用叠加法求挠度与转角
材料力学(赵振伟)梁的弯曲变形2

3. 应用叠加原理的若干情况 1 ) 荷载的分解或重组
q m
q
L/2 L/2
L
F
q
q
m L/2 L/2
F
例
q0
EI
A 求图示自由端的挠度。
L2
L2
q0
L
w1
q0
w3
B
w2
L2
L2
w1
q0 L4 8EI
w2
q0 L 24
8EI
q0 L4 128EI
w3
B
L 2
q0 L 23
6EI
L 2
q0 L4 96EI
wA
w1
w2
w3
41q0 L4 384EI
2) 逐段刚化法
依据: 若结构可分为若干部分,且各部分在荷载作用下的 变形不是相互独立的,那么,结构中 A 点的位移是各个部 分在这一荷载作用下的变形在 A 点所引起的位移的叠加。
A EI a
变形刚体
F
F
Fa 2
B
C
a/2
wwww1122
B (F1, F2,, Fn ) B1(F1) B2 (F2 ) Bn(Fn )
yB (F1, F2,, Fn ) yB1(F1) yB2 (F2 ) yBn(Fn )
叠加法的特征: 1、梁在简单载荷作用下挠度、转角应为已知或有变形表可查; 2、叠加法适用于求梁个别截面的挠度或转角值。
分析和讨论
q
在下列不同的支承方 式中,哪一种刚度最高?
q
q
分析和讨论
q
梁由混凝土材料制成,如果横截面从左图改为右图,能 够改善强度吗?能够改善刚度吗?
梁的材料由普通钢改为优质钢,能够改善强度吗? 梁的材料由普通钢改为优质钢,能够改善刚度吗?
孙训方《材料力学》(第6版)笔记和课后习题(含考研真题)详解-梁弯曲时的位移(圣才出品)

圣才电子书
ql3/6,D=-ql4/24。
十万种考研考证电子书、题库视频学习平台
故挠曲线方程和转角方程分别为:
w(x)=qx2(x2+6l2-4lx)/(24EI),θ(x)=q(x3-3lx2+3l2x)/(6EI)
则最大挠度 wmax=w(x)|x=l=ql4/(8EI);梁端转角 θB=θ(x)| x=l=ql3/(6EI)。
表 5-1-4 叠加原理计算梁的挠度和转角
四、梁的刚度校核·提高梁的刚度的措施(见表 5-1-5)
表 5-1-5 梁的刚度校核及提高措施
3 / 41
圣才电子书 十万种考研考证电子书、题库视频学习平台
五、梁内的弯曲应变能 定义:由于梁弯曲变形而存储的能量称为梁内的弯曲应变能。梁在弹性变形过程中,其 弯曲应变能与作用在梁上的外力所作的功相等,常见梁内的弯曲应变能见表 5-1-6。
则最大挠度 wmax=w(x)|x=l=Fl3/3EI;梁端转角 θB=θ(x)| x=l=Fl2/2EI。
图 5-2-1(a)(b) (2)建立如图 5-2-1(b)所示坐标系。 首先列弯矩方程:M(x)=-q(l-x)2/2,由此可得挠曲线近似方程: EIw″=-M(x)=q(l-x)2/2 积分得: EIw′=-q(l-x)3/6+C① EIw=q(l-x)4/24+Cx+D② 该梁的边界条件:x=0,w=0,x=0,w'=0。代入式①、②可确定积分常数:C=
圣才电子书
十万种考研考证电子书、题库视频学习平台
第 5 章 梁弯曲时的位移
5.1 复习笔记
梁在承受荷载时发生相应的变形,变形后轴线相对原位置将会发生位移、梁的截面将出 现转角,梁内会因变形存储能量。本章首先介绍梁的位移概念,并基于坐标系统建立挠曲线 方程;接着介绍求解梁的位移的方法,根据挠曲线近似微分方程积分和按叠加原理计算;再 介绍梁刚度校核以及提高梁刚度的方法;最后介绍梁弯曲应变能的概念及计算方法。
工程力学---材料力学(第七章- 梁弯曲时位移计算与刚度设计)经典例题及详解

