一次函数教案
八年级《一次函数》教学设计

课堂总结,发展潜能篇一1.y=k某+b(k,b是常数,k≠0)是一次函数.2.一次函数包含了正比例函数,即正比例函数是一次函数在b=0时的特例一次函数的概念优秀教学设计篇二教学目标1、了解正比例函数y=k某的图象的特点。
2、会作正比例函数的图象。
3、理解一次函数及其图象的有关性质。
4、能熟练地作出一次函数的图象教学重点正比例函数的图象的特点。
教学难点一次函数的图象的性质。
教学过程:1、新课导入上节课我们学习了如何画一次函数的图象,步骤为①列表;②描点;③连线。
经过讨论我们又知道了画一次函数的图象不需要许多点,只要找两点即可,还明确了一次函数的代数表达式与图象之间的对应关系。
本节课我们进一步来研究一次函数的图象的其他性质。
2、讲授新课(1)首先我们来研究一次函数的特例,正比例函数有关性质。
请大家在同一坐标系内作出正比例函数y=某,y=某,y=3某,y=-2某的图象。
如图:3、议一议(1)正比例函数y=k某的图象有什么特点?(都经过原点)(2)你作正比例函数y=k某的图象时描了几个点?(至少两点)(3)直线y=某,y=某,y=3某中,哪一个与某轴正方向所成的锐角最大?哪一与某轴正方向所成的锐角最小?4、小结:正比例函数的图象有以下特点:(1)正比例函数的图象都经过坐标原点。
(2)作正比例函数y=k某的图象时,除原点外,还需找一点,一般找(1,k)点。
(3)在正比例函数y=k某图象中,当k>0时,k的值越大,函数图象与某轴正方向所成的锐角越大。
(4)在正比例函数y=k某的图象中,当k>0时,y的值随某值的增大而增大;当k<0时,y的值随某值的增大而减小。
5、做一做在同一直角坐标系内作出一次函数y=2某+6,y=-某,y=-某+6,y=5某的图象。
一次函数y=k某+b的图象的特点:分析:在函数y=2某+6中,k>0,y的值随某值的增大而增大;在函数y=-某+6中,y的值随某值的增大而减小。
一次函数概念教案

一次函数概念教案【篇一:《一次函数的定义》教学设计】《一次函数的定义》教学设计一、教材分析函数是近代数学最基本的概念之一,在数学发展过程中起着十分重要的作用,许多数学分支(如代数、三角、解析几何、微积分、实变函数、复变函数等)都是以函数为中心展开研究的。
一次函数属于《数学课程标准》中“数与代数”领域,是最基本的、最简单的函数.一次函数的概念是本章的重点。
教材在前面首先安排了函数及正比例函数的内容,讨论了正比例函数的定义、图象、性质等,接着本节学习一次函数的定义、图象、性质和函数解析式,它既是对函数概念的进一步理解,又是特殊的一次函数——正比例函数到一般的一次函数的拓展,它还是今后继续学习“用函数观点看方程(组)与不等式”的基础,在本章中起着承上启下的作用.它也是将来学习二次函数,反比例函数的基础。
本节教学内容还是学生进一步体会“函数思想”“类比思想”“数形结合思想”的很好素材。
二、教学目标(1)理解一次函数的概念(2)体会函数思想、特殊到一般的思想及类比思想(3)积累建立一次函数模型和类比学习的经验.三、学情分析本节课是以类比的思想方法为主线,研究什么是一次函数. 这是在学生学习了函数、正比例函数的定义、图象与性质,并初步了解了如何研究一个具体函数(从定义到图象与性质)的基础上学习的。
学生原有知识与学习经验对本节课的类比学习奠定扎实的学习基础,在前后知识的类比学习中,学生可以进一步理解函数的知识,体验研究函数的基本思路,促进学生的认知结构的不断的完善,进而发展学生的类比、抽象与概括能力.而这些目标的达成必须是在充分发挥学生的主体作用,给予学生足够的活动、探究、交流、反思的时间与空间,让在学生在类比中学习、在类比中思考的前提下才能完成的。
