα⊄.下面请同学们用符号表示公理1.学生板书,教师点评并完善.大家回忆一下几点可以确定一条直线生:两点可确定一条直线.师:那么几点可以确定上个平面呢?学生思考,讨论然后回答.加强学生对知识的理解,培养学生语言(符号图形)的表达能力.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.(1)公理3的图形如图(2)符号表示为:lP P lαβαβ=⎧∈⇒⎨∈⎩(3)公理3作用:判断两个平面是否相交.生1:三点可确定一个平面 师:不需要附加条件吗? 生2:还需要三点不共线 师:这个结论就是我们要讨论的公理2师投影公理2图示与符号表示,分析注意事项.师:下面请同学们观察教室的天花板与前面的墙壁,思考这两个平面的公共点有多少个?它们有什么特点. 生:这两个平面的无穷多个公共点,且所有这些公共点都在一条直线上.师:我们把这条直线称为这两个平面的公共直线.事实上,如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.(板书)这就是我们要学的公理3.学生在观察、实验讨论中得出正确结论,加深了对知识的理解,还培养了他们思维的严谨性.典例分析例1 如图,用符号表示下图图形中点、直线、平面之间的学生先独立完成,让两个学生上黑板,师生给予点评巩固所学知识位置关系.分析:根据图形,先判断点、直线、平面之间的位置关系,然后用符号表示出来. 解:在(1)中,l αβ=,a A α=,aB β=.在(2)中,l αβ=,a α⊂,b β⊂,a l P =,b l P =.随堂练习 1.下列命题正确的是( ) A .经过三点确定一个平面 B .经过一条直线和一个点确定一个平面C .四边形确定一个平面D .两两相交且不共点的三条直线确定一个平面2.(1)不共面的四点可以确定几个平面?(2)共点的三条直线可以确定几个平面?3.判断下列命题是否正确,正确的在括号内画“√”,错学生独立完成 答案: 1.D2.(1)不共面的四点可确定4个平面.(2)共点的三条直线可确定一个或3个平面.3.(1)×(2)√(3)√(4)√4.(1)A α∈,B α∉. (2)M α∉,M α∈. (3)a α⊂,a β⊂.巩固所学知识备选例题例1 已知:a ,b ,c ,d 是不共点且两两相交的四条直线,求证:a ,b ,c ,d 共面. 证明 1o 若当四条直线中有三条相交于一点,不妨设a ,b ,c 相交于一点A , 但A ∉d ,如图1.∴直线d 和A 确定一个平面α. 又设直线d 与a ,b ,c 分别相交于E ,F ,G , 则A ,E ,F ,G ∈α.∵A ,E ∈α,A ,E ∈a ,∴a ⊂α. 同理可证b ⊂α,c ⊂α.∴a ,b ,c ,d 在同一平面α内.2o 当四条直线中任何三条都不共点时,如图2.∵这四条直线两两相交,则设相交直线a ,b 确定一个平面α. 设直线c 与a ,b 分别交于点H ,K ,则H ,K ∈α. 又 H ,K ∈c ,∴c ⊂α. 同理可证d ⊂α.∴a ,b ,c ,d 四条直线在同一平面α内.说明:证明若干条线(或若干个点)共面的一般步骤是:首先根据公理3或推论,由题给αb adcG F EA a b cdα H K图1图2条件中的部分线(或点)确定一个平面,然后再根据公理1证明其余的线(或点)均在这个平面内.本题最容易忽视“三线共点”这一种情况.因此,在分析题意时,应仔细推敲问题中每一句话的含义.例2 正方体ABCD —A 1B 1C 1D 1中,对角线A 1C 与平面BDC 1交于点O ,AC 、BD 交于点M ,求证:点C 1、O 、M 共线.分析:要证若干点共线的问题,只需证这些点同在两个相交平面内即可. 解答:如图所示A 1A ∥C 1C ⇒确定平面A 1CA 1C ⊂平面A 1C 又O ∈A1C平面BC 1D ∩直线A 1C = O⇒O ∈平面BC 1D⇒O 在平面A 1C 与平面BC 1D 的交线上.AC ∩BD = M ⇒M ∈平面BC 1D 且M ∈平面A 1C平面BC 1D ∩平面A 1C = C 1M⇒O ∈C 1M ,即O 、C 1、M 三点共线.评析:证明点共线的问题,一般转化为证明这些点同是某两个平面的公共点.这样,可根据公理2证明这些点都在这两个平面的公共直线上.⇒O ∈平面A 1CMO B 1C 1D 1A 1D CBA。

