三坐标测量仪培训手册
通用三坐标培训

三坐标测量机的应用
三坐标测量机广泛应用于机械 制造、汽车制造、航空航天、 电子设备等领域,主要用于检 测复杂零件和模具的尺寸、形 状和位置精度。
它可以检测各种类型的工件, 如轴类、盘类、箱体类、模具 等,并能够实现自动化、高效 率和高精度的测量。
增加实操训练和模拟演练的比重,提 高学员的实际操作能力和问题解决能 力。
引入先进技术与实践案例
不断更新培训内容,引入最新的通用 三坐标技术与实践案例,保持培训的 前沿性和实用性。
通用三坐标技术的发展趋势
智能化与自动化
随着技术的不断发展,通用三坐 标技术将更加智能化和自动化,
提高测量精度和效率。
集成化与模块化
三坐标测量机工作原理
三坐标测量机的工作原理基于三维坐标系,通过测头系统对工件表面进 行接触测量,获取工件表面各点的坐标值,再通过控制系统进行数据处 理和分析,得出工件的几何尺寸、形状和位置精度。
测头系统是三坐标测量机的关键部件,它能够将工件表面的接触信息转 换为电信号,再通过电缆传输到控制系统进行数据处理。
齿轮测量
通过对齿轮的齿形、齿距、齿厚等 参数进行测量和数据分析,评估齿 轮的加工精度和装配质量。
钣金件测量
通过对钣金件的平面度、角度、折 弯尺寸等参数进行测量和数据分析, 评估钣金件的加工精度和装配质量。
05
培训总结与展望
培训效果评估
01
02
03
技能掌握程度
通过考核和实操评估,了 解学员对通用三坐标技术 的掌握程度,以及在实际 操作中的熟练程度。
培训满意度
海克斯康三坐标初级培训教程110页

运行 PcDmis
这个新文件夹 可以改名为用 户名或操作员 姓名
打开一个 已生成的 文件。
建立一个新 文件。
运行 PcDmis
输入你 要建立 的文件 名
输入相 应的测 量信息
运行 PcDmis
设置所需 的测量单 位非常重 要。(公 、英制)
产生测头文件
第一步
输出 I=0
1 2
X=2
3
5 Y=2
X
Z=0
J=0 K=1 D=4 R=2
基本几何要素
要素: 平面 最少点数: 3 位置: 重心 矢量: 垂直于平面
Z
实例
2
51
Y
形状误差: 平面度
5
2维/3维: 3维
输出 X = 1.67 I = 0.707
Y = 2.50 J = 0.000
3
X
5
Z = 3.33 K = 0.707
基本几何要素
直线: 平行
通过第二要素做第一要 素的平行线。
输入: 线1 圆1
直线
圆1 线1
直线: 反向 将一条直线的方向进 行反向产生一条直线 。
输入: 线1
基本几何要素
直线 线1
基本几何要素
直线: 偏置
通过第一要素从第二要
圆1
素偏置指定值产生的直
线。
输入: 圆1
圆2
圆2
偏置值 = 25.4mm
输入: 圆锥1 直径 = 50.8
基本几何要素
圆锥1 圆
50.8
101.6
基本几何要素
圆: 相交 平面和圆锥、圆柱或 圆 球相交产生的圆。
圆锥1
三坐标测量培训教程

06 培训总结与展望
培训成果回顾
掌握三坐标测量基本原理
学员通过培训,深入理解了三坐标测量的坐标系统、测量 原理及误差来源等基本概念。
熟练操作测量设备
学员在培训过程中,通过实际操作,熟练掌握了三坐标测 量机的操作技巧,包括设备启动、工件装夹、测量程序编 制、数据采集与处理等。
独立完成测量任务
经过培训,学员已具备独立进行三坐标测量的能力,能够 按照测量要求,独立完成从测量准备到数据处理的全过程 。
设备组成及功能
01
02
03
04
主机
包括测量台、立柱、横梁等部 分,用于支撑和定位被测工件
。
控制系统
控制测量设备的运动和数据处 理,包括计算机、运动控制卡
等。
测头系统
用于接触被测工件表面,获取 坐标数据,包括测头、测针、
测座等。
软件系统
用于设备控制、数据采集、分 析和处理,提供友好的用户界
面。
设备操作界面及使用方法
典型零件测量案例解析
轴类零件测量
01