四、教学重难点教学重点:一次函数的概念教学难点:理解一次函数的概念五、教学过程设计1、回顾提升,为类比学习做铺垫.引言:同学们,我们学过正比例函数,那么关于正比例函数你都学习了哪些知识呢?(学生发言:定义、图象、性质、思想方法、应用)师:这些内容之间有什么联系?(学生发言,教师补充)引例:某登山队大本营所在地的气温为5oc,海拔每升高1km气温下降6oc,登山队员由大本营向上登高xkm时,他们所在的位置的气温是yoc,试写出y与x之间的关系式。
一次函数的教案

一次函数的教案一、教学目标:1. 理解一次函数的概念,能够写出一次函数的一般形式。
2. 能够根据实际问题建立一次函数的数学模型,并能解决实际问题。
3. 理解直线的斜率和截距的概念,并能够利用斜率和截距来确定一次函数的特征。
4. 能够应用一次函数的特征描述实际问题。
二、教学重点与难点:1. 一次函数的概念和一般形式的掌握。
2. 斜率和截距的理解和确定。
3. 实际问题的数学建模。
三、教学过程:1. 导入新课:教师出示一张图纸,上面有一段直线并画上坐标轴。
引导学生观察这条直线并说明它是一种什么样的变化规律。
2. 探究一次函数:教师让学生观察这条直线上的点,引导学生观察直线上的两个点(x_1, y_1)和(x_2, y_2),并让学生计算出这两个点的斜率。
根据计算结果,引导学生讨论这两个点的斜率是否相同,进一步引导学生得出一次函数的特征:“两点间直线上的点的斜率相等”。
教师在黑板上写下这个特征,引导学生观察这个特征的推广形式:若过直线上的任意两个点,其斜率相等,则这条直线是一次函数。
3. 一次函数的概念与表达形式:教师向学生说明一次函数的定义:“若函数y=f(x)可以表示为y=kx+b(k和b为常数,k≠0),则称f(x)为一次函数。
”教师在黑板上写下一次函数的一般形式y=kx+b,并向学生解释k和b的含义:k是函数的斜率,表示直线的斜率大小;b是函数的截距,表示直线与y轴的交点。
让学生猜测当k为0时,这个函数是什么形式?学生猜测后,教师告知k为0时,这个函数是一条与x轴平行的直线,也就是常数函数。
4. 一次函数的特征与一般形式的联系:教师让学生观察一个具体的实例,求解这个一次函数的特征。
教师向学生展示一个具体的函数式y=2x+1,并引导学生观察这个函数式对应的一条直线。
然后,教师向学生提问:这个直线的斜率是多少?截距是多少?学生根据直线的特征给出答案。
教师向学生解释如何从一般形式y=kx+b中确定直线的斜率和截距。
一次函数的图象教案(优秀4篇)

一次函数的图象教案(优秀4篇)一次函数篇一〖教学目标〗◆1、理解正比例函数、一次函数的概念。
◆2、会根据数量关系,求正比例函数、一次函数的解析式。
◆3、会求一次函数的值。
〖教学重点与难点〗◆教学重点:一次函数、正比例函数的概念和解析式。
◆教学难点:例2的问题情境比较复杂,学生缺乏这方面的经验。
〖教学过程〗比较下列各函数,它们有哪些共同特征?提示:比较所含的代数式均为整式,代数式中表示自变量的字母次数都为一次。
定义:一般地,函数叫做一次函数。
当时,一次函数就成为叫做正比例函数,常数叫做比例系数。
强调:(1)作为一次函数的解析式,其中中,哪些是常量,哪些是变量?哪一个是自变量,哪一个是自变量的函数?其中符合什么条件?(2)在什么条件下,为正比例函数?(3)对于一般的一次函数,它的自变量的取值范围是什么?做一做:下列函数中,哪些是一次函数?哪些是正比例函数?系数和常数项的值各为多少?例1:求出下列各题中与之间的关系,并判断是否为的一次函数,是否为正比例函数:(1)某农场种植玉米,每平方米种玉米6株,玉米株数与种植面积之间的关系。
(2)正方形周长与面积之间的关系。
(3)假定某种储蓄的月利率是0.16%,存入1000元本金后。
本钱与所存月数之间的关系。
此例是为了及时巩固一次函数、正比例函数的概念,相对比较容易,可以让学生自己完成。
解:(1)因为每平方米种玉米6株,所以平方米能种玉米株。
得,是的一次函数,也是正比例函数。
(2)由正方形面积公式,得,不是的一次函数,也不是正比例函数。
