特征方程法求解递推关系中的数列通项(二)
特征根法

(45) 特征方程法求解递推关系中的数列通项一、(一阶线性递推式)设已知数列}{n a 的项满足d ca a b a n n +==+11,,其中,1,0≠≠c c 求这个数列的通项公式。
采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学生掌握的解法——特征方程法:针对问题中的递推关系式作出一个方程,d cx x +=称之为特征方程;借助这个特征方程的根快速求解通项公式.下面以定理形式进行阐述.定理1:设上述递推关系式的特征方程的根为0x ,则当10a x =时,n a 为常数列,即0101,;x b a a x a a n n n +===时当,其中}{n b 是以c 为公比的等比数列,即01111,x a b c b b n n -==-.证明:因为,1,0≠c 由特征方程得.10cdx -=作换元,0x a b n n -=则.)(110011n n n n n n cb x a c ccd ca c d d ca x a b =-=--=--+=-=-- 当10a x ≠时,01≠b ,数列}{n b 是以c 为公比的等比数列,故;11-=n n c b b当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n (证毕) 下面列举两例,说明定理1的应用.例1.已知数列}{n a 满足:,4,N ,23111=∈--=+a n a a n n 求.n a解:作方程.23,2310-=--=x x x 则当41=a 时,.21123,1101=+=≠a b x a数列}{n b 是以31-为公比的等比数列.于是.N ,)31(2112323,)31(211)31(1111∈-+-=+-=-=-=---n b a b b n n n n n n例2.已知数列}{n a 满足递推关系:,N ,)32(1∈+=+n i a a n n 其中i 为虚数单位。
特征方程特征根法求解数列通项公式

特征方程特征根法求解数列通项公式一:A(n+1)=pAn+q, p,q为常数.(1)通常设:A(n+1)-λ=p(An-λ), 则λ=q/(1-p).(2)此处如果用特征根法:特征方程为:x=px+q,其根为x=q/(1-p)注意:若用特征根法,λ的系数要是-1例一:A(n+1)=2An+1 , 其中q=2,p=1,则λ=1/(1-2)= -1那么A(n+1)+1=2(An+1)二:再来个有点意思的,三项之间的关系:A(n+2)=pA(n+1)+qAn,p,q为常数(1)通常设:A(n+2)-mA(n+1)=k[pA(n+1)-mAn],则m+k=p, mk=q(2)此处如果用特征根法:特征方程是y×y=py+q(※)注意:①m n为(※)两根。
②m n可以交换位置,但其结果或出现两种截然不同的数列形式,但同样都可以计算An,而且还会有意想不到的惊喜,③m n交换位置后可以分别构造出两组An和A(n+1)的递推公式,这个时侯你会发现,这是一个关于An和A(n+1)的二元一次方程组,那么不就可以消去A(n+1),留下An,得了,An求出来了。
例二:A1=1,A2=1,A(n+2)= - 5A(n+1)+6An,特征方程为:y×y= - 5y+6那么,m=3,n=2,或者m=2,n=3于是,A(n+2)-3A(n+1)=2[A(n+1)-3A] (1)A(n+2)-2A(n+1)=3[A(n+1)-2A] (2)所以,A(n+1)-3A(n)= - 2 ^ n (3)A(n+1)-2A(n)= - 3 ^ (n-1) (4)you see 消元消去A(n+1),就是An勒例三:【斐波那挈数列通项公式的推导】斐波那契数列:0,1,1,2,3,5,8,13,21……如果设F(n)为该数列的第n项(n∈N+)。
那么这句话可以写成如下形式:F(0) = 0,F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3)显然这是一个线性递推数列。
特征方程

特征方程法求解递推关系中的数列通项考虑一个简单的线性递推问题.设已知数列}{n a 的项满足其中,1,0≠≠c c 求这个数列的通项公式.采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学生掌握的解法——特征方程法:针对问题中的递推关系式作出一个方程,d cx x +=称之为特征方程;借助这个特征方程的根快速求解通项公式.下面以定理形式进行阐述.定理 1.设上述递推关系式的特征方程的根为0x ,则当10a x =时,n a 为常数列,即0101,;x b a a x a a n n n +===时当,其中}{n b 是以c 为公比的等比数列,即01111,x a b c b b n n -==-.证明:因为,1,0≠c由特征方程得.10c d x -=作换元,0x a b n n -= 则.)