针对轴类零件的形状、尺寸、位置等要素进行测量,学习如何
选择合适的测头、建立坐标系、设置测量参数等。
盘类零件测量
02
掌握盘类零件的测量方法,包括平面度、圆度、同轴度等关键
指标的检测技巧。
箱体类零件测量
03
了解箱体类零件的结构特点,学习如何规划测量路径、优化测
量方案,提高测量效率。
操作界面
包括计算机屏幕、键盘、鼠标 、手柄等,提供直观、便捷的
操作方式。
开机步骤
依次打开计算机、控制系统、 测头系统等设备,确保设备正 常运行。
软件操作
熟悉软件界面,掌握基本测量 、编程、数据处理等操作。
2024版三坐标测量培训教程课件

目录
• 三坐标测量基础 • 三坐标测量操作 • 数据处理与分析 • 误差来源与补偿技术 • 典型案例分析 • 三坐标测量发展趋势与展望
01
三坐标测量基础
三坐标测量原理
01
02
03
坐标系的建立
通过三个互相垂直的坐标 轴(X、Y、Z)建立三维 坐标系,确定被测物体在 空间中的位置。
壁厚较薄、刚度较差、易变形等。
03
测量步骤
建立零件的三维模型,确定测量点 和路径,进行数据采集和处理,生
成测量报告。
02
测量方法
采用接触式测量,如三坐标测量机、 测微仪等。
04
注意事项
保证测量设备的精度和稳定性,选 择合适的夹持方式和测量力,避免
零件的变形和损坏。
齿轮类零件的测量
齿轮类零件的特点
形状复杂、尺寸精度要求高、齿形齿向精度要求高 等。
降。
误差补偿技术介绍
软件补偿
通过测量软件对测量数据进行实时修正,以消除误差。
硬件补偿
在测量设备上增加补偿装置,如温度补偿器、湿度补偿器等,以 减小环境因素对测量精度的影响。
组合补偿
综合运用软件补偿和硬件补偿技术,以最大限度地提高测量精度。
提高测量精度的方法
选择高精度测量设备
控制环境因素
采用更高精度的测量设备可以直接提高测量 精度。
控制系统
负责控制测量机的运动、数据采 集和处理等任务,通常由计算机 和相关软件组成。
数据处理与分析软件
对测量数据进行处理、分析和输 出,提供测量结果和图形化展示。
三坐标测量机分类及应用
桥式三坐标测量机
具有高精度、高稳定性和高效率等特 点,广泛应用于机械制造、汽车制造、 航空航天等领域。
三坐标初级培训

择针的类型 分别是:球形针
盘形针 柱型针
上面2项设置完之后,点击此处 开始测量探针的校正。方法和主
探针的校正一样
3.建立坐标系
建立坐标系原则:先确定其空转轴,
再确定其面转轴,再确定其坐标原点。
一般基本坐标系尽可能的与机器坐标
系方向一致。
+Z
+Y (机器坐标系)
+X
1)主参考:空转轴,限制2个旋转自由
三坐标测量机(CMM)使用 说明
第一章、CMM及其配件的介绍
CMM及相关配件有:CMM主机、控制柜、
控制盒。
1、CMM主机:
CONTURA G2
Z轴导轨
X轴导轨 Y轴导轨左支撑
Y轴轴右导轨 控制盒 驱动开关
探头:测头、吸盘、四方、探针
测头
吸盘 四方 探针
进气管
操纵控制盒应注意的问题: 1)出现撞针等破坏三坐标的情况时将急停按钮
按下或将速度快速旋至0. 2)首次自动运行时要保持手一直控制速度旋钮。 3)离开时请将控制盒将探头停留在安全位置,
然后将速度旋钮调零并将其放置在安全位置, 防止其掉落。 4)到反方向操作时,先将针选好,再按下变方 向按钮
取消任务 调速旋钮
出现这个窗口,输入密码(如果需要),或直接点击点击“OK”进入Calypso
三、 各种窗口的介绍
Calypso工作时共有4个窗口(版本低于 5.0)(主窗口、 Acis status windows、 G2交通灯),都不要关闭
1.首次开机,会跳出回零窗口点OK,机 器自动回零,进入Calypso软件。
手动打到沿着探针杆到标 准球最近的点,
之后机器将自动完成校准
2024年三坐标培训教程

三坐标培训教程引言:三坐标测量机(CMM)是一种高精度、高效率的测量设备,广泛应用于机械制造、航空航天、汽车制造等领域。