(3)因为该种储蓄的月利率是0.16%,存月所得的利息为,所以本息和,是的一次函数,但不是的正比例函数。
练习:1.已知若是的正比例函数,求的值。
2.已知是的一次函数,当时,;当时,(1)求关于的一次函数关系式。
(2)求当时,的值。
例2:按国家1999年8月30日公布的有关个人所得税的规定,全月应纳税所得额不超过500元的税率为5%,超过500元至XX元部分的税率为10% (1)设全月应纳税所得额为元,且。
一次函数教案优秀3篇

一次函数教案优秀3篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!一次函数教案优秀3篇作为一位杰出的老师,就难以避免地要准备教学设计,教学设计是实现教学目标的计划性和决策性活动。
一次函数教案【优秀10篇】

一次函数教案【优秀10篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!一次函数教案【优秀10篇】在数学的学习中等差求和公式是学习的重点的内容,以下内容是本店铺为您带来的10篇《一次函数教案》,亲的肯定与分享是对我们最大的鼓励。
一次函数的图像和性质教案

一次函数的图像和性质教案第一章:一次函数的定义和表达式1.1 引入一次函数的概念通过实际生活中的问题,如“小华每天步行速度为5km/h,他从家出发,以这个速度行走,多少小时后他到达图书馆?”引入一次函数的概念。
1.2 一次函数的表达式解释一次函数的表达式为y = kx + b,其中k是斜率,b是截距。
举例说明斜率和截距的含义和计算方法。
第二章:一次函数的图像2.1 绘制一次函数的图像利用图形计算器或绘图软件,绘制一次函数y = 2x + 3的图像。
解释图像的斜率和截距与函数表达式之间的关系。
2.2 分析一次函数的图像特征讨论一次函数图像的斜率和截距对图像形状和位置的影响。
探索一次函数图像的单调性和截距的正负对图像与坐标轴的交点情况。
第三章:一次函数的性质3.1 斜率的性质解释斜率的含义:斜率表示函数图像的倾斜程度。
探讨斜率的正负与函数图像的左降右升关系。
3.2 截距的性质解释截距的含义:截距表示函数图像与y轴的交点。
探讨截距的正负与函数图像与y轴的交点位置。
第四章:一次函数的应用4.1 线性方程的解法解释线性方程的解法,包括代入法、消元法和图解法。
通过例题演示线性方程的解法并解释解的意义。
4.2 实际问题中的应用以实际问题为例,如“一辆汽车以60km/h的速度行驶,行驶3小时后停止,求汽车行驶的距离。
”演示一次函数的应用。
第五章:一次函数的综合练习5.1 练习题提供一些关于一次函数的练习题,包括选择题、填空题和解答题。
解答这些练习题并解释答案的正确性。
5.2 小组讨论分学生为小组,让他们讨论一次函数的图像和性质,并分享他们的发现。
鼓励学生提出问题并互相解答,促进学生之间的互动和学习。
第六章:一次函数的斜率和截距的计算6.1 斜率的计算解释斜率的计算方法:斜率k等于函数图像上任意两点的纵坐标之差与横坐标之差的比值,即k = (y2 y1) / (x2 x1)。
通过例题演示如何计算一次函数的斜率。
6.2 截距的计算解释截距b的计算方法:截距b等于函数图像与y轴的交点的纵坐标,即当x = 0时的y值。
第四章一次函数(教案)

-从实际问题中抽象出一次函数模型。学生可能难以把握如何将描述问题的文字转化为数学表达式。
-数形结合的思维方式。对于如何通过图像来直观理解抽象的解析式,以及如何通过解析式来推理图像特征,学生可能感到挑战。
举例:在分析一次函数图像的平移时,难点在于理解斜率k不变,截距b变化时图像如何沿y轴移动;截距b不变,斜率k变化时图像如何旋转。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考,例如“一次函数如何帮助我们解决交通流量问题?”