(110011n n n n n n cb x a c c cd ca c d d ca x a b =-=--=--+=-=-- 当10a x ≠时,01≠b ,数列}{n b 是以c 为公比的等比数列,故;11-=n n c b b 当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n (证毕)下面列举两例,说明定理1的应用.例1.已知数列}{n a 满足:,4,N ,23111=∈--=+a n a a n n 求.n a 解:作方程.23,2310-=--=x x x 则 当41=a 时,.21123,1101=+=≠a b x a 数列}{n b 是以31-为公比的等比数列.于是.N ,)31(2112323,)31(211)31(1111∈-+-=+-=-=-=---n b a b b n n n n n n 例2.已知数列}{n a 满足递推关系:,N ,)32(1∈+=+n i a a n n 其中i 为虚数单位.当1a 取何值时,数列}{n a 是常数数列? 解:作方程,)32(i x x +=则.5360i x +-=要使n a 为常数,即则必须.53601i x a +-== a 1=ba n+1=ca n +d现在考虑一个分式递推问题(*).例3.已知数列}{n a 满足性质:对于,324,N 1++=∈-n n n a a a n 且,31=a 求}{n a 的通项公式. 将这问题一般化,应用特征方程法求解,有下述结果. 定理2.如果数列}{n a 满足下列条件:已知1a 的值且对于N ∈n ,都有hra q pa a n n n ++=+1(其中p 、q 、r 、h 均为常数,且r h a r qr ph -≠≠≠1,0,),那么,可作特征方程hrx q px x ++=. (1)当特征方程有两个相同的根λ(称作特征根)时,若,1λ=a 则;N ,∈=n a n λ若λ≠1a ,则,N ,1∈+=nb a n n λ其中.N ,)1(11∈--+-=n r p r n a b n λλ特别地,当存在,N 0∈n 使00=n b 时,无穷数列}{n a 不存在.(2)当特征方程有两个相异的根1λ、2λ(称作特征根)时,则112--=n n n c c a λλ,,N ∈n 其中).(,N ,)(211212111λλλλλ≠∈----=-a n rp r p a a c n n 其中 证明:先证明定理的第(1)部分.作交换N ,∈-=n a d n n λ 则λλ-++=-=++h ra q pa a d n n n n 11 hra h q r p a n n +-+-=λλ)( h d r h q r p d n n ++-+-+=)())((λλλλ λλλλr h rd q p h r r p d n n -+--+--=])([)(2 ① ∵λ是特征方程的根,∴λ.0)(2=--+⇒++=q p h r h r q p λλλλ 将该式代入①式得.N ,)(1∈-+-=+n rh rd r p d d n n n λλ ②将r p x=代入特征方程可整理得,qr ph =这与已知条件qr ph ≠矛盾.故特征方程的根λ,r p ≠于是.0≠-r p λ ③当01=d ,即λ+=11d a =λ时,由②式得,N ,0∈=n b n 故.N ,∈=+=n d a n n λλ 当01≠d 即λ≠1a 时,由②、③两式可得.N ,0∈≠n d n 此时可对②式作如下变化: .1)(11rp r d r p r h r p d r h rd d n n n n λλλλλ-+⋅-+=--+=+ ④ 由λ是方程h rx q px x++=的两个相同的根可以求得.2r h p -=λ ∴,122=++=---+=-+h p p h r rh p p r r h p h r p r h λλ 将此式代入④式得.N ,111∈-+=+n rp r d d n n λ 令.N ,1∈=n d b n n 则.N ,1∈-+=+n r p r b b n n λ故数列}{n b 是以r p r λ-为公差的等差数列. ∴.N ,)1(1∈-⋅-+=n rp r n b b n λ 其中.11111λ-==a d b 当0,N ≠∈n b n 时,.N ,1∈+=+=n b d a nn n λλ 当存在,N 0∈n 使00=n b 时,λλ+=+=0001n n n b d a 无意义.故此时,无穷数列}{n a 是不存在的. 