氧化沟
氧化沟的工作原理

氧化沟的工作原理
氧化沟是一种常见的污水处理设施,其工作原理如下:
1. 污水进入氧化沟:污水首先通过管道进入氧化沟。
氧化沟通常被设计为一个长而浅的水槽,使得污水能够在其中慢慢流动。
2. 生物降解有机物:在氧化沟中存在大量的微生物生物群落,包括细菌、藻类和其他寄生虫等。
这些微生物利用污水中的有机物质作为能源,进行生物降解作用。
它们分解有机物质,将其转化为二氧化碳和水等无害物质。
3. 氧气供应:为了支持微生物的生长和降解作用,氧化沟需要提供充足的氧气。
通常,在氧化沟中加入机械通风装置或设立溢流口来增加氧气的溶解度。
氧气的供应可以通过自然通风、机械搅拌或气泡曝气等方式实现。
4. 混合和悬浮:在氧化沟中,水的混合和悬浮是非常重要的。
通过机械搅拌或气泡曝气,能够保持污水中的微生物和悬浮物均匀分布,便于微生物进行降解作用。
5. 净化水的流出:经过生物降解作用后,污水中的有机物质已经大大减少。
最后,净化后的水通过出水口流出氧化沟。
总之,氧化沟通过提供适宜的环境条件,利用微生物的降解作用,将有机物质转化为无害物质,达到污水处理的目的。
氧化沟工艺原理

氧化沟工艺原理
氧化沟工艺是一种常用的生物处理工艺,广泛应用于污水处理厂和工业废水处
理系统中。
它通过生物反应器中的微生物将有机物氧化成二氧化碳和水,从而去除污水中的有机物污染物。
本文将介绍氧化沟工艺的原理及其应用。
首先,氧化沟是一种连续流动的生物反应器,通常由长条状的水槽构成。
污水
从一端进入,经过一定的停留时间后从另一端流出。
在氧化沟中,微生物附着在填料或底部的沉积物上,利用有机物进行呼吸作用,将有机物分解成无机物。
其次,氧化沟工艺的原理是利用氧化沟中的微生物将有机物氧化成无机物。
在
氧化沟中,有机物被微生物吸附并分解成简单的无机物,如二氧化碳、水和无机盐等。
这些无机物对环境影响较小,可以安全排放或进一步处理。
另外,氧化沟工艺的应用非常广泛。
它可以用于城市污水处理厂中,对城市生
活污水进行处理;也可以用于工业废水处理系统中,对工业生产中的废水进行处理。
此外,氧化沟工艺还可以用于农村污水处理、污水再生利用等领域。
总之,氧化沟工艺通过微生物的作用,将有机物氧化成无机物,达到去除污水
中有机物的目的。
它的原理简单清晰,应用广泛灵活,是一种常用的生物处理工艺。
在实际应用中,需要根据具体情况选择合适的氧化沟工艺参数,以达到最佳的处理效果。
希望本文能够对氧化沟工艺的原理和应用有所帮助。
氧化沟原理与用途

氧化沟原理与用途
氧化沟(Oxidation Ditch)是一种生物处理工艺,用于处理废
水中的有机物和氮、磷等污染物。
它采用搅拌、曝气和沉淀等方式,利用微生物生物降解有机物和氧化氮磷等污染物,达到去除废水中污染物的目的。
氧化沟原理主要包括以下几个步骤:
1. 污水进入氧化沟后,通过搅拌器保持废水中的有机物均匀分布,并防止沉积物的堆积。
2. 废水在氧化沟中进行曝气处理,通过向废水中通入空气或纯氧气,提供大量的氧气供微生物进行降解有机物。
曝气还可以增强废水中的氧化反应。
3. 废水中的有机物经微生物降解产生二氧化碳和水等无害物质,并被微生物吸附在生物膜上。
4. 沉淀池中的污泥通过废水曝气系统和搅拌系统回流到氧化沟,保持微生物种群的稳定。
5. 经过氧化沟处理的废水经过沉淀池沉淀,产生悬浮物和污泥分离。