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
-掌握图像的平移、斜率与截距的变化规律
3.一次函数的应用
-利用一次函数解决实际问题,如距离、速度等
-一次函数在实际情境中的图像分析,如气温变化、消费问题等
4.一次函数与其他数学知识的综合运用
-与不等式的结合:求解一次不等式,分析解集
-与坐标系、几何知识的结合:分析图像与坐标轴的交点、两点间的距离等
5.综合练习与拓展
今天的学习,我们了解了第四章一次函数的基本概念、重要性数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在本次教学过程中,我发现学生们对一次函数的概念和图像性质表现出较大的兴趣,但同时也暴露出一些理解上的难点。首先,斜率k和截距b的概念对于学生来说是一个挑战,他们需要时间来消化这两个参数对一次函数图像的具体影响。在讲授这一部分时,我应该更加注意用生活中的实例来解释这两个概念,以便学生能够更加直观地理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数教案(一)教学目标(一)教学知识点1.掌握一次函数解析式的特点及意义.2.知道一次函数与正比例函数关系.3.理解一次函数图象特征与解析式的联系规律.4.会用简单方法画一次函数图象.(二)能力训练要求1.通过类比的方法学习一次函数,体会数学研究方法多样性.2.进一步提高分析概括、总结归纳能力.3.利用数形结合思想,进一步分析一次函数与正比例函数的联系,从而提高比较鉴别能力.教学重点1.一次函数解析式特点.2.一次函数图象特征与解析式联系规律.3.一次函数图象的画法.教学难点1.一次函数与正比例函数关系.2.一次函数图象特征与解析式的联系规律.教学方法合作─探究,总结─归纳.教学过程Ⅰ.提出问题,创设情境问题:某登山队大本营所在地的气温为15℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.试用解析式表示y•与x的关系.分析:从大本营向上当海拔每升高1km时,气温从15℃就减少6℃,那么海拔增加xkm时,气温从15℃减少6x℃.因此y与x的函数关系式为:y=15-6x (x≥0)当然,这个函数也可表示为:y=-6x+15 (x≥0)当登山队员由大本营向上登高0.5km时,他们所在位置气温就是x=0.5时函数y=-6x+15的值,即y=-6×0.5+15=12(℃).这个函数与我们上节所学的正比例函数有何不同?它的图象又具备什么特征?我们这节课将学习这些问题.Ⅱ.导入新课我们先来研究下列变量间的对应关系可用怎样的函数表示?它们又有什么共同特点?1.有人发现,在20~25℃时蟋蟀每分钟鸣叫次数C与温度t(℃)有关,即C•的值约是t的7倍与35的差.2.一种计算成年人标准体重G(kg)的方法是,以厘米为单位量出身高值h减常数105,所得差是G的值.3.某城市的市内电话的月收费额y(元)包括:月租费22元,拨打电话x 分的计时费(按0.01元/分收取).4.把一个长10cm,宽5cm的矩形的长减少xcm,宽不变,矩形面积y(cm2)随x的值而变化.这些问题的函数解析式分别为:1.C=7t-35.2.G=h-105.3.y=0.01x+22.4.y=-5x+50.它们的形式与y=-6x+15一样,函数的形式都是自变量x的k倍与一个常数的和.如果我们用b来表示这个常数的话.•这些函数形式就可以写成:y=kx+b(k≠0)一般地,形如y=kx+b(k、b是常数,k≠0•)的函数,•叫做一次函数(•linearfunction).当b=0时,y=kx+b即y=kx.所以说正比例函数是一种特殊的一次函数.练习:1.下列函数中哪些是一次函数,哪些又是正比例函数?(1)y=-8x.(2)y=8x.(3)y=5x2+6.(3)y=-0.5x-1.2.一个小球由静止开始在一个斜坡向下滚动,其速度每秒增加2米.