再证明定理的第(2)部分如下:∵特征方程有两个相异的根1λ、2λ,∴其中必有一个特征根不等于1a ,不妨令.12a ≠λ于是可作变换.N ,21∈--=n a a c n n n λλ故21111λλ--=+++n n n a a c ,将hra q pa a n n n ++=+1代入再整理得 N ,)()(22111∈-+--+-=+n hq r p a h q r p a c n n n λλλλ ⑤ 由第(1)部分的证明过程知r px=不是特征方程的根,故.,21r p r p ≠≠λλ 故.0,021≠-≠-r p r p λλ所以由⑤式可得:N ,2211211∈--+--+⋅--=+n r p h q a r p hq a r p r p c n n n λλλλλλ ⑥ ∵特征方程h rx qpx x ++=有两个相异根1λ、2λ⇒方程0)(2=--+q p h x rx 有两个相异根1λ、2λ,而方程xrp xh q x --=-与方程0)(2=---q p h x rx 又是同解方程. ∴222111,λλλλλλ-=---=--rp h q r p h q 将上两式代入⑥式得 N ,2121211∈--=--⋅--=-n c rp r p a a r p r p c n n n n λλλλλλ 当,01=c 即11λ≠a 时,数列}{n c 是等比数列,公比为r p rp 21λλ--.此时对于N ∈n 都有 .))(()(12121111211------=--=n n n r p r p a a r p r p c c λλλλλλ 当01=c 即11λ=a 时,上式也成立. 由21λλ--=n n n a a c 且21λλ≠可知.N ,1∈=n c n 所以.N ,112∈--=n c c a n n n λλ(证毕)注:当qr ph =时,h ra q pa n n ++会退化为常数;当0=r 时,hra q pa a n n n ++=+1可化归为较易解的递推关系,在此不再赘述.现在求解前述例3的分类递推问题)(*.解:依定理作特征方程,324++=x x x 变形得,04222=-+x x 其根为.2,121-==λλ故特征方程有两个相异的根,使用定理2的第(2)部分,则有.N ,)221211(2313)(11212111∈⋅-⋅-⋅+-⋅--⋅--=--n r p r p a a c n n n λλλλ ∴.N ,)51(521∈-=-n c n n ∴.N ,1)51(521)51(52211112∈----⋅-=--=--n c c a n n n n n λλ 即.N ,)5(24)5(∈-+--=n a n n n 例4.已知数列}{n a 满足:对于,N ∈n 都有.325131+-=+n n n a a a (1)若,51=a 求;n a (2)若,31=a 求;n a (3)若,61=a 求;n a (4)当1a 取哪些值时,无穷数列}{n a 不存在? 解:作特征方程.32513+-=x x x变形得,025102=+-x x特征方程有两个相同的特征根.5=λ依定理2的第(1)部分解答. (1)∵∴=∴=.,511λa a 对于,N ∈n 都有;5==λn a (2)∵.,311λ≠∴=a a ∴λλr p r n a b n --+-=)1(1151131)1(531⋅-⋅-+-=n ,8121-+-=n 令0=n b ,得5=n .故数列}{n a 从第5项开始都不存在,当n ≤4,N ∈n 时,51751--=+=n n b a n n λ. (3)∵,5,61==λa ∴.1λ≠a ∴.,811)1(11N n n r p r n a b n ∈-+=--+-=λλ 令,0=n b 则.7n n ∉-=∴对于.0b N,n ≠∈n ∴.N ,7435581111∈++=+-+=+=n n n n b a n nλ (4)显然当31-=a 时,数列从第2项开始便不存在.由本题的第(1)小题的解答过程知,51=a 时,数列}{n a 是存在的,当51=≠λa 时,则有.N ,8151)1(111∈-+-=--+-=n n a r p r n a b n λλ令,0=n b 则得N ,11351∈--=n n n a 且n ≥2. ∴当11351--=n n a (其中N ∈n 且N ≥2)时,数列}{n a 从第n 项开始便不存在. 于是知:当1a 在集合3{-或,:1135N n n n ∈--且n ≥2}上取值时,无穷数列}{n a 都不存在.。
特征方程法求递推数列的通项公式之欧阳音创编

欧阳音创编 2021.03.11 特征方程法求解递推关系中的数列通项一、(一阶线性递推式)设已知数列}{n a 的项满足d ca a b a n n +==+11,,其中,1,0≠≠c c 求这个数列的通项公式。