高中数学_【课堂实录】《平面》教学设计学情分析教材分析课后反思

高中数学_【课堂实录】《平面》教学设计学情分析教材分析课后反思

教学设计一、学习目标1、知识与技能:了解平面的概念,会其直观图的画法与表示法,掌握平面的基本性质与推论。

2、过程与方法:以学生熟悉的例子为载体,引入平面,介绍三个公理,并引导学生用图形语言、文字语言、符号语言加以准确描述。

3、情感、态度与价值观:使学生认识到我们所处的世界是三维的,在学习中提高学生的空间想象能力;通过图形、符号、文字之间的转换,体现数学的现实意义,进而增强学生的学习兴趣。

4、教学重点:平面的基本性质与推论及其应用。

教学难点:图形语言、文字语言、符号语言的转化。

5、教学方式:实物教学、类比教学、引导探究式教学用具:纸板两个、三角板一个、四条直线(自制)、三角架、投影仪二、教学过程(一)以一副对联的形式展现本节课的学习要求:“立足课本,夯实基础,学好点线面的位置关系”“利用实物,研究平面,知图形文字符号的转化”横批是本节课的标题“2.1.1平面”设计意图:以新颖的形式展现学习要求,可以增加本节课的趣味性。

(二)学生自己阅读“三维目标,教学方式,教学用具”,教师给出“教学重点和教学难点”设计意图:使学生对整节课的框架简单了解,并强调重难点。

(三)探究发现一:观察生活实例(类比直线)引入平面1、观察教室里的桌面、黑板面,给我们怎样的直观感觉?生活中还有那些物体呈现这样的形象?(给出教室、大海、操场的图片,并引导学生观察、思考、举例和互相交流。

与此同时,教师对学生的活动给予评价。

)2、几何中的平面就是从这些物体中抽象出来的,是平的、光滑的、无大小、无厚度,是无限延展的。

(类比直线总结平面的特征)设计意图:通过观察实物,使学生感受平面的形象;通过类比给出平面的特征。

(四)平面的画法及表示1.平面的画法(类比直线的画法)通常用平行四边形表示平面,平行四边形的锐角通常化成450,且横边长是邻边长的2倍(有时也用其它图形表示平面,比如三角形)。

水平放置与竖直放置直观图的画法。

2.平面表示(三种)(1)可以用希腊字母表示为“γβα平面平面平面,,”(2)可以用平行四边形的顶点表示为“平面ABCD ”(3)可以用平行四边形的对角线表示为“平面AC 或平面BD ”设计意图:学生观看教师展示实物,并用课件动态展示实物的画法与表示,可以给学生深刻的印象。

平面的基本性质:三个公理,三个推论.

平面的基本性质:三个公理,三个推论.