(1)一个小球速度v随时间t变化的函数关系.它是一次函数吗?(2)求第2.5秒时小球的速度.3.汽车油箱中原有油50升,如果行驶中每小时用油5升,求油箱中的油量y(升)随行驶时间x(时)变化的函数关系式,并写出自变量x的取值范围.y 是x的一次函数吗?解答:1.(1)(4)是一次函数;(1)又是正比例函数.2.(1)v=2t,它是一次函数.(2)当t=2.5时,v=2×2.5=5所以第2.5秒时小球速度为5米/秒.3.函数解析式:y=50-5x自变量取值范围:0≤x≤10y是x的一次函数.[活动一]活动内容设计:画出函数y=-6x与y=-6x+5的图象.并比较两个函数图象,探究它们的联系及解释原因.活动设计意图:通过活动,加深对一次函数与正比例函数关系的理解,认清一次函数图象特征与解析式联系规律.教师活动:引导学生从图象形状,倾斜程度及与y轴交点坐标上比较两个图象,•从而认识两个图象的平移关系,进而了解解析式中k、b在图象中的意义,体会数形结合在实际中的表现.学生活动:引导学生从图象形状,倾斜程度及与y轴交点坐标上比较两个图象,•从而认识两个图象的平移关系,进而了解解析式中k、b在图象中的意义,体会数形结合在实际中的表现.比较上面两个函数的图象的相同点与不同点。
结果:这两个函数的图象形状都是______,并且倾斜程度_______.函数 y=-6x的图象经过原点,函数 y=-6x+5的图象与 y轴交于点_______,即它可以看作由直线y=-6x 向_平移__个单位长度而得到.比较两个函数解析式,试解释这是为什么.猜想:一次函数y=kx+b的图象是什么形状,它与直线y=kx有什么关系?结论:一次函数y=kx+b的图象是一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移b绝对值个单位长度而得到(当b>0时,向上平移;当b< 0时,向下平移)。
画出函数y=2x-1与y=-0.5x+1的图象.过(0,-1)点与(1,1)点画出直线y=2x-1.过(0,1)点与(1,0.5)点画出直线y=-0.5x+1.[活动二]活动内容设计:画出函数y=x+1、y=-x+1、y=2x+1、y=-2x+1的图象.由它们联想:一次函数解析式y=kx+b(k、b是常数,k≠0)中,k的正负对函数图象有什么影响?活动设计意图:通过活动,熟悉一次函数图象画法.经历观察发现图象的规律,并根据它归纳总结出关于数值大小的性质.体会数形结合的探究方法在数学中的重要性,进而认识理解一次函数图象特征与解析式联系.目的:引导学生从函数图象特征入手,寻求变量数值变化规律与解析式中k•值的联系.结论:图象:规律:当k>0时,直线y=kx+b由左至右上升;当k<0时,直线y=kx+b由左至右下降.性质:当k>0时,y随x增大而增大.当k<0时,y随x增大而减小.Ⅲ.随堂练习1.直线y=2x-3与x轴交点坐标为_______,与y轴交点坐标为_________,•图象经过第________象限,y随x增大而_________.2.分别说出满足下列条件的一次函数的图象过哪几个象限?(1)k>0 b>0 (2)k>0 b<0(3)k<0 b>0 (4)k<0 b<0解答:1.(1.5,0)(0,-3)三、四、一增大2.(1)三、二、一(2)三、四、一(3)二、一、四(4)二、三、四小结本节学习了一次函数的意义,知道了其解析式、图象特征,并学会了简单方法画图象,进而利用数形结合的探究方法寻求出一次函数图象特征与解析式的联系,这使我们对一次函数知识的理解和掌握更透彻,也体会到数学思想在数学研究中的重要性.课后作业习题11.2─3、4、8题.活动与探究在同一直角坐标系中画出下列函数图象,并归纳y=kx+b(k、b是常数,k ≠0)中b对函数图象的影响.1.y=x-1 y=x y=x+12.y=-2x+1 y=-2x y=-2x-1过程与结论:b决定直线y=kx+b与y轴交点的坐标(0,b).当b>0时,交点在原点上方.当b=0时,交点即原点.