采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学生掌握的解法——特征方程法:针对问题中的递推关系式作出一个方程,d cx x +=称之为特征方程;借助这个特征方程的根快速求解通项公式.下面以定理形式进行阐述.定理1:设上述递推关系式的特征方欧阳音创编 2021.03.11 程的根为0x ,则当10a x =时,n a 为常数列,即0101,;xb a a x a a n n n+===时当,其中}{n b 是以c 为公比的等比数列,即01111,x a b c b b n n -==-.证明:因为,1,0≠c 由特征方程得.10c d x -=作换元,0x a b n n -=则.)(110011n n n n n n cb x a c ccd ca c d d ca x a b =-=--=--+=-=-- 当10a x ≠时,01≠b ,数列}{n b 是以c 为公比的等比数列,故;11-=n nc b b 当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n (证毕)下面列举两例,说明定理1的应用. 例1.已知数列}{n a 满足:,4,N ,23111=∈--=+a n a a n n 求.n a 解:作方程.23,2310-=--=x x x 则 当41=a 时,.21123,1101=+=≠a b x a欧阳音创编 2021.03.11 数列}{n b 是以31-为公比的等比数列.于是.N ,)31(2112323,)31(211)31(1111∈-+-=+-=-=-=---n b a b b n n n n n n 例2.已知数列}{n a 满足递推关系:,N ,)32(1∈+=+n i a a n n 其中i 为虚数单位。
特征方程法求递推数列的通项公式之欧阳文创编

特征方程法求解递推关系中的数列通项一、(一阶线性递推式)设已知数列}{n a 的项满足d ca a b a n n +==+11,,其中,1,0≠≠c c 求这个数列的通项公式。
采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学生掌握的解法——特征方程法:针对问题中的递推关系式作出一个方程,d cx x +=称之为特征方程;借助这个特征方程的根快速求解通项公式.下面以定理形式进行阐述.定理1:设上述递推关系式的特征方程的根为x ,则当10a x =时,na 为常数列,即0101,;x b a a x a a n n n +===时当,其中}{n b 是以c为公比的等比数列,即01111,x a b c b b n n -==-.证明:因为,1,0≠c 由特征方程得.10cdx -=作换元,0x a b n n -=则.)(110011n n n n n n cb x a c ccd ca c d d ca x a b =-=--=--+=-=-- 当10a x ≠时,01≠b ,数列}{n b 是以c 为公比的等比数列,故;11-=n n c b b当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n(证毕)下面列举两例,说明定理1的应用. 例1.已知数列}{n a 满足:,4,N ,23111=∈--=+a n a a n n 求.n a解:作方程.23,2310-=--=x x x 则 当41=a 时,.21123,1101=+=≠a b x a数列}{n b 是以31-为公比的等比数列.于是.N ,)31(2112323,)31(211)31(1111∈-+-=+-=-=-=---n b a b b n n n n n n例2.已知数列}{n a 满足递推关系:,N ,)32(1∈+=+n i a a n n 其中i 为虚数单位。
特别解析:特征方程法求解递推关系中的数列通项

特别解析:特征方程法求解递推关系中的数列通项一、(一阶线性递推式)设已知数列}{n a 的项满足d ca a b a n n +==+11,,其中,1,0≠≠c c 求这个数列的通项公式。
定理1:设上述递推关系式的特征方程的根为0x ,则当10a x =时,n a 为常数列,即0101,;x b a a x a a n n n +===时当,其中}{n b 是以c 为公比的等比数列,即01111,x a b c b b n n -==-.证明:因为,1,0≠c 由特征方程得.10cdx -=作换元,0x a b n n -=则.)(110011n n n n n n cb x a c ccdca c d d ca x a b =-=--=--+=-=--当10a x ≠时,01≠b ,数列}{n b 是以c 为公比的等比数列,故;11-=n n c b b当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n (证毕) 例1.已知数列}{n a 满足:,4,N ,23111=∈--=+a n a a n n 求.n a解:作方程.23,2310-=--=x x x 则 当41=a 时,.21123,1101=+=≠a b x a 数列}{n b 是以31-为公比的等比数列. 于是:.N ,)31(2112323,)31(211)31(1111∈-+-=+-=-=-=---n b a b b n n n n n n例2.已知数列}{n a 满足递推关系:,N ,)32(1∈+=+n i a a n n 其中i 为虚数单位。