6. 处理后的废水流入后继处理单元,如沉淀池,滤池等进一步去除悬浮物和污染物。
氧化沟的用途主要有以下几个方面:
1. 废水处理:氧化沟适用于城市污水处理厂、工业废水处理厂等场所,用于处理包括高浓度有机物、氮、磷等在内的复杂废水。
2. 农村生活污水处理:氧化沟可用于农村地区的生活污水处理,通过降解有机物和氮、磷等污染物,达到排放标准。
3. 污水回用:氧化沟可用于对污水进行处理后回用,如农田灌溉、景观水等用途。
4. 污泥处理:氧化沟产生的污泥可以通过厌氧消化等方式进行处理,用于产生沼气发电等目的。
总之,氧化沟作为一种高效的生物处理工艺,被广泛应用于各个场所的污水处理和资源回收中。
氧化沟原理

氧化沟原理
氧化沟是一种常用的污水处理工艺,通过将污水在长而浅的沟槽中进行适当的搅拌和通气,利用水中悬浮物中的有机物质被微生物降解分解为无机物质和二氧化碳的过程来进行污水的处理。
氧化沟的主要原理是利用沟槽中的微生物对有机物质的降解能力。
当污水进入氧化沟后,通过搅拌设备进行强迫性的搅拌运动,使污水在沟槽中均匀分布,并促使水中的悬浮物与氧接触,为微生物提供充足的氧气。
在氧化沟中,微生物通过吸附、附着和自由悬浮三种形式存在,它们利用氧气将有机物质降解为较简单的无机物质。
在沟槽的上层,由于与空气接触充分,氧气含量较高,适合于氧化作用的进行;而在下层,由于氧气含量较低,适合于还原作用的进行。
此外,氧化沟还具有良好的沉淀作用。
在沟槽中,大部分固体颗粒会逐渐沉淀下去,从而减少了悬浮物的浓度和污泥的生成量。
沉淀后的固体颗粒会在沟槽中往前推进,最终从沟槽的出口处排出。
通过这样的处理过程,氧化沟能有效地降解和去除污水中的有机物质,减少水体中的悬浮物和浊度,提高水质,达到环境保护和污水处理的目的。
同时,氧化沟还具有结构简单、运行稳定、操作和管理方便、投资和运行成本较低等优点,被广泛应用于城市生活污水和工业废水的处理中。
氧化沟分类及优点

氧化沟分类及优点氧化沟是一种常见的废水处理设备,它通过利用生物降解的过程来去除污水中的有机物和氨氮等污染物。
根据不同的设计和运行方式,氧化沟可以分为多种不同类型,每种类型都有其独特的优点和适用场景。
1. 曝气式氧化沟曝气式氧化沟是最常见的氧化沟类型之一,其主要特点是通过曝气设备向氧化沟中供氧,促进污水中的有机物降解。
曝气式氧化沟适用于有机负荷较高的废水处理,具有以下优点:- 处理效果好:曝气式氧化沟能够提供充足的氧气,促进生物降解反应的进行,使有机物得到更好的去除,处理效果较好。
- 占地面积小:曝气式氧化沟可以有效利用空间,占地面积相对较小,适合于场地有限的废水处理厂。
- 运行成本低:曝气设备相对简单,运行维护成本较低,降低了废水处理厂的运营成本。
2. 无氧氧化沟无氧氧化沟是另一种常见的氧化沟类型,它与曝气式氧化沟相比,不需要供氧设备,主要依靠厌氧微生物来进行有机物的降解。
无氧氧化沟适用于有机负荷较低的废水处理,具有以下优点:- 能量消耗低:无氧氧化沟不需要供氧设备,节省了能源消耗,降低了处理成本。
- 适应性强:无氧氧化沟对于废水中的高浓度有机物具有较好的适应性,能够有效去除废水中的有机物。
- 抗冲击负荷能力强:无氧氧化沟对于冲击负荷的适应能力较强,能够应对废水中的波动负荷,稳定运行。
3. 硝化氧化沟硝化氧化沟是一种将氨氮通过硝化和反硝化反应转化为氮气排放的氧化沟类型。
