材料力学能量法最经典解析

合集下载

材料力学能量法讲解

材料力学能量法讲解
第二组力q作用时,它在梁跨中引起的挠度为wC 。
由功的互等定理 FwC l[qdx w(x)] qAw
Aw

FwC q
5Fl4 384EI
材料力学
中南大学土木建筑学院
27
装有尾顶针的工件可简化为静不定梁。试利用互等定理
求C处的约束力。
F
解:解除C处约束的工件可 简化为悬臂梁,F、FC作为 第一组力。悬臂梁在C处加 单位力1作为第二组力。
三、功能原理
条 件:(1)弹性体(线弹性、非线弹性) (2)静载荷 —— 可忽略弹性体变形过程中的 能量损失。
原 理:外力功全部转化成弹性体的应变能。 Ve = W
材料力学
中南大学土木建筑学院
9
已知:EI = 常数,用功能原理
F
计算A点的挠度。
A
B
解:①建立坐标系
wA
x
l
②列弯矩方程 M =-Fx ( 0 ≤ x < l )

1 2
Fi Di

1 2
FjD
j
Clapeyron原理
外力功和变形能不符合叠加原理
材料力学
中南大学土木建筑学院
25
F D F D i ij
j ji
功的互等定理
注:力系、位移均为广义的。
线弹性体上甲力在乙力引起的位移上作的功,等于 乙力在甲力引起的位移上作的功。一般地,第一组 力在第二组力引起的相应位移上所作的功,等于第 二组力在第一组力引起的相应位移上所作的功。

n i 1
1 2
Fi Di
材料力学
中南大学土木建筑学院
17
设各外载荷按相同的比例,从零开始缓慢增加到最 终值。即任一时刻各载荷的大小为: F1*=lF1, F2*=lF2 ,… Fi*=lFi ,…Fn*=lFn

材料力学第十三章 能 量 法

材料力学第十三章 能 量 法

Vε Vε (D1 , D 2 ,, D i ,, D n )
假设位移 Di 有一微小增量 dDi 其它位移均保持不变 梁的应变能也有一增量 dVe
外力功的增量
d W Fi d D i
Ve d Ve d Di D i
d Ve d W
Ve Fi D i
卡氏第一定理
卡氏第一定理

l
0
F ( x) T ( x) dx dx 0 2GI 2 EA p
l
2 N
2
F ( x) M ( x) d x s dx 0 2 EI 0 2GA
l l
2
2 S
应变能恒为正 ,是内力或外力的二次函数。
非线性函数
一般情况:非线性弹性体
s s1 s e
外力作功:
de e 1
DAB 方向水平向外
§3-4 用能量法解超静定系统
解超静定问题要综合考虑三方面 几何方面 —— 建立变形几何相容条件 物理方面 —— 建立补充方程 静力学方面 —— 建立平衡方程
等直杆,发生基本变形,材料为线性弹性体 非等直杆或杆系结构,受较复杂荷载作用, 材料为非线性弹性体 易 难
能量法
例1:求图示超静定梁支座处的约束力。
③ 先加M,后加F
A
M AM
F
B
AF DCF
AM
Ml 3EI
D CF
Fl 48 EI
3
AF
Fl 16 EI
2
1 1 应变能: V M ε AM ( FD CF M AF ) 2 2 2 3 2 2 1 F l M l MFl ( ) EI 96 6 16
Ve Fi D i