当1a 取何值时,数列}{n a 是常数数列? 解:作方程,)32(i x x +=则.5360i x +-=要使n a 为常数,即则必须.53601ix a +-== 二、(二阶线性递推式)定理2:对于由递推公式n n n qa pa a +=++12,βα==21,a a 给出的数列{}n a ,方程02=--q px x ,叫做数列{}n a 的特征方程。
特征方程法求数列通项

特征方程法求数列通项一、递推数列的定义和初值条件首先需要明确递推数列的定义和初始条件。
通常情况下,递推数列可以表示为:an = p1 * an-1 + p2 * an-2 + … + pk * an-k,其中p1、p2、…、pk为常数,an为数列的第n项,n为整数。
除了定义外,还需要给出数列的一些初始条件,如数列的第一项a1、第二项a2等。
二、构造特征方程在特征方程法中,首先需要构造递推数列的特征方程。
特征方程的构造与递推式相关,通常可以通过将递推式中的n项移到等式的一边,然后利用项的移位,将递推式表示为一个递推关系式:an - p1 * an-1 - p2 * an-2 - … - pk * an-k = 0然后,令n = k+1,得到an+1 - p1 * an - p2 * an-1 - … - pk * an-k+1 = 0再通过移项,将递推式表示为:an+1 = p1 * an + p2 * an-1 + … + pk * an-k+1三、寻找递推数列的特征值接下来需要找出递推数列的特征值(或称为根)。
特征值是使得特征方程成立的值。
根据以上递推式,可以得到特征方程的形式:x^(k+1) - p1 * x^k - p2 * x^(k-1) - … - pk * x = 0其中x为特征值。
四、确定递推数列的通项公式已知递推式的通解形式为:an = c1 * x1^n + c2 * x2^n + … + ck * xk^n通常,我们可以通过给定的初始条件,求解出常数c1、c2、…、ck,进而确定递推数列的通项公式。
举例说明:假设有一个递推数列满足an = 3 * an-1 - 2 * an-2,且a1 = 2,a2 = 5首先,可以将递推式变换为特征方程:an - 3 * an-1 + 2 * an-2 = 0再令n=2,可以得到a3-3*a2+2*a1=0将初始条件代入,即可得到一个关于c1和c2的方程:2c1+5c2=-4然后,我们需要求解特征值。
特征方程法求递推数列的通项公式

bn1
d . 作 换 元 bn a n x 0 , 则 1 c d cd a n1 x 0 ca n d ca n c(a n x 0 ) cbn . 1 c 1 c
当 x0 a1 时,b1 0 ,数列 {bn } 是以 c 为公比的等比数列,故 bn b1c n 1 ; 当 x0 a1 时, b1 0 , {bn } 为 0 数列,故 a n a1 , n N. (证毕) 下面列举两例,说明定理 1 的应用. 例 1.已知数列 {a n } 满足: a n 1 a n 2, n N, a1 4, 求 a n .
a n 2 3 n1 (1) n 2 )
2、 在数列 {a n } 中, a1 1, a 2 5, 且 a n 5a n 1 4a n 2 ,求 a n 。 (key:
13 x 25 . 变形得 x 2 10 x 25 0, x3 特征方程有两个相同的特征根 5. 依定理 2 的第(1)部分解答.
(1)∵ a1 5, a1 . 对于 n N, 都有 a n 5; (2)∵ a1 3, a1 . ∴ bn
存在. 于是知:当 a1 在集合 {3 或 数列 {a n } 都不存在. 练习题: 求下列数列的通项公式: 1、 在数列 {a n } 中, a1 1, a 2 7, a n 2a n1 3a n 2 (n 3) , 求 an 。 (key:
5n 13 : n N , 且 n ≥2}上取值时,无穷 n 1
a n
满
足
a1 a, a 2 b,3a n 2 5a n 1 2a n 0(n 0, n N ) ,求数列 a n 的通项
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特征方程法求解递推关系中的数列通项(二)三、(分式递推式)定理3:如果数列}{n a 满足下列条件:已知1a 的值且对于N ∈n ,都有h ra q pa a n n n ++=+1(其中p 、q 、r 、h 均为常数,且r h a r qr ph -≠≠≠1,0,),那么,可作特征方程hrx q px x ++=. (1)当特征方程有两个相同的根λ(称作特征根)时, 若,1λ=a 则;N ,∈=n a n λ若λ≠1a ,则,N ,1∈+=n b a n n λ其中.N ,)1(11∈--+-=n r p r n a b n λλ特别地,当存在,N 0∈n 使00=n b 时,无穷数列}{n a 不存在.