得: D 0
Pl 2 得: C 16
AC段梁的转角方程和挠曲线方程分别为:
P 2 2 (4 x l ) 16 EI Px y (4 x 2 3 l 2 ) 48 EI
y
P
B
A
x
l 2
C
l 2
x
最大转角和最大挠度分别为:
max A B
ymax y
q 7qa 8k 384 EI
3
q/2
B C
q/2
A B C
顺时针
q/2
例16:图示梁B处为弹性支座,弹簧刚 度
EI k 求C端挠度fC。 2a 3
q
A
EI k
B
C
2a
a
解:(1)梁不变形,仅弹簧变形引起的C点挠度为 4 3 qa 3qa B处反力=qa fC 1 2 k EI
q
B
x
l
由边界条件: x 0时,y 0
x l时,y 0
得:
ql 3 C , D0 24
梁的转角方程和挠曲线方程分别为:
y
q 2 3 3 (6lx 4 x l ) 24 EI
q
x
A qx y (2lx 2 x 3 l 3 ) 24 EI
ql 3 24 EI
A a a
q
B C
a
qa 12 EI
顺时针
3 3
P=qa
A B
P=qa
m=qɑ²/2
qa qa C B 6 EI 4 EI
4
顺时针
B
q
C
qa 5qa fC B a 8EI 24 EI
叠加法求梁的挠度和转角_工程力学_[共2页]
![叠加法求梁的挠度和转角_工程力学_[共2页]](https://img.taocdn.com/s3/m/e78e61df763231126fdb1112.png)
平面弯曲内力 134 第8章 由于y ″的正负号与弯矩的正负号相同,如图8-23所示,所以上式右端应取正号,即
()
M x y E I ′′= (8.31)
上式称为挠曲线近似微分方程。
对于静定梁,弯矩可由截面法求得。
于是,求等截面直梁
的变形问题归结为求解一个二阶常微分方程。
图8-23 曲率与弯矩正负号的关系
8.6.3 积分法求梁的挠度和转角
对与等截面直梁,EI 为常量,式(8.31)可改写成
()EIy M x ′′= (8.32) 积分一次可得转角方程
()d EI EIy M x x C θ′==+∫ (8.33) 再积分一次可得挠度方程
()d d EIy M x x x Cx D =++∫∫ (8.34)
上式中的C 、D 为积分常数,可利用梁的边界条件和连续性条件确定。
8.6.4 叠加法求梁的挠度和转角
在弯曲变形很小,且材料服从胡克定律的情况下,挠曲线微分方程是线性的。
又因在很小变形前提下,计算弯矩时,用梁变形前的位置,结果弯矩与载荷的关系也是线性的。
这样梁在几个力共同作用下产生的变形(或支座反力、弯矩)将等于各个力单独作用时产生的变形(或支座反力、弯矩)的代数和。
8.7 梁的刚度计算
在工程实际中,对弯曲构件的刚度要求,就是要求其最大挠度或转角不得超过某一规定的限度,即。
材料力学

解:(1) (2)
5.已知薄壁圆轴的外径D=76mm,壁厚 =2.5mm,所承受的转矩M=1.98kN·m,材料的许用应力[τ]=100MPa,剪切弹性模量G=80GPa,许用单位长度扭转角[ ] = 2°/m。试校核此轴的强度和刚度。
13.在板状试件的表面上,沿纵向和横向粘贴两个应变片 和 ,在力F作用下,若测得 , ,则该试件材料的泊松比为C。A. 3 B.-3 C. 1/3 D.-1/3
14.脆性材料的抗拉能力比抗压能力差,塑性材料的抗拉能力比抗压能力强。
15.静载下塑性材料的强度指标是屈服极限,脆性材料的强度指标是强度极限。
(1)列出弯矩方程。定出如图所示坐标,弯矩方程为M(x)=F(l-x)(2)列挠曲线微分方程并积分EIy’’=F(l-x)
(3)确定积分常数。积分常数可利用边界条件来确定。在悬臂梁中,边界条件是固定端处的转角为零,挠度也为零
(4)列转角方程和挠度方程。可求出梁任一截面的转角和挠度。在自由端B截面处出现最大转角与最大挠度
3.试求图示应力状态的主应力及最大剪应力(应力单位为MPa)。
解: , 是主应力
MPa
1.一倾斜矩形截面梁AB如图,在其中点C处作用有铅垂力F=25kN,试求梁AB中的最大拉应力和最大压应力。
解:(1)受力分析
力F可分解为F1=Fcos30°和F2=sin30°,梁发生弯曲和压缩的组合变形。最大弯矩发生在C截面 AC段轴力为FN=--sin30°
(3)叠加求C端的挠度yC=y1+y2
1.求图示单元体的主应力。
解:由公式 得 1=8.284 MPa 3= -48.284 MPa 2=0
材料力学梁的弯曲变形第3节 用叠加法求梁的变形