为了更好地掌握三坐标测量机的操作和应用,本文将为您介绍三坐标培训教程,帮助您快速上手并熟练使用三坐标测量机。
第一章:三坐标测量机概述1.1三坐标测量机的定义三坐标测量机是一种通过测量物体在三个坐标轴上的坐标值来确定其形状、尺寸和位置的测量设备。
它主要由测量系统、控制系统、数据处理系统和机械结构组成。
1.2三坐标测量机的分类根据测量范围和测量方式的不同,三坐标测量机可以分为桥式三坐标测量机、龙门式三坐标测量机、水平臂式三坐标测量机等。
1.3三坐标测量机的应用领域三坐标测量机广泛应用于机械制造、航空航天、汽车制造、模具制造、电子制造等行业,用于检测工件的尺寸、形状、位置误差等。
第二章:三坐标测量机的操作流程2.1开机准备(1)检查设备是否正常,包括电源、气源、水源等。
(2)开启设备,进行预热。
(3)检查测量系统的探头、测针等是否完好。
2.2编程与测量(1)根据工件的特点和测量要求,编写测量程序。
(2)将工件放置在测量机的工作台上,并调整工件位置。
(3)运行测量程序,进行自动测量。
2.3数据处理与分析(1)测量完成后,对测量数据进行处理,包括滤波、平滑等。
(2)分析测量数据,得出工件的尺寸、形状、位置误差等。
(3)根据测量结果,判断工件是否符合要求。
2.4关闭设备测量完成后,关闭设备,清理工作台,整理测量工具。
第三章:三坐标测量机的维护与保养3.1设备的日常维护(1)保持设备清洁,定期清理工作台和测量系统。
(2)检查设备的各个部件,如导轨、丝杠、探头等,确保其正常工作。
(3)定期检查设备的电源、气源、水源等,确保其稳定供应。
3.2设备的定期保养(1)定期对设备进行校准,确保测量精度。
(2)定期对设备的机械结构进行润滑,延长设备使用寿命。
(3)定期对设备的控制系统和数据处理系统进行升级和维护。
海克斯康三坐标初级培训教程(2024)

建立健全的质量管理制度 ,明确各部门和人员的职 责和权限,确保质量保证 体系的顺畅运行。
通过定期的质量监督和考 核,及时发现和解决问题 ,持续改进质量保证体系 。
2024/1/25
21
持续改进策略探讨
关注新技术和新方法
及时了解和应用新的测量技术和 方法,提高测量精度和效率。
加强人员培训
定期开展人员培训和技能竞赛, 提高员工的专业素质和实践能力 。
其产品线涵盖了三坐标测量机、影像 测量仪、激光跟踪仪、关节臂测量机 等多种测量设备,广泛应用于机械制 造、汽车、航空航天等领域。
2024/1/25
8
海克斯康三坐标测量机特点与优势
01
02
03
高精度测量
采用先进的测量技术和精 密的机械结构,确保测量 结果的高精度和稳定性。
2024/1/25
多功能性强
01
熟悉三坐标测量机的基 本构造和工作原理,了 解各部件的功能和作用 。
2024/1/25
02
掌握测量机的启动、关 闭及基本操作流程,包 括测量程序的编写和执 行。
03
学习如何正确安装和使 用测量头、测针等附件 ,确保测量精度和稳定 性。
12
04
了解测量数据的处理和 分析方法,掌握基本的 数据处理技能。
BIG DATA EMPOWERS TO CREATE A NEW
ERA
2024/1/25
23
团队协作意识培养
1 2
强调团队协作的重要性
让学员明白团队协作对于项目成功和个人成长的 关键作用。
分析团队协作的要素
讲解信任、沟通、分工、合作等团队协作的核心 要素。
3
培养团队精神
通过团队建设活动,增强学员的团队归属感和协 作精神。
三坐标基础培训手册

三坐标基础培训手册教材(一)三坐标测量机概述一、三坐标测量机的概念三坐标测量机的测量功能有二个:一是对工件几何尺寸的测量;二是对工件的形位公差的测量,并可用于逆向工程。
其测量的数据通过计算机进行运算及数据处理,将所需结果(数据)打印出来,并绘制出图形。
二、什么叫形位公差?形位公差分为形状公差和位置公差。
(1)形状公差:构成零件的几何特征的点,线,面元素之间的实际形状相对与理想形状的允许变动量。