(2)当特征方程有两个相异的根1λ、2λ(称作特征根)时,则112--=n n n c c a λλ,,N ∈n 其中).(,N ,)(211212111λλλλλ≠∈----=-a n rp r p a a c n n 其中 例3、已知数列}{n a 满足性质:对于,324,N 1++=∈-n n n a a a n 且,31=a 求}{n a 的通项公式. 解:依定理作特征方程,324++=x x x 变形得,04222=-+x x 其根为.2,121-==λλ故特征方程有两个相异的根,使用定理2的第(2)部分,则有 .N ,)221211(2313)(11212111∈⋅-⋅-⋅+-=--⋅--=--n r p r p a a c n n n λλλλ ∴.N ,)51(521∈-=-n c n n ∴.N ,1)51(521)51(52211112∈----⋅-=--=--n c c a n n n nn λλ 即.N ,)5(24)5(∈-+--=n a n n n例5.已知数列}{n a 满足:对于,N ∈n 都有.325131+-=+n n n a a a (1)若,51=a 求;n a(2)若,31=a 求;n a(3)若,61=a 求;n a(4)当1a 取哪些值时,无穷数列}{n a 不存在? 解:作特征方程.32513+-=x x x 变形得,025102=+-x x 特征方程有两个相同的特征根.5=λ依定理2的第(1)部分解答. (1)∵∴=∴=.,511λa a 对于,N ∈n 都有;5==λn a(2)∵.,311λ≠∴=a a ∴λλr p r n a b n --+-=)1(11 51131)1(531⋅-⋅-+-=n ,8121-+-=n 令0=n b ,得5=n .故数列}{n a 从第5项开始都不存在, 当n ≤4,N ∈n 时,51751--=+=n n b a n n λ. (3)∵,5,61==λa ∴.1λ≠a ∴.,811)1(11N n n r p r n a b n ∈-+=--+-=λλ 令,0=n b 则.7n n ∉-=∴对于.0b N,n ≠∈n ∴.N ,7435581111∈++=+-+=+=n n n n b a n n λ (4)、显然当31-=a 时,数列从第2项开始便不存在.由本题的第(1)小题的解答过程知,51=a 时,数列}{n a 是存在的,当51=≠λa 时,则有.N ,8151)1(111∈-+-=--+-=n n a r p r n a b n λλ令,0=n b 则得N ,11351∈--=n n n a 且n ≥2. ∴当11351--=n n a (其中N ∈n 且N ≥2)时,数列}{n a 从第n 项开始便不存在. 于是知:当1a 在集合3{-或,:1135N n n n ∈--且n ≥2}上取值时,无穷数列}{n a 都不存在.练习题:求下列数列的通项公式:1、 在数列}{n a 中,,7,121==a a )3(3221≥+=--n a a a n n n ,求n a 。
(key :21)1(32---+⋅=n n n a )2、 在数列}{n a 中,,5,121==a a 且2145---=n n n a a a ,求n a 。
(key :)14(31-=n n a ) 3、 在数列}{n a 中,,7,321==a a )3(2321≥-=--n a a a n n n ,求n a 。
(key :121-=+n n a )4、 在数列}{n a 中,,2,321==a a n n n a a a 313212+=++,求n a 。
(key :2)31(4147--⋅+=n n a ) 5、 在数列}{n a 中,,35,321==a a )4(3112n n n a a a -=++,求n a 。
(key :1321-+=n n a ) 6、 在数列}{n a 中,,,21b a a a ==n n n qa pa a +=++12,且1=+q p .求n a .(key :1=q 时,))(1(a b n a a n --+=;1≠q 时,qq a b b aq a n n +---+=-1))((1) 7、 在数列}{n a 中,,,21b a a a a +==0)(12=++-++n n n qa a q p pa (q p ,是非0常数).求n a .(key : b pq q p p a a n n )](1[1---+= (q p ≠); b n a a n )1(1-+=)(q p =) 8、在数列}{n a 中,21,a a 给定,21--+=n n n ca ba a .求n a .