材料力学第8章-能量法

材料力学第8章-能量法

能量原理的应用
能量原理可以应用于弯曲、拉伸、压缩等各种不同的力学问题。通过计算系统的势能和应变能,可以分 析材料的应力分布、变形情况和稳定性。
弹性势能和弹性材料的能量原 理
弹性势能是指弹性材料在外力作用下产生的能量。通过应变能和弹性势能之 间的关系,可以推导出弹性材料的力学性质和变形方程。
弹塑性材料的能量原理
材料力学第8章-能量法
材料力学的能量法是研究材料变形和力学行为的重要方法,它具有广泛的应 用。本章将介绍能量法的基本概念和应用,以及弹性和弹塑性材料的能量原 理。
能量法的基本概念
能量法是一种力学分析方法,通过考虑系统的能量变化,推导出材料的力学 性质和变形行为。能量法的基本概念包括势能和应变能的概念,以及能量守 恒定律。
通过能量法,我们可以分析臂梁在外力作用下的弯曲行为。通过计算和优化梁的几何参数和材料性质, 可以设计出更加稳定和高效的悬臂梁结构。
总结和要点
能量法是一种重要的材料力学分析方法,它通过考虑材料的能量变化,分析 材料的力学性质和变形行为。
对于弹塑性材料,除了考虑弹性势能外,还需要考虑应变能和塑性势能的贡献。能量原理可以用来分析 弹塑性材料的强度和变形行为。
能量法在材料力学中的重要性
能量法是材料力学中的一种基本方法,它可以用来分析各种不同类型的力学问题,包括材料的变形、破 坏和失稳行为。掌握能量法对于研究和设计材料结构至关重要。
应用实例:悬臂梁弯曲问题的分析

材料力学能量法

材料力学能量法

材料力学能量法材料力学能量法是材料力学中的一种重要分析方法,它通过能量原理来研究材料的力学性能和行为。

能量法在工程应用中具有广泛的意义,可以用于解决各种复杂的材料力学问题。

本文将对材料力学能量法进行详细介绍,包括其基本原理、应用范围和计算方法等内容。

首先,我们来看一下材料力学能量法的基本原理。

能量法是以能量守恒原理为基础的一种力学分析方法,它认为在任何力学系统中,系统的总能量始终保持不变。

在材料力学中,通过能量方法可以方便地求解结构的变形、应力分布和稳定性等问题。

能量法的基本原理为系统的总能量等于外力对系统做功的总和,即系统的内能和外力对系统做功的总和保持恒定。

其次,材料力学能量法的应用范围非常广泛。

它可以用于分析材料的弹性、塑性、断裂等力学性能,也可以用于研究材料的疲劳、蠕变、冷却等行为。

在工程实践中,能量法可以应用于各种材料的设计、优化和性能评估,如金属材料、复合材料、土木工程材料等。

通过能量法分析,可以更好地理解材料的力学行为,为工程设计和材料选型提供科学依据。

最后,我们来介绍一下材料力学能量法的计算方法。

能量法的计算方法主要包括弹性能量法、弹塑性能量法和断裂能量法等。

在应用中,需要根据具体问题选择合适的能量方法,并结合数值计算和实验验证进行分析。

在计算过程中,需要考虑材料的本构关系、加载条件和边界约束等因素,以确保计算结果的准确性和可靠性。

综上所述,材料力学能量法是一种重要的力学分析方法,具有广泛的应用前景和深远的理论意义。

通过能量法分析,可以更好地理解材料的力学性能和行为,为工程实践提供科学依据。

在今后的研究和应用中,我们需要进一步深入理解能量法的基本原理和计算方法,推动其在材料力学领域的发展和应用。

材料力学第8章-能量法

材料力学第8章-能量法
能量法/超静定问题 力法
能量法/超静定问题 力法
A
B
F
C
A
B
F
X1
A
B
F
X1
例 如图超静定梁, EI为常数,试求B点的约束反力。
解: (1) 判断超静定次数:
一次超静定!
(2) 解除多余约束,构造静定基:
B. 解除B点的可动铰支座,补充横向集中反力
A. 解除A点固定端的转动约束变为固定铰支座, 补充反力偶作用
单位力偶作用下的弯矩图
力F作用下的弯矩图
能量法/超静定问题 力法
Fa/2-Fa2/[4(a+b)]
Fa2/[4(a+b)]
1
1
1
Fa/2
根据力法正则方程:
M10
MF
根据图形互乘法:
所以有:
则:
弯矩图如图所示
能量法/超静定问题 力法
A,B两点有无相对水平位移?如何计算?
F
X1
X1
F/2
F/2
能量法/超静定问题 力法
qa2/2
qa2/2
a
a
1
a
1
解:为两次超静定问题。解除A点的约束, 并作用水平和铅垂的单位集中力。
在静定基上分别作均布力和两个单位集中 力的弯矩图如下图所示。
令水平力为‘第一’个未知反力,铅垂力为第二个。
能量法/超静定问题 力法
根据图形互乘法有:
1
代入力法正则方程:
2
有:
3
能量法/超静定问题 力法
F/2
F/2
结构由三次超静定转化为一次超静定问题。
能量法/超静定问题 力法
1
1
1