y M (x) EI
• 叠加原理:当梁为小变形时,梁的挠度和转角均是 载荷的线性函数,可以使用叠加法计算梁的转角和 挠度,即梁在几个载荷同时作用下产生的挠度和转 角等于各个载荷单独作用下梁的挠度和转角的叠加 和,这就是计算梁弯曲变形的叠加原理。
• 叠加原理的步骤: ①分解载荷;②分别计算各载荷 单独作用时梁的变形;③叠加得最后结果。
a
x
5ql 4 384 EI
例6-5 悬臂梁AB上作用有均布载荷q,自由端作 用有集中力F = ql,梁的跨度为l,抗弯刚度为EI,如 图所示。试求截面B的挠度和转角。
解:(1)分解载荷
梁上载荷可分解成均布载 荷 q 与集中力 F 的叠加。
(2)查表得这两钟情况下
截面 B 的挠度和转角
yBq
ql3 2EI
2ql
3
(顺时针)
3EI
例6-6 如图所示,外伸梁在外伸段作用有均布 载荷q,梁的抗弯刚度为EI。求C截面的挠度。
解: 1)简化、分解载荷
2)分别计算 B 截面挠度:
悬臂梁因 B 截面产生转角引
起的挠度 yC1和悬臂梁在均布 载荷作用下产生的挠度 yC2
0.5qa2
qa
+
B
yA3
ql4 8EI
7ql 4 384EI
5Fl3 48EI
41ql4 5Fl3 384EI 48EI
代入数值得:
yA 3.89 103 m 3.89mm()
ql 4 8EI
+
Bq
ql3 6EI
用叠加法求弯曲变形

yC
3 i 1
yCi
5ql4 384EI
ql 4 48EI
ql4 16EI
11ql4 ( ) 384EI
B
3
Bi
i 1
ql3 24EI
ql3 16EI
ql3 3EI
11ql3 ( ) 48EI
目录
材料力学 材料力学
用叠加法求弯曲变形
例4 已知:悬臂梁受力如图示,q、l、
yC
EI均为已知。求C截面的挠度yC和转角C
材料力学
材料力学
用叠加法求弯曲变形
设梁上有n 个载荷同时作用,任意截面上的弯矩 为M(x),转角为 ,挠度为y,则有:
EI
d2y dx2
EIy''
M(x)
若梁上只有第i个载荷单独作用,截面上弯矩
为 M i ( x) ,转角为 i ,挠度为 yi ,则有:
EIy''i Mi ( x)
材料力学
7-4
解 1)首先,将梁上的载荷变成有表可查 的情形
为了利用梁全长承受均布载荷 的已知结果,先将均布载荷延长至梁 的全长,为了不改变原来载荷作用的 效果,在AB 段还需再加上集度相同、 方向相反的均布载荷。
目录
材料力学 材料力学
用叠加法求弯曲变形
2)再将处理后的梁分解为简单载荷作用
yC
的情形,计算各自C截面的挠度和转角。
等于在各个载荷单独作用时的挠度或转角的代数 和。这就是计算弯曲变形的叠加原理。
材料力学
目录
材料力学 材料力学
用叠加法求弯曲变形
例3 已知简支梁受力如图示,q、l、EI 均为已知。求C 截面的挠度yC ;B截面的 转角B
工程力学--材料力学(北京科大、东北大学版)第4版4-6习题答案