(key:122211)(a c a a n n n n n ⋅--+⋅--=----αβαβαβαβ)(βα≠;若βα=,上式不能应用,此时,.)2()1(1122----⋅-=n n n a n a n a αα附定理3的证明定理3(分式递推问题):如果数列}{n a 满足下列条件:已知1a 的值且对于N ∈n ,都有h ra q pa a n n n ++=+1(其中p 、q 、r 、h 均为常数,且r h a r qr ph -≠≠≠1,0,),那么,可作特征方程hrx q px x ++=. (1)当特征方程有两个相同的根λ(称作特征根)时, 若,1λ=a 则;N ,∈=n a n λ若λ≠1a ,则,N ,1∈+=n b a n n λ其中.N ,)1(11∈--+-=n r p r n a b n λλ特别地,当存在,N 0∈n 使00=n b 时,无穷数列}{n a 不存在.(2)当特征方程有两个相异的根1λ、2λ(称作特征根)时,则112--=n n n c c a λλ,,N ∈n 其中).(,N ,)(211212111λλλλλ≠∈----=-a n rp r p a a c n n 其中 证明:先证明定理的第(1)部分.作交换N ,∈-=n a d n n λ 则λλ-++=-=++hra q pa a d n n n n 11 hra h q r p a n n +-+-=λλ)( h d r h q r p d n n ++-+-+=)())((λλλλ λλλλr h rd q p h r r p d n n -+--+--=])([)(2 ① ∵λ是特征方程的根,∴λ.0)(2=--+⇒++=q p h r h r q p λλλλ 将该式代入①式得.N ,)(1∈-+-=+n rh rd r p d d n n n λλ ②将r p x =代入特征方程可整理得,qr ph =这与已知条件qr ph ≠矛盾.故特征方程的根λ,rp ≠于是.0≠-r p λ ③ 当01=d ,即λ+=11d a =λ时,由②式得,N ,0∈=n b n 故.N ,∈=+=n d a n n λλ 当01≠d 即λ≠1a 时,由②、③两式可得.N ,0∈≠n d n 此时可对②式作如下变化: .1)(11rp r d r p r h r p d r h rd d n n n n λλλλλ-+⋅-+=--+=+ ④ 由λ是方程h rx q px x ++=的两个相同的根可以求得.2rh p -=λ ∴,122=++=---+=-+h p p h r r h p p r r h p h r p r h λλ 将此式代入④式得.N ,111∈-+=+n rp r d d n n λ 令.N ,1∈=n d b n n 则.N ,1∈-+=+n r p r b b n n λ故数列}{n b 是以rp r λ-为公差的等差数列. ∴.N ,)1(1∈-⋅-+=n rp r n b b n λ 其中.11111λ-==a d b 当0,N ≠∈n b n 时,.N ,1∈+=+=n b d a n n n λλ 当存在,N 0∈n 使00=n b 时,λλ+=+=0001n n n b d a 无意义.故此时,无穷数列}{n a 是不存在的.再证明定理的第(2)部分如下: ∵特征方程有两个相异的根1λ、2λ,∴其中必有一个特征根不等于1a ,不妨令.12a ≠λ于是可作变换.N ,21∈--=n a a c n n n λλ故21111λλ--=+++n n n a a c ,将hra q pa a n n n ++=+1代入再整理得 N ,)()(22111∈-+--+-=+n hq r p a h q r p a c n n n λλλλ ⑤ 由第(1)部分的证明过程知r p x =不是特征方程的根,故.,21r p r p ≠≠λλ 故.0,021≠-≠-r p r p λλ所以由⑤式可得:N ,2211211∈--+--+⋅--=+n r p h q a r p h q a r p r p c n n n λλλλλλ ⑥ ∵特征方程hrx q px x ++=有两个相异根1λ、2λ⇒方程0)(2=--+q p h x rx 有两个相异根1λ、2λ,而方程xr p xh q x --=-与方程0)(2=---q p h x rx 又是同解方程. ∴222111,λλλλλλ-=---=--rp h q r p h q 将上两式代入⑥式得N ,2121211∈--=--⋅--=-n c rp r p a a r p r p c n n n n λλλλλλ 当,01=c 即11λ≠a 时,数列}{n c 是等比数列,公比为r p r p 21λλ--.此时对于N ∈n 都有 .))(()(12121111211------=--=n n n rp r p a a r p r p c c λλλλλλ 当01=c 即11λ=a 时,上式也成立. 由21λλ--=n n n a a c 且21λλ≠可知.N ,1∈=n c n 所以.N ,112∈--=n c c a n n n λλ(证毕)注:当qr ph =时,h ra q pa n n ++会退化为常数;当0=r 时,hra q pa a n n n ++=+1可化归为较易解的递推关系,在此不再赘述.。