资源信息表14.1 (2)平面及其基本性质——三个公理三个推论一、教学内容分析本节的重点和难点是三个公理三个推论.三个公理和三个推论是立体几何的基础,公理1确定直线在平面上;公理2明确两平面相交于一直线;公理3及三个推论给出了确定平面的条件.这些是后面学习空间直线与平面位置关系的基础.所以让学生透彻理解这些公理和性质,把现实中的具体空间问题抽象出来,初步认识直线与平面、平面与平面之间的关系并体会立体几何的基本思想,从而培养学生的空间想象能力,有利于学生更快更好的学习立体几何.二、教学目标设计理解平面的基本性质,能用三个公理三个推论解决简单的空间线面问题;了解一些简单的证明.培养空间想象能力,提高学习数学的自觉性和兴趣.三、教学重点及难点三个公理,三个推论.四、教学过程设计一、讲授新课(一)公理1如果直线l上有两个点在平面α上,那么直线l在平面α上.(直线在平面上)用集合语言表述:,,,A l B l A B l ααα⊂∈∈∈∈⇒≠ (二)公理2如果不同的两个平面α、β有一个公共点A ,那么α、β的交集是过点A 的直线l .(平面与平面相交)用集合语言表述:l A l A ∈=⋂⇒⋂∈且βαβα (三)公理3和三个推论公理3:不在同一直线上的三点确定一个平面.(确定平面)这里“确定”的含义是“有且仅有”用集合语言表述:A ,B ,C 不共线=>A ,B ,C 确定一个平面 推论1:一条直线和直线外的一点确定一个平面. 证明:设A 是直线l 外的一点,在直线l 上任取两点B 和C ,由公理3可知A ,B 和C 三点能确定平面α.又因为点,B C α∈,所以由公理1可知B ,C 所在直线l α⊂≠,即平面α是由直线l 和点 A 确定的平面.用集合语言表述:,A l A l α∉⇒确定平面 推论2:两条相交的直线确定一个平面. 用集合语言表述:,a b A a b α⋂=⇒确定平面 推论3:两条平行的直线确定一个平面. 用集合语言表述://,a b a b α⇒确定平面 (四)例题解析例1如图,正方体1111ABCD A BC D -中,E ,F 分别是111,B C BB 的中点,问:直线EF 和BC 是否相交?如果相交,交点在那个平面内?解:111111E B C E B C EF B C F B B F B C ∈⇒∈⎫⇒⊂⎬∈⇒∈⎭≠平面平面平面 又1BC B C ⊂≠平面,则直线EF 和BC 共面; 1111//EF BC BC B C EF BC EF B C E ⎫⎪⇒⎬⎪⋂=⎭与共面与相交 设直线EF 和BC 相交于点p ,则p 在直线BC 上,即点P 在平面ABCD 上.1D 1C 1B 1A DCBA FE[说明]利用公理1确定直线在平面内.例2 如图,若,,,a b c a b P αβαχβχ⋂=⋂=⋂=⋂=,求证:直线C 必过点P.解:a P b P P c P c c αββαχβχχβχβχ⋂=⎫⎫∈⎧⎪⎪⋂=⇒⇒∈⋂⎬⎨⎪⇒∈∈⎬⎩⎪⋂=⎭⎪⎪⋂=⎭[结论]三个平面两两相交得到三条交线,若其中两条交于一点,另一条必过此公共点.例3 空间三个点能确定几个平面?空间四个点能确定几个平面?解:三点共线有无数多个平面;三点不共线可以确定一个平面.所以三点可以确定一个或无数个平面.四点共线有无数个平面;有三点共线可确定一个平面;任意三点不共线能确定1个或3个平面.所以四点可以确定1个或3个或无数个平面.[说明]公理3的简单应用.例4空间三条直线相交于一点,可以确定几个平面?空间四条直线相交于一点,可以确定几个平面? 解:三条直线相交于一点可以确定1个或3个平面; 四条直线相交于一点可以确定1个、4个或6个平面. [说明]推论2的简单应用.例5 如图,AB//CD ,,AB E CD F αα⋂=⋂=,求作BC 与平面α的交点.解:连接EF 和BC ,交点即为所求BC 与平面 的交点.(公理3和公理2)[说明]推论3的简单应用.三、课堂小结1.公理1:确定直线在平面内;2.公理2:平面与平面相交于一直线;3.公理3和三个推论确定平面的条件;四、课后作业练习14.1(1)2 练习14.1(2)1,2,3五、教学设计说明本章呈现了几何研究的范围从平面扩展到空间时的基本方法.把几何研究的范围从平面扩展到空间后,增加了新的对象——平面.空间几何学是平面几何学的推广,平面几何中研究点与点、点与直线、直线与直线三种位置关系;空间几何中则增加了点与平面、直线与平面、平面与平面三中位置关系.本节的主要内容是让学生理解三个公理和三个推论,运用这些公理和推论进行一些简单的证明.αFBCDEA公理是人们在长期的生活实践的观察和检验中发现的.可以联系生活中的情景来学习三个公理,从而帮助学生学习,加深他们对公理的理解.三个公理和三个推论是空间几何学习的基础,有了这个基础,才能进一步研究空间中点与面、线与面、面与面的位置关系和度量问题.。

《平面的基本性质》教学设计

《平面的基本性质》教学设计

2013年全国中等职业学校数学课程“创新杯”教师信息化教学设计和说课大赛《平面的基本性质》教学设计武汉市第二职业教育中心学校吴晶晶2013年11月《平面的基本性质》教学设计方案教学过程教学阶段教学内容师生活动设计意图及时间复习回顾一、知识回眸观察同学们自己的作品,简单回忆上节课所学内容:平面的概念、画法、表示以及点、线、面之间的符号表示。