当b<0时,交点在原点下方.备用题:1.若函数y=mx-(4m-4)的图象过原点,则m=_______,此时函数是______•函数.若函数y=mx-(4m-4)的图象经过(1,3)点,则m=______,此时函数是______函数.2.若一次函数y=(1-2m)x+3图象经过A(x1、y1)、B(x2、y2)两点.当x1<x2时,y1>•y2,则m的取值范围是什么?答案:1.1 正比例13一次2.解:∵当x1<x2时,y1>y2,∴y随x增大而减小.据一次函数性质可知:只有当k<0时,y随x增大而减小故1-2m<0∴m>12.毛§11.2.2 一次函数(二)教学目标(一)教学知识点1.学会用待定系数法确定一次函数解析式.2.具体感知数形结合思想在一次函数中的应用(二)能力训练目标1.经历待定系数法应用过程,提高研究数学问题的技能.2.体验数形结合,逐步学习利用这一思想分析解决问题.教学重点待定系数法确定一次函数解析式.教学难点灵活运用有关知识解决相关问题.教学方法归纳─总结教具准备多媒体演示.教学过程1.提出问题,创设情境我们前面学习了有关一次函数的一些知识,掌握了其解析式的特点及图象特征,并学会了已知解析式画出其图象的方法以及分析图象特征与解析式之间的联系规律.如果反过来,告诉我们有关一次函数图象的某些特征,能否确定解析式呢?这将是我们这节课要解决的主要问题,大家可有兴趣?Ⅱ.导入新课有这样一个问题,大家来分析思考,寻求解决的办法.[活动]活动设计内容:已知一次函数图象过点(3,5)与(-4,-9),求这个一次函数的解析式.联系以前所学知识,你能总结归纳出一次函数解析式与一次函数图象之间的转化规律吗?活动设计意图:通过活动掌握待定系数法在函数中的应用,进而经历思考分析,归纳总结一次函数解析式与图象之间转化规律,增强数形结合思想在函数中重要性的理解.教师活动:引导学生分析思考解决由图象到解析式转化的方法过程,从而总结归纳两者转化的一般方法.学生活动:在教师指导下经过独立思考,研究讨论顺利完成转化过程.概括阐述一次函数解析式与图象转化的一般过程.活动过程及结论:分析:求一次函数解析式,关键是求出k、b值.因为图象经过两个点,所以这两点坐标必适合解析式.由此可列出关于k、b的二元一次方程组,解之可得.设这个一次函数解析式为y=kx+b.因为y=k+b的图象过点(3,5)与(-4,-9),所以35 49 k bk b+=⎧⎨-+=-⎩解之,得21 kb=⎧⎨=-⎩故这个一次函数解析式为y=2x-1。
结论:函数解析式 选取 满足条件的两定点 画出 一次函数的图象y=kx+b 解出 (x1,y1)与(x1,y2) 选取 直线L像这样先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待定系数法.练习:1.已知一次函数y=kx+2,当x=5时y的值为4,求k值.2.已知直线y=kx+b经过点(9,0)和点(24,20),求k、b值.3. 生物学家研究表明,某种蛇的长度y (CM)是其尾长x(CM)的一次函数,当蛇的尾长为6CM时, 蛇的长为45.5CM; 当蛇的尾长为14CM时, 蛇的长为105.5CM.当一条蛇的尾长为10 CM时,这条蛇的长度是多少?4.教科书第35页第6题.解答:1.当x=5时y值为4.即4=5k+2,∴k=2 52.由题意可知:092024k bk b =+⎧⎨=+⎩解之得,4312 kb⎧=⎪⎨⎪=-⎩作业: 教科书第35页第5,7题.备选题:1. 已知一次函数y=3x-b的图象经过点P(1,1),则该函数图象必经过点( )A.(-1,1)B.(2,2)C.(-2,2)D.(2,-2)2. 若一次函数y=2x+b的图像与坐标轴围成的三角形的面积是9,求 b的值.3.点M(-2,k)在直线y=2x+1上,求点M到x轴的距离d为多少?§11.2.2 一次函数(三)教学目标(一)教学知识点利用一次函数知识解决相关实际问题.(二)能力训练目标体会解决问题方法多样性,发展创新实践能力。