硝化氧化沟适用于氨氮含量较高的废水处理,具有以下优点:- 高效去除氨氮:硝化氧化沟通过硝化反应将氨氮转化为硝态氮,再通过反硝化反应将硝态氮转化为氮气,实现了氨氮的高效去除。
- 减少对外部碳源的依赖:硝化氧化沟中的微生物可以利用废水中的有机物作为碳源,减少了对外部碳源的依赖,降低了处理成本。
- 减少对投加药剂的需求:硝化氧化沟不需要投加硝化剂和反硝化剂,减少了对药剂的需求,降低了运营成本。
氧化沟是一种常见的废水处理设备,根据不同的设计和运行方式,可以分为曝气式氧化沟、无氧氧化沟和硝化氧化沟等不同类型。
氧化沟设计计算

氧化沟设计计算1.1功能描述氧化沟(Oxidation ditch )为传统活性污泥法的变形工艺,其曝气池呈封闭的沟渠型,污水和活性污泥混合液在渠内呈循环流动,提高废水的水力停留时间,同时具有脱氮除磷的功能。
目前氧化沟的类型主要有Carrusal2000、orbal 、改良式环型氧化沟等。
目前我们主要运用配备射流曝气系统的改良式环型氧化沟。
1.2设计要点(1) 容积确定V (m 3)fNw Ne Se Sa Q V ⨯⨯-⨯=)( 式中:Q ——设计水量, m 3/d ;Nw ——混合液MLSS 污泥浓度(kg/m 3),取2.5-4.0 kg/m 3,设计一般为3.0kg/m 3Ne ——BOD 5-泥负荷,0.1-0.2(kgBOD 5/kgMLSS·d),设计一般为0.12Sa ——进水BOD 5浓度, mg/L ; Se ——出水BOD 5浓度, mg/L ;f ——混合液中MLVSS 与总悬浮固体浓度的比值,一般为0.7-0.8,设计为0.75。
(2) 氧化沟尺寸A. 氧化沟高度H (m )改良式环型氧化沟设计有效高度H 0为7m ,超高0.6m ,则氧化沟高度H=7.6m ;B. 氧化沟宽度B 、长度L (m ))414.3(20B L B H V ⋅+⋅= B L ⨯=2.2式中:H 0 ——氧化沟的有效高度,m ;B ——氧化沟的宽度(即为圆弧直径),m ;L ——氧化沟的总长度,m 。
一般取为氧化沟宽度的2.2倍。
C. 氧化沟导流墙设计氧化沟导流墙设置于沟的两头,与氧化沟外墙同心,起到导流作用,导流墙的直径D=B/2;设置厚度为0.3m ,高度一般超出氧化沟0.2~0.3m ;D. 氧化沟隔流墙设计隔流墙长度:L 0(m)=L-B(3) 射流曝气系统(FAS-Jet-20型)射流曝气器数量N 计算,设计每0.5m 布置一套射流曝气器(沿宽度方向),则:5.02B N ⨯=(套); 表1 FAS-Jet-20型的技术参数 型号参数FAS-Jet-20型 循环流量(m 3/h )20 供气量(m 3/h )60 充氧量(kgO 2/h )18.4 工作水深(m )4~8(4) 鼓风机选型氧化沟鼓风机设备选取一般2用1备,共3台。
氧化沟-工艺详解

Carousel氧化沟的表面曝气机单机功率大,其水深可达 5m以上,使氧化沟占地面积减少,土建费用降低。
由于曝气机周围的局部区域能量强度比传统活性污泥曝 气池中的强度高得多,使得氧的转移效率大大提高,平 均传氧效率达到至少2.1kg/kw·h。
因此,Carrousel氧化沟具有极强的混合搅拌耐冲击能力。 当有机负荷较低时,可以停止某些曝气器的运行,在保 证水流搅拌混合循环流动的前提下,节约能量消耗。
氧化沟工艺
历史与现状
氧化沟(Oxidation Ditch)是本世纪50年代由荷 兰工程师发明的一种新型活性污泥法,属于延时 曝气活性污泥法的变种。