给出形状公差要求的元素称为被测元素。
(2)位置公差:零件上的点,线,面元素的实际位置相对与理想位置的允许变动量。
用来确定被测元素位置的元素称为基准元素。
(1)理想元素和实际元素具有几何学意义的元素称为理想元素.零件上实际存在的元素称为实际元素,通常都以测得元素代替实际元素.(2)被测元素和基准元素在零件设计图样上给出了形状或(和)位置公差的元素称为被测元素.用来确定被测元素的方向或(和)位置的元素,称为基准元素.(3)单一元素和关联元素给出了形状公差的元素称为单一元素.给出了位置公差的元素称为关联元素.三、机器的结构以及特点(一)机器采用桥式结构(二)结构特点1.结构刚性好、承重能力大、空间开阔、布局合理、操作简单、维修方便、采用空气轴承、移动轻便。
2.工作台是机器的基准,采用高精度的大理石。
大理石的主要优点是变形小、稳定性好、不生锈,易于作平面加工,易于达到比铸铁更高的平面度,适合制作高精度的平台与导轨。
目前许多三坐标测量机采用这种材料。
机器的基座、工作台、桥框、各轴导轨、Z轴等全用花岗岩制造。
由于花岗石的热膨胀系数小,很适合与气浮导轨配合。
使用中应注意防水防潮,禁止用混水的清洗剂擦拭花岗石表面,也应防气体中的水分对导轨的影响。
四、机器的工作原理与用途(一)机器的工作原理将被测工件放置在三坐标测量机的平台上,移动X、Y、Z三轴,对工件进行测量,便可获得被测几何形面上各测点的几何坐标尺寸经过计算和数据处理,可求出待测几何尺寸和相互位置尺寸以及形位误差值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三坐标讲义第一节课学前知识一.三坐标概况1.三坐标组成三坐标主要由以下几部分组成:测量机主机,控制系统,计算机(测量软件),测座、测头系统。
2.测量机主机这是测量机的基本硬件,有多种结构形式:移动桥式:活动桥式测量机是使用最为广泛的一种机构形式。
特点是开敞性比较好,视野开阔,上下零件方便。
运动速度快,精度比较高。
有小型、中型、大型几种形式。
固定桥式:固定桥式测量机由于桥架固定,刚性好,动台中心驱动、中心光栅阿贝误差小,以上特点使这种结构的测量机精度非常高,是高精度和超高精度的测量机的首选结构。
高架桥式:高架桥式测量机适合于大型和超大型测量机,适合于航空、航天、造船行业的大型零件或大型模具的测量。
一般都采用双光栅、双驱动等技术,提高精度。
水平臂式:水平臂式测量机开敞性好,测量范围大,可以由两台机器共同组成双臂测量机,尤其适合汽车工业钣金件的测量。
关节臂式:关节臂式测量机具有非常好的灵活性,适合携带到现场进行测量,对环境条件要求比较低。
各种结构三坐标“图”以活动桥式测量机为例,介绍三坐标主要组成及功能:工作台(一般采用花岗石),用于摆放零件支撑桥架;工作台放置零件时,一般要根据零件的形状和检测要求,选择适合的夹具或支撑。
要求零件固定要可靠,不使零件受外力变形或其位置发生变化。
大零件可在工作台上垫等高块,小零件可以放在固定在工作台上的方箱上固定后测量。
桥架,支撑 Z 滑架,形成互相垂直的三轴;桥架是测量机的重要组成部分,由主、附腿和横梁、滑架等组成。
桥架的驱动部分和光栅基本都在主腿一侧,附腿主要起辅助支撑的作用。
由于这个原因,一般桥式测量机的横梁长度不超过 2.5 米,超过这个长度就要使用双光栅等措施对附腿滞后的误差进行补偿,或采用其他机构形式。
滑架,使横梁与有平衡装置的 Z 轴连接;滑架连接横梁和 Z 轴,其上有两轴的全部气浮块和光栅的读数头、分气座。
气浮块和读数头的调整比较复杂,直接影响测量机精度,不允许调整。
导轨,具有精度要求的运动导向轨道,是基准;导轨是气浮块运动的轨道,是测量机的基准之一。
压缩空气中的油和水及空气中的灰尘会污染导轨,造成导轨道直线度误差变大,使测量机的系统误差增大,影响测量精度。
要保持导轨道完好,避免对导轨磕碰,定期清洁导轨。