材料力学第26讲 Chapter3-1第三章 能量法(应变能 余能)

材料力学第26讲  Chapter3-1第三章 能量法(应变能 余能)

i
Ti 2li 2Gi I pi
变截面直杆
V
l
T2
dx
0 2G(x)I p (x)
变截面且变外力直杆
V
l T (x)2 dx
0 2G(x)I p (x)
11
3. 弯曲变形杆件应变能的计算
W
1 2
M e
l Mel
W M e2l 2EI
Me
EI
W V
V
M e2l 2EI
Me W
O
12
V W
7
一、 线弹性问题
1. 轴向拉压杆件应变能的计算
W 1 Fl
2
l Fl
W F 2l 2EA
F
EA
W=V 功能原理
V
EAl 2
2l
F 2l V 2EA
O
F
l
F W
l l
8
其它情形轴向拉压变形时杆件应变能的计算
分段直杆 变截面直杆
V
i
FNi 2li 2Ei Ai
V
l
FN2
dx
BA
EA1 lBC EA1
A2 , E, l
C
解法二:
将力作用到B点, 求A点的位移
A
lAC lBC
B
lAC lBC
Fl EA1
29
二、非线性弹性问题
应变能的计算(利用计算功的形式):
V W
1 Pd
0
P-广义力(力,力偶)
-广义位移(线位移,角位移)
30
1. 几何非线性问题
P
P
P1 W
O
其它情形弯曲变形时杆件应变能的计算
分段直杆

材料力学第10章能量法介绍

材料力学第10章能量法介绍

A
(4)能量守恒:W=U
1 1 67 F 2 FvB 2 2 20 EA
67 F vB 20 EA
1.6m C 1.2m
B
F
U vB F
10.2 卡氏 (Castigliano)定理
10.2.1 卡氏第一定理

卡氏定理
1879年,意大利工程师Alerto Castigliano发表了两个 “内功的积分系数定理”—卡氏定理 建立应变能和外力、位移的关系
第一步:加增量dPn 应变能
1 dPn dn 2
n
第二步:施加外荷载。应变能 U ndPn 该步总能量
U 2total
1 U ndPn dPn dn U ndPn 2
3. 应变能与加载次序无关
U1total U 2total
U U dPn U ndPn Pn U n Pn

例10-2

图示悬臂刚架,已知F、a、EI,求应变能和C点竖直位 移(忽略AB杆段的压缩应变能)。

解:
(1)分段写弯矩函数
B
a
x2
F
x1 C
BA段:
M ( x2 ) Fa
a
A
CB段:
M ( x1 ) Fx1
(2)应变能
2 M 2 dx 2 a ( Fx ) dx a ( Fa) dx 1 1 U 2 l 2 EI 0 0 2EI 2 EI 2 F 2a3 3 EI
10.1 杆件的弹性应变能 10.2 卡氏定理 10.3 冲击应力与冲击韧性

功和能
弹性体在外力作用下产生变形,变形过程中外力所 做的功=外力功W 外力功转化为弹性势能存储于杆件内,该弹性势能= 应变能U(内力的功) 能量守恒: U = W

材料力学 第11章 能量法讲解

材料力学 第11章 能量法讲解
x Me
A
l FAy
B FBy
(1) 应变能计算
梁的约束力
FA

FB

Me l
梁的弯矩方程
代入应变能公式
M (x)

FA x M e

x Me(l
1)