自1954年荷兰建成第一座间歇运行的氧化沟以 来,氧化沟在欧洲、北美、南非及澳大利亚得到 了迅速的推广应用,其工艺和构造也有了很大的 发展和进步,处理能力不断地提高,已经建成规 模为650,000m3/d的大型的以氧化沟为主要工艺的 污水处理厂;同时处理范围不断地扩大,不仅能 处理生活污水,也能处理工业废水,而且在脱氮 除磷方面表现了极好的性能。
交替式氧化沟
交替式氧化沟是由丹麦Krϋger公司创建的,有二池 和三池交替工作的两种情况。
二池交替工作的氧化沟又可分为V—R型、D型,如 图所示。
交替工作的氧化沟(V-R型) 图
二池交替工作的氧化沟(D型) 图
1-沉砂池;2-曝气转刷;3-出水堰; 1-沉砂池;2-曝气转刷:3一出水堰
4-排泥管;5-污泥井;6-氧化沟
单沟式 双沟式 三沟式
AE 型
DE 型 (BioDN)
DE 型 (BioDNP)
氧化沟工艺的演变图
图例 氧化沟 沉淀池 厌氧池
转刷 出水堰
工作特性分析
根据A/O和A2/O生物脱氮除磷的工艺原理,人们发现改 变氧化沟的构造和操作方式就可以在其中形成与A/O和A2/O 工艺类似的环境,从而使其实现脱氮除磷的目的。这是因为 氧化沟具有其特殊的水流混合特性,它界于推流式和完全混 合式之间,或者说基本上是完全混合式,同时又具有推流式 的某些特征。
氧化沟工艺流程

氧化沟工艺流程
氧化沟工艺是一种常用的污水处理方法,通过生物降解有机物质,将污水中的有机物质转化为无机物质,从而达到净化水质的目的。
下面将详细介绍氧化沟工艺的流程。
首先,进水污水经过初沉池去除大颗粒杂质后,进入氧化沟。
氧化沟通常由多个连续的池体组成,每个池体内部设置有曝气装置。
曝气装置可以向污水中通入氧气,为污水中的微生物提供氧气和搅拌,促进微生物的生长和代谢活动。
在氧化沟中,污水中的有机物质被微生物吸附并降解,同时氧
气的通入促进了微生物的新陈代谢,加快了有机物质的降解速度。
经过氧化沟的处理,污水中的COD(化学需氧量)和BOD(生化需氧量)等有机物质含量得到有效降解,水质得到改善。
随后,经过氧化沟处理的污水进入沉淀池。
在沉淀池中,经过
氧化沟处理后的污水中的悬浮物和胶体物质得到进一步沉淀和去除。
经过沉淀池的处理,污水中的固体颗粒物质得到有效去除,水质得
到进一步提高。
最后,经过沉淀池处理后的污水进入消毒池进行消毒处理。
消毒池内通常使用氯气或次氯酸钠等消毒剂,对污水中的细菌、病毒等微生物进行杀灭。
经过消毒处理后的污水达到排放标准,可以安全地排放到水体中或进行再利用。
总的来说,氧化沟工艺流程是一种有效的污水处理方法,通过生物降解和物理处理相结合,可以有效地去除污水中的有机物质和固体颗粒物质,提高水质,达到环境保护和资源再利用的目的。
同时,氧化沟工艺还具有操作简单、运行成本低的优点,适用于中小型污水处理厂的运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
氧化沟工艺的介绍发布: 2009-5-20 18:21 | 作者: admin | 查看: 14次1 氧化沟工艺概述1.1 氧化沟工艺基本原理和主要设计参数氧化沟又名氧化渠,因其构筑物呈封闭的环形沟渠而得名。
它是活性污泥法的一种变型。
因为污水和活性污泥在曝气渠道中不断循环流动,因此有人称其为“循环曝气池”、“无终端曝气池”。