点、线、面是构成空间图形的基本元素,平面的性质是研究立体几何全部理论的基础,也是以后论证推理的逻辑依据。

教师呈现图片学生观看多媒体课件展示的图片2分钟以学生作品为蓝本复习上节课内容,开宗明义引出本节课的内容,引起学生听课的兴趣。

讲授新课二、合作探究活动一:观察一条直线与一个平面公共点的个数,有哪些情况?性质1:如果直线l上的两个点都在平面α内,那么这条直线l上的所有点都在平面α内。

A⇒∈l B∈lA∈αB∈αl ⊆α性质1的作用:判定直线是否在平面内判定直线上的点是否在平面内小试牛刀1:在正方体ABCD-A1B1C1D1中,判断下列命题是否正确,并说明理由:①直线A1C在平面AA1B1B内;②直线A1B在平面AA1B1B内.生活实例:家庭装修在过程中,施工人员检测地面是否平整。

施工人员准备标准直尺,在不同位置的各个方向上将直尺放在物体表面上的,看直尺边缘与物体表面有没有缝隙。

如果都不出现缝隙,那么这个表面就是平的。

让学生利用纸笔来模拟平面和直线进行操作学生观看课件展示,归纳描述内容,教师加以整理,得到性质1学生分析讨论后得出结论,选出一名学生到回答26分钟平面的基本性质抽象、枯燥,本节课设置三个活动,通过创设情境突破难点通过笔和课本直观感知原本难以想象的直线和平面的关系,有利于降低学习难度,调动学生积极性,增强学习兴趣及时领会和应用性质1体现数学来源于生活,运用于生活讲授新课活动二:若把三角板看作平面,把速写本看作另一个平面,观察两者公共点的个数。

性质2:如果两个平面有一个公共点,那么它们一定还有其他公共点,并且所有公共点的集合是过这个点的一条直线。

“平面的基本性质”教学设计、教学感悟与点评

“平面的基本性质”教学设计、教学感悟与点评

通常可画成 图 5 所示 的图形 2 .符号语 言的提炼
P∈ 1 f 卢=f n
} = {
2 符号语言 的提炼 .
A , l c 或者 成 曰 z ( 写
A∈ . ∈ J B
P∈8 J
【 P∈Z
图3
图5
AE ,BE j 直 线 A ) Bc
引入环 节的设 计 、三个公理 的教 学序列 、学生分组探 究活动 的 本要素外 ,还增加 了一个新 的要素——平面.
组 织 以及 课 后 作 业 的 布 置 设计 等五 个 方 面进 行 了总结 与 反 思 .
关键词 :观摩课 ;教学设 计;教 学实践 ;教学反 思
课型 :立体几何新授课 教学 内容 :学 习公理 1 、公理 2 、公理 3 ,引 申出公理 的三

复 习巩 固 ,引 入 新 课
要 对平面这一新要素 进行必要 的研究 与总结 ,这就 是本节课 的
板 ( 一)在上一节课 ,我们初步认识 了空间中的各类位置关系 主要任务——认识平面的基本性质.( 书课 题)
收稿 日期 :2 1— 2 0 0 11—2
作者简介 :陈杰 ( 7一 ,男,四川 宜宾人 ,中学一级教 师,主要从事 中学数学教 育与教 学研究 1 5) 9
个 推 论. 面 的 基 本 性 质 ( 个公 理 ) 三 ;
法 ,请 同学们 完成 以下 的练习题 :
课堂练 习
1 说一说一—数学 中的 “ . 平面”概念具有哪些 基本特征 ?
2 .画一 画— —
() 1 我们通常怎样画一个水平放置 的平面图形 ?用怎样 的数 ( )如果 一个 平 面被 另 一个 平 2
四、 本 课 小结 与作 业 布 置
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章立体几何
9.1.2 平面的基本性质
【教学目标】
1.在观察、实验与思辨的基础上掌握平面的三个基本性质及推论.
2.学会用集合语言描述空间中点、线、面之间的关系.
3.培养学生在文字语言、图形语言与符号语言三种语言之间的转化的能力.
【教学重点】
平面的三个基本性质.
【教学难点】
理解平面的三个基本性质及其推论.
【教学方法】
这节课主要采用实例法.结合学生身边的实物,体会平面的无限延展性,并引导学生观察身边的物体以及现象,引导学生总结出平面的三个基本性质,逐个理解其内在的思想.同时教会学生能正确用图形语言与符号语言表示文字语言.通过穿插有针对性的练习,引导学生边学边练,及时巩固,逐步掌握文字语言、图形语言与符号语言三种语言之间的转化.
30
数学基础模块下册
29
第九章立体几何
30。

相关文档
最新文档