23.3.2相似三角形的判定(第三课时)

合集下载

《相似三角形的判定》PPT课件3

《相似三角形的判定》PPT课件3

已知:△ABC∽△A′B′C′,相似比为k,
AB BC CA k. A'B' B'C' C'A'
AE、A′E'分别是边
∠ABC和∠A′B'C'的角平分线.
A
求证: BE k
E
B'E'
证明:∵△ABC∽△A'B'C',
B
D
C
又∴∵∠AEB、ACA=′E∠'分B'A别'C是' .边∠ABC和∠A′B'C'的角平分线,
AE A' E'
k
A
A
'
一般地,我们有:
B F DE
C B' F' D E' C' 相似三角形对应线段的比等于相似比.
'
例题讲解


例1 如图,在△ABC中A,EAD3⊥BC,垂足为D,EF//BC,分别交
AB,AC,AD于点E,F,G,AB③ 5 , AD④=15.求AG的长.
E B
A


G F③
A
解:如图,分别作出△ABC 和 表示k的比例式是什么?
△A' B' C' 的高 AD 和 A' D' . 则∠ADB =∠A' D' B'=90°.
AB , AC , BC A' B' A'C' B'C'
BD A '
B' D'
C ∵△ABC ∽△A′B′C′,
∴∠B=∠B' , ∴△ABD ∽△A' B' D' . AD AB k C' A' D' A' B'

23.3.2 相似三角形的判定AA

23.3.2  相似三角形的判定AA

∵∠CDF+∠ADF=∠ADE+∠ADF=90°,
(2)由(1)知∠DFC=∠DEF=45°.
∴∠CDF=∠ADE.
∵∠EFD=45°,∠DFC=45°,
在△DAE 和△DCF 中,D∠AA=DEDC=,∠CDF, DE=DF,
∴∠CFG=∠DFC+∠DFE=90°, ∴∠CFG=∠B. 又∵∠CGF=∠AGB,
2.下列条件中,能判定两个等腰三角形相似的是有一个 45°的内角
C.都含有一个 60°的内角 D.都含有一个 80°的内角
3.如图,在△ABC 中,∠C=90°,D 是 AC 上一点,DE⊥AB 于点 E.若 AC=8,
BC=6,DE=3,则 AD 的长为( C )
随堂即练
2.已知:如图,∠1=∠2=∠3,
求证:△ABC∽△ADE.
2
证明: ∵∠BAC= ∠1+ ∠DAC , ∠DAE= ∠2+ ∠DAC,
∠1=∠2,∴ ∠BAC=∠DAE.
3
∵ ∠C=180°-∠3-∠DOC ,∠E=180°-∠2-∠AOE,
∠DOC =∠AOE(对顶角相等),
∴ ∠C= ∠E.
A .3 B .4 C .5 D .6
4.在△ABC 与△A′B′C′中,∠A=∠A′=85°,∠B=50°,∠C′=45°,则这两
个三角形是___相__似__三__角__形_____,依据是__如__果_一__个__三__角__形__的__两__角__与__另__一__个__三__角__形__的_两___
12.(逻辑推理)如图,正方形 ABCD 的顶点 A 在等腰直角三角形 DEF 的斜边
EF 上,EF 与 BC 交于点 G,连结 CF.求证:
(1)△DAE≌△DCF;

相似三角形的判定3两边及夹角ppt课件

相似三角形的判定3两边及夹角ppt课件
练习:下列每个图形中,是否存在相似三角形?若存
在,用字母表示出来,并写出对应的比例式。 A
A
D 50° E
D
70°E
B 70°
B 50°
C
C
A
DC
A 4
C
E3
E
6
B
B
2 D
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
Q
B
PC
这是探索结论的题型,要先观察,猜测
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
例2.如图,在△ABC中,D在AC上,已知 AD=2 cm,AB=4cm,AC=8cm,
求证:△ABD∽△ABC.
A D
B
C
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
典例:
变式:已知:如图,△ABC和△ADE中,
知识回顾 经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用
我们学习了哪些判定三角形相似的方法
,请你用符号语言叙述。 A
A
D
A D
D
E
E
F
B
CE
F (2B)∵DE∥BC C B
∴△ADE∽△ABC
C
(1)∵∠A=∠D, ∠B= ∠E,