氧化沟的水力停留时间长,有机负荷低,其本质上属于延时曝气系统。
以下为一般氧化沟法的主要设计参数:水力停留时间:10-40小时;污泥龄:一般大于20天;有机负荷:0.05-0.15kgBOD5/(kgMLSS.d);容积负荷:0.2-0.4kgBOD5/(m3.d);活性污泥浓度:2000-6000mg/l;沟内平均流速:0.3-0.5m/s1.2 氧化沟的技术特点:氧化沟利用连续环式反应池(Cintinuous Loop Reator,简称CLR)作生物反应池,混合液在该反应池中一条闭合曝气渠道进行连续循环,氧化沟通常在延时曝气条件下使用。
氧化沟使用一种带方向控制的曝气和搅动装置,向反应池中的物质传递水平速度,从而使被搅动的液体在闭合式渠道中循环。
氧化沟一般由沟体、曝气设备、进出水装置、导流和混合设备组成,沟体的平面形状一般呈环形,也可以是长方形、L形、圆形或其他形状,沟端面形状多为矩形和梯形。
氧化沟法由于具有较长的水力停留时间,较低的有机负荷和较长的污泥龄。
因此相比传统活性污泥法,可以省略调节池,初沉池,污泥消化池,有的还可以省略二沉池。
氧化沟能保证较好的处理效果,这主要是因为巧妙结合了CLR形式和曝气装置特定的定位布置,是式氧化沟具有独特水力学特征和工作特性:1) 氧化沟结合推流和完全混合的特点,有力于克服短流和提高缓冲能力,通常在氧化沟曝气区上游安排入流,在入流点的再上游点安排出流。
入流通过曝气区在循环中很好的被混合和分散,混合液再次围绕CLR继续循环。
这样,氧化沟在短期内(如一个循环)呈推流状态,而在长期内(如多次循环)又呈混合状态。
这两者的结合,即使入流至少经历一个循环而基本杜绝短流,又可以提供很大的稀释倍数而提高了缓冲能力。
同时为了防止污泥沉积,必须保证沟内足够的流速(一般平均流速大于0.3m/s),而污水在沟内的停留时间又较长,这就要求沟内由较大的循环流量(一般是污水进水流量的数倍乃至数十倍),进入沟内污水立即被大量的循环液所混合稀释,因此氧化沟系统具有很强的耐冲击负荷能力,对不易降解的有机物也有较好的处理能力。
2) 氧化沟具有明显的溶解氧浓度梯度,特别适用于硝化-反硝化生物处理工艺。
氧化沟从整体上说又是完全混合的,而液体流动却保持着推流前进,其曝气装置是定位的,因此,混合液在曝气区内溶解氧浓度是上游高,然后沿沟长逐步下降,出现明显的浓度梯度,到下游区溶解氧浓度就很低,基本上处于缺氧状态。
氧化沟设计可按要求安排好氧区和缺氧区实现硝化-反硝化工艺,不仅可以利用硝酸盐中的氧满足一定的需氧量,而且可以通过反硝化补充硝化过程中消耗的碱度。
这些有利于节省能耗和减少甚至免去硝化过程中需要投加的化学药品数量。
3) 氧化沟沟内功率密度的不均匀配备,有利于氧的传质,液体混合和污泥絮凝。
传统曝气的功率密度一般仅为20-30瓦/米3,平均速度梯度G大于100秒-1。
这不仅有利于氧的传递和液体混合,而且有利于充分切割絮凝的污泥颗粒。
当混合液经平稳的输送区到达好氧区后期,平均速度梯度G小于30秒-1,污泥仍有再絮凝的机会,因而也能改善污泥的絮凝性能。
4) 氧化沟的整体功率密度较低,可节约能源。
氧化沟的混合液一旦被加速到沟中的平均流速,对于维持循环仅需克服沿程和弯道的水头损失,因而氧化沟可比其他系统以低得多的整体功率密度来维持混合液流动和活性污泥悬浮状态。
据国外的一些报道,氧化沟比常规的活性污泥法能耗降低20%-30%。