光栅系统(光栅、读数头、零位片),是基准;光栅系统是测量机的测长基准。
光栅是刻有细密等距离刻线的金属或玻璃,读数头使用光学的方法读取这些刻线计算长度。
为了便于计算由于温度变化造成光栅长度变化带来的误差,采用光栅一端固定,另一端放开,使其自由伸缩。
另外在光栅尺座预置有温度传感器,便于有温度补偿功能的系统进行自动温度补偿。
零位片的作用是使测量机找到机器零点。
机器零点是机器坐标系的原点,是测量机误差补偿和测量机行程终控制的基准。
驱动系统(伺服电机、传动带);驱动系统由直流伺服电机、减速器、传动带、带轮等组成。
驱动系统的状态会影响控制系统的参数,不能随便调整。
空气轴承气路系统(过滤器、开关、传感器、气浮块、气管);空气轴承(又称气浮块)是测量机的重要部件,主要功能是保持测量机的各运动轴相互无摩擦,由于气浮块的浮起高度有限而且气孔很小,要求压缩空气压力稳定且其中不能含有杂质、油,也不能有水。
过滤器系统是气路中的最后一道关卡,由于其过滤精度高,非常容易被压缩空气中的油污染,所以一定要有前置过滤装置和管道进行前置过滤处理。
气路中连接的空气开关和空气传感器都具有保护功能,不能随便调整。
支承(架)、随动带。
小型测量机采用支架支撑测量机工作台,中、大型测量机一般采用千斤顶支撑工作台。
都采用三点支撑,在一个支撑的一侧,有两个附助支撑,只起保险作用。
每个支撑都有一个海绵垫,能够吸收振幅较小的震动,如果安装测量机的附近有幅度较大的震动源,要另外采取减震措施。
三坐标内部结构示意图3.控制系统这是测量机的控制中枢,主要功能:控制、驱动测量机的运动,三轴同步、速度、加速度控制;操纵盒或计算机指令通过系统控制单元,按照设置好的速度、加速度,驱动三轴直流伺服电机转动,并通过光栅和电机的反馈电路对运行速度和电机的转速进行控制,使三轴同步平稳的按指定轨迹运动。
运动轨迹有飞行测量、点定位两种方式,飞行方式测量效率高,运动时停顿少。
点定位方式适合指定截面或指定位置的测量。
可以通过语句进行设置。
在进入计算机指令指定的触测的探测距离时,控制单元会控制测量机由位置运动速度转换到探测速度,使测头慢速接近被测零件。
在有触发信号时采集数据,对光栅读数进行处理;当通过操纵盒或计算机指令控制运动的测量机测头传感器与被测零件接触时,测头传感器(简称“测头”)就会发出被触发的信号。
信号传送到控制单元后,立即令测量机停止运动(测头保护功能),同时锁存此刻的三轴光栅读数。
这就是测量机测量的一个点的坐标。
根据补偿文件,对测量机进行 21 项误差补偿;测量机在制造组装完成后,都要使用激光干涉仪和其它检测工具对 21 项系统误差(各轴的两个直线度、两个角摆误差、自转误差、位置度误差,三轴之间的两个垂直度误差,共 21 项)进行检测,生成误差补偿文件,将这些误差用软件进行补偿,以保证测量机精度符合合同的要求。
测头触发后锁存的每一个点坐标都要经过误差计算、补偿后再传送给计算机软件。
采集温度数据,进行温度补偿;有温度补偿功能的测量机,可以根据设定的方式自动采取各轴光栅和被测零件的温度,对于测量机和零件温度由于偏离 20℃带来的长度误差进行补偿,以保持高精度。
对测量机工作状态进行监测(行程控制、气压、速度、读数、测头等),采取保护措施;控制系统内部设有故障诊断功能,对测量机正常工作及安全有影响的部位进行检测,当发现这些有异常现象时,系统就会采取保护措施(停机,断驱动电源),同时发出信息通知操作人员。
对扫描测头的数据进行处理,并控制扫描:配备有扫描功能的测量机,由于扫描测头采集的数据量非常大,必须有专用的扫描数据处理单元进行处理,并控制测量机按照零件表面形状,保持扫描接触的方式运动。
与计算机进行各种信息交流。
虽然控制系统本身就是一台计算机,但是没有与外界交互动介面,其内部的数据都要通过与上位计算机的通讯进行输入和设置。
控制信息和测点的数据都通过信息传输、交流。
交流方式主要是 RS232 接口或网卡。