M 2(x) dx
l 2EI
1 2EI
l 0
M
2 e
(
x l
1)2 dx

M e2l 6EI
15/65
11.1 外力功与应变能 【例11-1】解
10/65
11.1 外力功与应变能
11.1.3 克拉贝依隆原理
F1Δ12 F2 Δ21
W

1 2
F1 Δ11


1 2
F2 Δ22

F1 Δ12

上式可推广到有多个广义力共同作用于线性弹性体的情况 Vε W

W

1 2
Fi Δi
上式称为克拉贝依隆原理。
式中为全部外力(F1,F2,…,Fi,…,Fn)在广义力Fi处
l GI p
M xdq
2
w M EI
12/65
11.1 外力功与应变能
M(x)
T(x) FN(x) FN(x)
11.1.4 杆件的应变能
dq
T(x) M(x)
dj
dx
dx dd
dx
dx
dVε

FN2 (x)dx 2EA

T 2 (x)dx 2GIp

M 2 (x)dx 2EI
则整个圆截面杆的应变能 Vε
FN2 (x) dx l 2EA
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2α变化范围是0~720度。 α是0~360度,因此有4个 值。满足tan2 α=1
找到外力偶Me与扭转角之间的关 系即可求出扭转刚度
刚刚闭合时的压力可以很容易求出,重点是分析应变读数与 压力的关系,进而得到和闭合量的关系。
每根杆都沿杆的方 向线变形,后旋转 到变形后的位置。 变形用作垂线代替。
精品
此处注意CD杆 变形转换后是 BC杆变形的一 半。
精品
精品
广义胡克定律的应用。 每一点的应力状态为
p
精品
p
此题仍然是有两个变 量,x是所求任意截面 的挠度值,而ξ是任意 截面的弯矩值,摩尔 积分是对ξ积分。
精品
精品
此类题目重点是分析圆盘 及2根杆的受力情况及变 形情况。
精品
该表达式上课过 程中没有出现过, 但是很容易推导 出来。
能量法与超静定
利用力做功求变形
法能 量
利用定理求变形 互等定理
其他
1、7,46 4,5,8,9
50,51 2,6,25
定超 静
拉压杆变形相关 弯扭相关 温度应力 装配应力
利用对称性
一般刚架超静定
10,11,16,19,20,22,26,28 3,12,13,14,17,18,23,27,35,36
29,30,31,32,33,34, 37,38,39,40,41,
15,42,43,44,45,47,48,49 21,24
该类问题一般应力或者内力已知,根据应力或者内力计算应 变能,利用应变能等于外力功计算变形。
如果是均匀壁厚的薄壁圆筒,可以直接套用公式,而此处 需要首先找到厚壁与薄壁上应力的大小关系,应力合成等 于内力偶进行分析。
应力已知,计算应变能从而得到外力 功,最终获得力作用下的变形。
该表达式上课过 程中没有出现过, 但是很容易推导 出来。积分求得 挠曲线后可得到 弯矩方程,进而 计算应变能。
极坐标方程是给一个 角度能够确定一个挠 度。因此该问题是求 任意位置角的径向变 形。
注意2个角度φ和θ的意义。 Φ用于表 示力F作用下任意位置上的弯矩。而θ 是用于表示任意位置的挠度,单位力 作用的位置。摩尔积分应该是对Φ积 分。 Φ在0到360度变化。
精品
精品
精品
精品
精品
精品
精品
精品
精品
精品
精品
总算结束了!
精品
精品
精品
精品
精品
此题目的重点是分析的方法和思路。由弹簧变形 与力和力矩之间的关系找到变形协调方程求解超 静定问题。
精品
1M EI
'' M EI
y
上边缘处:
-h
= ( T1 -T0)=
2
h
下边缘处:
= (
T2 -T0)=
2
精品

T2 -T1)=

1 = T h
精品
BC段由温度引起的变 形与Ab段相同,但是 应该是Ab段变形的基 础上再叠加Bc段变形。
相关文档
最新文档