另外,据国内外统计资料显示,与其他污水生物处理方法相比,氧化沟具有处理流程简单,超作管理方便;出水水质好,工艺可靠性强;基建投资省,运行费用低等特点。
1.3 氧化沟技术的发展自1920年英国sheffield建立的污水厂成为氧化沟技术先驱以来,氧化沟技术一直在不断的发展和完善。
其技术方面的提高是在两个方面同时展开的:一是工艺的改良;二是曝气设备的革新。
1.3.1 工艺的改良工艺的改良过程大致可分为四个阶段:阶段型式初期氧化沟1954年,Pasveer教授建造的Voorshopen氧化沟,间歇运行。
分进水、曝气净化、沉淀和排水四个基本工序规模型氧化沟增加沉淀池,使曝气和沉淀分别在两个区域进行,可以连续进水多样型氧化沟考虑脱氮除磷等要求。
著名的有DE型氧化沟,Carrousel氧化沟及Orbal氧化沟等一体化氧化沟时空调配型(D型,VR型,T型等)合建式(BMTS式,侧沟式,中心岛式等)1.3.2 曝气设备的革新:曝气设备对氧化沟的处理效率,能耗及处理稳定性有关键性影响,其作用主要表现在以下四个方面:向水中供氧;推进水流前进,使水流在池内作循环流动;保证沟内活性污泥处于悬浮状态;使氧、有机物、微生物充分混合。
针对以上几个要求,曝气设备也一直在改进和完善。
常规的氧化沟曝气设备有横轴曝气装置及竖轴曝气装置。
1) 横轴曝气装置为转刷和转盘。
其中转刷更为常见,转刷单独使用通常只能满足水深较浅的氧化沟,有效水深不大于2.0-3.5米。
从而造成传统氧化沟较浅,占地面积大的弊端。
近几年开发了水下推进器配合转刷,解决了这个问题,如山东高密污水厂,有效水深为4.5米,保证沟内平均流速大于0.3米/秒,沟底流速不低于0.1米/秒,这样氧化沟占地大大减少,转刷技术运用已相当成熟,但因其供氧率低,能耗大,故其逐渐被另外先进的曝气技术所取代。
2) 竖轴式表面曝气机,各种类型的表面曝气机均可用于氧化沟,一般安装在沟渠的转弯处,这种曝气装置有较大的提升能力,氧化沟水深可达4-4.5米,如1968年荷兰PHV开发的著名Carrousel氧化沟在一端的中心设垂直轴的一定方向的低速表曝叶轮,叶轮转动时除向污水供氧外,还能使沟中水体沿一定方向循环流动。
表曝设备价格较便宜,但能耗大易出故障,且维修困难。
3) 射流曝气,1969年Lewrnpt等创建了第一座试验性射流曝气氧化沟(JAC),国外的射流曝气多为压力供气式,而国内通常是自吸空气式,JAC的优点是氧化沟的宽度和水的深度不受限制,可以用于深水曝气,且氧的利用率高,目前最大的JAC在奥地利的林茨,处理流量为17.2万吨/天,水深7.5米。
4) 微孔曝气,现在应用较多的微孔曝气装置,采用多孔性空气扩散装置克服了以往装置气压损失大,易堵塞的毛病,且氧利用率较高,在氧化沟技术运用中越来越广泛,目前,我国广东省某污水厂已成功运用此种曝气系统。
5) 其他曝气设备,包括一些新型的曝气推动设备,如浙江某公司开发的复叶节流新型曝气器,氧利用率较高,浮于水面,易检修,充氧能力可达水下7米,推动能力相当强,满足氧化沟的曝气推动一体化要求,同时能够满足氧化沟底部的充氧和推动。
氧化沟在国内外都发展很快。
欧州的氧化沟污水厂已有上千座,在国内,从20世纪80年代末开始在城市污水和工业废水中引进国外氧化沟的先进技术,从原来的日处理量3000立方米到目前10万吨以上的污水处理厂已比较普遍,氧化沟工艺已成为我国城市污水处理的主要工艺。