23.3.2相似三角形的判定定理(23)课件华东师大版九年级数学上册

23.3.2相似三角形的判定定理(23)课件华东师大版九年级数学上册

BC B' C'
8 12.8
5, 8
∴△ABC∽△A′B′C′.
5.如图△ABC为锐角三角形,BD,CE分别为AC,AB边上的高.
求证:△ADE∽ △ABC.
证明:∵BD⊥AC,CE⊥AB,
E
A D
∴∠ABD+∠A=90°,∠ACE+∠A= 90°.
O
∴ ∠ABD= ∠ACE.
又∵ ∠A= ∠A,∴△ ABD ∽ △ ACE. B
A
两边成比例且夹角相等
如果相等的角不是成比 例的两边的夹角,那么 这两个三角形还相似吗?
4 cm 3.2 cm
A′
如图,4∶2=3.2∶1.6,∠B=∠B′,
B 50°C
2 cm B′ 50°
1.6 cm 但两个三角形不相似.
C′
例4 证明图中的△AEB∽△FEC相似.
1. 如图,D是△ABC一边BC上一点,连接AD,使
相似比
已知△ABC和 △DEF,根据下列条件判断它们是否相似.
(1)AB=3,BC=4,AC=6. DE=6,EF=8,DF=9.
不相似
(2)AB=4,BC=8,AC=10. DE=20,EF=16,DF=8.
相似
(3)AB=12,BC=15,AC=24. DE=16,EF=20,DF=30.
不相似
使得由点B,O,C组成的三角形与△AOB相似(不包括全等).
4. 已知 AB = 10,BC = 8 ,AC = 16,A′B′ = 16,B′C′ = 12.8, C′A′ = 25.6,试说明△ABC∽△A′B′C′.
解:∵
AB A' B'
10 16

相似三角形的判定PPT课件

相似三角形的判定PPT课件
第三章 图形的类似
3.4.1 类似三角形判定的基本定理
复习导入
定义
全等三
角形
三角、三边对应相等
的两个三角形全等
类似三 三角对应相等, 三边对应
角形
成比例的两个三角形类似
判定方法












斜边与直角边
(直角三角形)
探究新知
如图,在△ABC中,D为AB上任意一点,过点D作BC的平行线DE,交AC于点E.


=
=
∠EAO=∠BAC,

∠AEO=∠B,
∠AOE=∠ACB,
当堂练习
2. 如图,已知点O在四边形ABCD的对角线AC上,OE∥CB,OF∥CD.试判
断四边形AEOF与四边形ABCD是否类似,并说明理由.
∵OF∥CD,∴△AFO∽△ADC,


=
=
∠FAO=∠DAC,
DE至点F,使DE=EF. 求证:△CFE∽△ABC.
证明 ∵DE∥BC,点D为△ABC的边AB的中点,
∴AE=CE.
又∵DE=FE,∠AED=∠CEF,
∴△ADE≌△CEF.
∵DE∥BC,
∴△ADE∽△ABC.
∴△CFE∽△ABC.
知识要点
平行于三角形一边的直线与其他两边相交,截得的三角形与原
三角形类似.
求证:只要DE//BC,△ADE与△ABC始终类似.
证明:在△ADE与△ABC中,∠A=∠A.
∵DE∥BC,
分析:根据类似三角形的定
义去证明,三角对应相等,
三边对应成比例。