第四章习题4-1 求下列各梁指定截面上的剪力Q和弯矩M。
各截面无限趋近于梁上A、B、C等各点。
4-2 试列出下列各梁的剪力方程和弯矩方程,作剪力图和弯矩图,并求和。
4-3 用叠加法作以下各梁的弯矩图。
并求出。
4-4 用剪力、弯矩和分布载荷集度之间的微分关系校核前面已画的剪力图和弯矩图是否正确。
4-5 不列剪力方程和弯矩方程,作以下各梁的剪力图和弯矩图,并求出和。
4-6 用合适的方法作下列各梁的剪力图和弯矩图。
4-7 试根据载荷、剪力图和弯矩图之间的关系,检查下列各梁的剪力图和弯矩图是否正确,并对错误之处加以改正。
4-8 作下列构件的内力图。
4-9 在梁上行走的小车二轮的轮压均为P ,如图所示。
问小车行至何位置时梁内的弯矩最大?最大弯矩值是多少?设小车的轮距为c,大梁的跨度为。
参考答案4-1 解:题(b)(1)求支反力(见图)由,l-P l=0 =由,(2)剪力按计算剪力的规则(3)弯矩按计算弯矩的规则其它各题的答案:(a)(c)(d)(e)(f)4-2 解:题c(1)剪力和弯矩方程以左端A为原点,任一截面距左端的距离为x(图)\剪力方程:弯矩方程:(2 )剪力图与弯矩图按上述剪力方程和弯矩方程绘剪力图和弯矩图(3)与值由及得=200N =950题(f)(1)求支反力(见图)由,600-1004040=0=由,q4020-60=0=校核:+=2667+1333=4000N=q40=10040 所以支反力计算正确(2)剪力和弯矩方程以左端为原点,任一截面距左端的距离为x,则得剪力方程:弯矩方程(2)剪力图和弯矩图按上述剪力及弯矩方程绘出图及所示的剪力图和弯矩图所示剪力图和弯矩图.图中最大弯矩的截面位置可由,即剪力的条件求得Q(x)=3333-100x=0x=33.3cm(4)及由及得=2667N ,=355其他各题的答案:(a)=ql =(b)(d)(e)(g)(h)(i)(j)4-3 解:题c分别作、q单独作用时的弯矩图(图、),然后将此二图叠加得总的弯矩图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当材料在线弹性范围内工作时,梁的挠度、转角均与载荷成线性关系.而且弯曲变形是很小的.因此,当梁上同时作用几种载荷时,任一载荷引起的变形,不会受到其他载荷的影响,即每种载荷对弯曲变形的影响是各自独立的。
所以,几种载荷同时作用下梁的挠度和转角,等于各种载荷单独作用下挠度和转角的代数和,这就是求解弯曲变形的叠加法.当只需确定某些指定截面的挠度和转角时,应用叠加法是比较方便的.下面举例说明.
例7-3 图7-8 所示简支梁,承受均布载荷q 和集中力偶M0作用,已知M0 =ql2。
试求跨度中点的挠度f c 和 A 截面的转角θA。
解:利用叠加法求解时,首先将q , M0同时作用下的简支梁( 图7 -8a ) ,分解为q 作用下的简支梁( 图7-8b) 和M0作用下的简支梁( 图7 -8c ) ,然后,由表7.1 查取结果叠加。
从表的第9 栏查得均布载荷q 作用下的中点挠度和A 端面转角分别为
由表7.1 第5 栏查得集中力偶M0作用下的中点挠度和A 端面转角分别为
叠加以上结果,求得q , M0 同时作用下的中点挠度和A 截面转角为
f c为负值,表示挠度向下.θA为负值,表示A 截面顺时针转动.
例7-4 简支梁如图7 — 10a 所示,在2a 的长度上对称地作用有均布载荷q. 试求梁中点挠度和梁端面的转角.
解:利用叠加法求解。
由于简支梁上的载荷对跨度中点C 对称,故C 截面的转角应为零.因而从C 截面取出梁的一半,可将其简化为悬臂梁,如图7 — 10b 所示。
梁上作用有均布载荷q 和支座B 的反力R B = qa.这样,悬臂梁上B 端面的挠度在数值上等于原梁中点C 的挠度,但符号相反,B 端面的转角即为原梁B 端面的转角.经这样处理后,应用叠加原理求解比较方便.
由表7 · 1 的第 2 栏查得,当集中力R B (=qa) 作用时( 图7 — 10c ) ,B 端面的转角和挠度分别为
由表7 · 1 的第 4 栏查得,当均布载荷q 作用时( 图7 — 10d) ,E 截面的转角和挠度分别为
由于EB 梁段上无载荷作用,所以q 引起 B 点的转角和挠度分别为
=
=
叠加上述结果,可得B 端面的转角和挠度分别为
于是,原梁( 图7 — 10a ) 中点C 的挠度f c为
例7-6 某一变截面外伸梁如图7 — 11a 所示.AB 、BC 段的抗弯刚度分别为EI1和EI2,在C 端面处受集中力P 作用,求 C 端面的挠度和转角.
解:由于外伸梁是变截面的,故不能直接应用表7 .1 中的结果.为此,必须将外伸梁分为AB 、BC 两段来研究.首先假设梁的外伸段BC 是刚性的,研究由于简支梁AB 的变形所引起的 C 截面的挠度和转角.然后,再考虑由于外伸段BC 的变形所引起的 C 截面的挠度和转角.最后将其两部分叠加,得C 截面的实际变形.
由于假设BC 段为刚性,故可将P 力向简支梁AB 的 B 端简化,得P 和Pa .P 力可由B 支座的反力平衡,不会引起简支梁的弯曲变形。
集中力偶Pa 引起 B 截面的转角( 图7 — 11 b) 由表6 . 1 查得
它引起C 截面的转角和挠度分别为
在考虑BC 段的变形时,可将其看作悬臂梁( 图7 — 11c ) ,由表6 · 1 查得,在P 力作用下C 截面的转角和挠角分别为
将图7 — 11b 、c 中的变形叠加后,求得C 端面实际的转角和挠度分别为
例7-7 在悬臂梁AB 上作用线性分布载荷,如图7-12 所示.试求自由端B 点的挠度.
解:本例同样可以应用叠加法求解.将图中dx 微段上载荷qdx 看作集中力,查表7 · 1 的第3 栏求得微段载荷qdx 作用下自由端B 截面的挠度为
(1)
根据题意,线性分布载荷的表达式为
(2)
按照叠加原理,自由端B 点的挠度应为df B的积分.将(2) 式代入(1) 式,积分得
f B为负号,表示方向向下.。