2.氧化沟脱氮除磷工艺2.1 传统氧化沟的脱氮除磷传统氧化沟的脱氮,主要是利用沟内溶解氧分布的不均匀性,通过合理的设计,使沟中产生交替循环的好氧区和缺氧区,从而达到脱氮的目的。
其最大的优点是在不外加碳源的情况下在同一沟中实现有机物和总氮的去除,因此是非常经济的。
但在同一沟中好氧区与缺氧区各自的体积和溶解氧浓度很难准确地加以控制,因此对除氮的效果是有限的,而对除磷几乎不起作用。
另外,在传统的单沟式氧化沟中,微生物在好氧-缺氧-好氧短暂的经常性的环境变化中使硝化菌和反硝化菌群并非总是处于最佳的生长代谢环境中,由此也影响单位体积构筑物的处理能力。
随着氧化沟工艺的反展,目前,在工程应用中比较有代表性的有形式有:多沟交替式氧化沟(如三沟式,五沟式)及其改进型、卡鲁塞尔氧化沟及其改进型、奥贝尔(Orbal)氧化沟及其改进型、一体化氧化沟等。
他们都具有一定的脱氮除磷能力,2.2.PI型氧化沟的脱氮除磷PI(Phase Isolation)型氧化沟,即交替式和半交替式氧化沟,是七十年代在丹麦发展起来的,其中包括DE型、T型和VR型氧化沟,随着各国对污水处理厂出水氮,磷含量要求越来越严,因而开发出现了功能加强的PI型氧化沟,主要由Kruger公司与Demmark技术学院合作开发的,称为Bio-Denitro和Bio-Denipho工艺,这两种工艺都是根据A/O和A2/O生物脱氮除磷原理,创造缺氧/好氧,厌氧/缺氧/好氧的工艺环境,达到生物脱氮除磷的目的。
2.2.1 DE型、T型氧化沟脱氮工艺DE型氧化沟为双沟系统,T型氧化沟为三沟系统,其运行方式比较相似,都是通过配水井对水流流向的切换,堰门的起闭以及曝气转刷的调速,在沟中创造交替的硝化,反硝化条件,以达到脱氮的目的。
其不同之处在于DE型氧化沟系统是二沉池与氧化沟分建,有独立的污泥回流系统;而T型氧化沟的两侧沟轮流作为沉淀池。
2.2.2 VR型氧化沟脱氮工艺VR氧化沟沟型宛如通常的环形跑道,中央有一小岛的直壁结构,氧化沟分为两个容积相当的部分,其水平形式如反向的英文字母C,污水处理通过二道拍门和二道出流堰交替起闭进行连续和恒水位运行。
2.2.3 PI型氧化沟同时脱氮除磷工艺交替式氧化沟在脱氮效果上良好,为了达到除磷效果,通常在氧化沟前设置相应的厌氧区或构筑物或改变其运行方式。
据国内外实际运行经验显示,这种同时脱氮除磷工艺只要运行时控制的好,可以取得很好的脱氮除磷效果。
西安北石桥污水净化中心采用具有脱氮除磷的DE型氧化沟系统(前加厌氧池),一期工程处理能力为15万立方米/天,对各阶段处理效果实测结果表明,DE型氧化沟处理城市污水效果显著。
COD、TN、TP的总去除效率分别达到87.5%-91.6%,63.6%-66.9%,85.0%-93.4%,出水TN为9.0-10.1mg/l,TP为0.42-0.45mg/l,出水水质优于国家二级出水排放标准。
上述三种PI型氧化沟脱氮除磷工艺都有转刷的调速,活门、出水堰的启闭切换频繁的特点,对自动化要求高,转刷利用率低,故在经济欠发达的地区受到很大的限制。
2.3 奥贝尔氧化沟脱氮除磷工艺Orbal氧化沟简称同心圆式,它也是分建式,有单独二沉池,采用转碟曝气,沟深较大,它的脱氮效果很好,但除磷效率不够高,要求除磷时还需前加厌氧池。
应用上多为椭圆形的三环道组成,三个环道用不同的DO(如外环为0,中环为1,内环为2),有利于脱氮除磷。