相似三角形的判定定理 课件

相似三角形的判定定理 课件

相似三角形的判定定理课件一、相似三角形的定义如果两个三角形的对应角相等,对应边成比例,那么这两个三角形叫做相似三角形。

相似三角形对应边的比值叫做相似比。

在探讨相似三角形的判定定理之前,我们先来回顾一下三角形全等的判定方法,这对于理解相似三角形的判定会有一定的帮助。

二、三角形全等的判定方法1、“边边边”(SSS):三边对应相等的两个三角形全等。

2、“边角边”(SAS):两边和它们的夹角对应相等的两个三角形全等。

3、“角边角”(ASA):两角和它们的夹边对应相等的两个三角形全等。

4、“角角边”(AAS):两角和其中一角的对边对应相等的两个三角形全等。

5、“斜边、直角边”(HL):斜边和一条直角边对应相等的两个直角三角形全等。

三、相似三角形的判定定理 1:两角分别相等的两个三角形相似为什么两角分别相等就能判定两个三角形相似呢?我们可以通过三角形内角和定理来理解。

因为三角形的内角和是 180 度,如果两个三角形中有两个角分别相等,那么第三个角也必然相等。

此时,这两个三角形的对应角就都相等了。

例如,在三角形 ABC 和三角形 A'B'C'中,如果∠A =∠A',∠B =∠B',那么∠C = 180 ∠A ∠B,∠C' = 180 ∠A' ∠B',由于∠A =∠A',∠B =∠B',所以∠C =∠C'。

这样,三角形 ABC 和三角形A'B'C'的对应角都相等,根据相似三角形的定义,它们相似。

四、相似三角形的判定定理 2:两边成比例且夹角相等的两个三角形相似这个定理的理解可以通过三角函数来辅助。

我们知道,在一个三角形中,如果已知两边和它们的夹角,可以用余弦定理求出第三边。

如果两个三角形的两边成比例且夹角相等,那么通过余弦定理求出的第三边也成比例。

比如,在三角形 ABC 和三角形 A'B'C'中,如果 AB / A'B' = AC / A'C',且∠A =∠A',那么根据余弦定理,BC²= AB²+ AC²2AB·AC·cos∠A,B'C'²= A'B'²+ A'C'² 2A'B'·A'C'·cos∠A'。

23.3《相似三角形的判定(2、3)》参考教案

23.3.2 相似三角形的判定第二课时教学目标:知识与技能: 会说出识别两个三角形相似的方法:有两边对应成比例,且夹角相等的两个三角形相似;三条边对应成比例的两个三角形相似。

能依据条件,灵活运用三种识别方法,正确判断两个三角形相似。

过程与方法:在推理过程中学会灵活使用数学方法情感态度价值观:培养学生严谨的证明数学习惯和对数学的兴趣教学重点:相似三角形判定方法2、3的推导过程,掌握判定方法2、3并能灵活 运用.教学难点:判定方法的推导及运用教学准备:白卡纸、作图工具、ppt 课件、电子白板课 型:新授课教学过程:一、复习:1.现在要判断两个三角形相似有哪几种方法?有两种方法,(1)是根据定义;(2)是有两个角对应相等的两个三角形相似。

2.如图△ABC 中,D 、E 是AB 、AC 上三等分点(即AD =13 AB ,AE =13 AC),那么△ADE 与△ABC 相似吗?你用的是哪一种方法?由于没有两个角对应相等,同学们可以动手量一量,量什么东西后可以判断它们能否相似?(可能有一部分同学用量角器量角,有一部分同学量线段,看看能否成比例)无论哪一种,都应肯定他们,是正确的,要求同学说出是应用哪一种方法判断出的。

二、新课讲解同学们通过量角或量线段计算之后,得出:△ADE ∽△ABC 。

从已知条件看,△ADE 与△ABC 有一对应角相等,即∠A =∠A(是公共角),而一个条件是AD =13AB ,AE =13AC ,即是AD AB =13,AE AC =13;因此AD AB =AE AC 。

△ADE 的两条边 AD 、AE 与△ABC 的两条边AB 、AC 会对应成比例,它们的夹角又相等,符合这样条件的两个三角形也会相似吗?我们再做一次实验。

观察图,如果有一点E在边AC上,那么点E应该在什么位置才能使△ADE与△ABC相似呢?图中两个三角形的一组对应边AD与AB的长度的比值为13,将点E由点A开始在AC上移动,可以发现当AE=13AC时,△ADE与△ABC相似。

相似三角形的判定 完整版课件


已知:如图, △A'B'C'和 △ABC中,∠A ' =∠A,A'B':AB=A'C':AC 求证:△A'B'C' ∽ △ABC
证明:在△ABC 的边AB、AC(或它们的延长线)上别截取AD=A'B', AE=A'C',连结DE,因∠A ' =∠A,这样△A'B'C' ≌ △ADE
A'
A
∴ DE//BC ∴ △ADE ∽ △ABC ∴ △A'B'C' ∽ △ABC
A'
B
C
D
E
A' D DE A' E A' B' B'C' A'C'
B'
C'
又 AB BC AC , A' D AB
A' B' B'C' A'C'
A' E AC A'C' A'C'
∴ A' E AC
同理 DE=BC
∴△A'DE≌△ABC
要证明△ABC∽△A'B'C', 可以先作一个与△ABC全 等的三角形,证明它与 △A'B'C'相似,这里所作
创设情景 明确目标
学习三角形全等时,我们知道,除了可以通过证明对应角相等.对应边
相等来判定两个三角形全等外,还有判定的简便方法(SSS、SAS、 ASA、AAS).类似地,判定两个三角形相似时,是不是对所有的对应
角和对应边都要一一验证呢? 不需要

相似三角形的判定定理完整版课件-2024鲜版


与向量结合应用
向量是数学中的重要工具之一,而相似三角形与向量也有着紧密的联系。在解决一些与向量 相关的问题时,可以利用相似三角形的性质来简化计算或证明过程。
2024/3/28
与不等式结合应用
在一些复杂的数学问题中,可能需要将相似三角形的性质与不等式知识结合起来应用。例如, 在证明一些与线段长度或面积相关的不等式时,可以利用相似三角形的性质来构造不等式并 进行证明。
14
练习题与答案
答案
1. 是。因为$frac{DE}{D'E'} = frac{4}{2} = 2$,$frac{EF}{E'F'} = frac{5}{3}$且 $frac{DF}{D'F'} = frac{6}{4} = frac{3}{2}$,三边对应比例相等。
2. 是。因为$frac{GH}{G'H'} = frac{7.5}{6} = frac{5}{4}$,$frac{HI}{H'I'} = frac{10}{8} = frac{5}{4}$且$frac{GI}{G'I'} = frac{12.5}{10} = frac{5}{4}$,三边对应比例相等。
相似三角形定义及性质
2024/3/28
定义
对应角相等,对应边成比例的两个 三角形叫做相似三角形。
性质
相似三角形的对应角相等,对应边 成比例,且对应高、对应中线、对 应角平分线等也成比例。
4
对应角与对应边关系
对应角
两个相似三角形中,相等的角是对应 角。
对应边
两个相似三角形中,成比例的边是对应 边。在写对应边成比例时,要注意写清 对应边的顺序。
2024/3/28

相似三角形的判定3两角ppt课件

如果一个三角形的两个角与另一个三角形的两 个角对应相等,那么这两个三角形相似. (简 称:两角):
A′ 符号语言:
A
在△A´B´C´和△ABC中,
B
C B′
∵ ∠A =∠A',
C′
∠B =∠B',
∴△A´B´C´∽△ABC
练习: “雪亮工程"是以区(县)、乡(镇)、村(社区)三级综治中心为指挥平台、以综治信息化为支撑、以网格化管理为基础、以公共安全视频监控联网应用为重点的“群众性治安防控工程”。
2、有一个角等于300的两个等腰三角形是否相似? 等于1200呢?
练习: “雪亮工程"是以区(县)、乡(镇)、村(社区)三级综治中心为指挥平台、以综治信息化为支撑、以网格化管理为基础、以公共安全视频监控联网应用为重点的“群众性治安防控工程”。
3、 已知:如图,∠ABD=∠C AD=2 AC=8, 求AB 长.
例2 如图,弦AB和CD相交于⊙O内一点P,求证PA·PB=PC·PD
证明:连接AC、BD.
∵ ∠A和∠D都是 弧BC所对的圆周角,
A ∴ ∠A=∠D
同理 ∠C=∠B ∴ △PAC∽△PDB
D P O·
B
PA PC
C
PD PB
即 PA·PB=PC·PD
典例: “雪亮工程"是以区(县)、乡(镇)、村(社区)三级综治中心为指挥平台、以综治信息化为支撑、以网格化管理为基础、以公共安全视频监控联网应用为重点的“群众性治安防控工程”。
一、复习提问 “雪亮工程"是以区(县)、乡(镇)、村(社区)三级综治中心为指挥平台、以综治信息化为支撑、以网格化管理为基础、以公共安全视频监控联网应用为重点的“群众性治安防控工程”。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档