控制柜,控制器图4.计算机(测量软件)计算机(又称上位机)是数据处理中心,主要功能:对控制系统进行参数设置;上位计算机通过“超级终端”方式,与控制系统进行通讯并实现参数设置等操作。
可以使用专用软件对系统进行调试和检测。
进行测头定义和测头校正,及测针半径补偿: 不同的测头配置和不同的测头角度,测量的坐标数值是不一样的。
为使不同配置和不同测头位置测量的结果都能够统一进行计算,测量软件要求进行测量前必须进行测头校正,以获得测头配置和测头角度的相关信息。
以便在测量时对每个测点进行测针半径补偿,并把不同测头角度测点的坐标都转换到“基准”测头位置上。
建立坐标系(零件找正)为测量的需要,测量软件以零件的基准建立坐标系统,称零件坐标系。
零件坐标系可以根据需要,进行平移和旋转。
为方便测量,可以建立多个零件坐标系。
对测量数据进行计算和统计、处理;测量软件可以根据需要进行各种投影、构造、拟和计算,也可以对零件图纸要求的各项形位公差进行计算、评价,对各测量结果使用统计软件进行统计。
借助各种专用测量软件可以进行齿轮、曲线、曲面和复杂零件的扫描等测量。
编程并将运动位置和触测控制通知控制系统;测量软件可以根据用户需要,采用记录测量过程和脱机编程等方法编程,可以对批量零件进行自动和高精度的测量或扫描。
输出测量报告;在测量软件中,操作员可以按照自己需要的格式设置模板,并生成检测报告输出。
传输测量数据到指定网路或计算机。
通过网络连接,计算机可以进行数据、程序的输入和输出。
软件界面图5.测座、测头系统测座、测头系统是数据采集的传感器系统,主要功能:测头传感器在探针接触被测点时发出触发信号:测头部分是测量机的重要部件,测头根据其功能有:触发式、扫描式、非接触式(激光、光学)等。
触发式测头是使用最多的一种测头,其工作原理是一个开关式传感器。
当测针与零件产生接触而产生角度变化时,发出一个开关信号。
这个信号传送到控制系统后,控制系统对此刻的光栅计数器中的数据锁存,经处理后传送给测量软件,表示测量了一个点。
扫描式测头有两种工作模式:一种是触发式模式,一种是扫描式模式。
扫描测头本身具有三个相互垂直的距离传感器,可以感觉到与零件接触的程度和矢量方向,这些数据作为测量机的控制分量,控制测量机的运动轨迹。
扫描测头在与零件表面接触、运动过程中定时发出信号,采集光栅数据,并可以根据设置的原则过滤粗大误差,称为“扫描”。
扫描测头也可以触发方式工作,这种方式是高精度的方式,与触发式测头的工作原理不同的是它采用回退触发方式。
测头控制器(PI200、PI7)控制测头工作方式转换(TP200、TP7); TP200、TP7 测头是高精度测头,它们的特点是灵敏度高,可以接比较长的测针。
但是灵敏度高会造成测量机高速运动时出现误触发。
测头控制器控制测头在测量机高速运动时处于高阻(不灵敏)状态,触发时进入灵敏状态度转换。
在手动方式时一般都是以操纵盒的“速度控制键”进行控制状态转换,即低速运动时是测头的灵敏状态。
测座控制器根据命令控制测座旋转到指定角度。
测座控制器可以用命令或程序控制并驱动自动测座的旋转到指定位置。
手动的测座只能由人工手动方式旋转测座。
测头(针)更换架可以在程序运行中,自动更换测头(针),避免程序中的人工干预,提高测量效率。
各系列测头座,测头,加长杆,测针图二.三坐标原理1.运动原理运动部件是通过气浮与花岗岩导轨之间形成一层气膜来实现运动部件悬浮,再由伺服系统驱动其运动,运动所需功率小,不用担心导轨磨损。
气浮与导轨接触图2.测量原理一把尺子,当规定了其正方向和原点,则这把尺子就相当于一个数轴;假如两把尺子相互垂直放置,规定了两把尺子的正方向,并且交点为原点,这样就形成一个平面直角坐标系;同样,三把尺子相互垂直放置,规定了三把尺子的正方向,并且规定三把尺子交点为原点,这样就形成一个空间直角坐标系。
三坐标三轴导轨上都贴有高精度光栅尺,运动部件上装有读取光栅信号的装置叫读数头,读数头与光栅尺的相对运动产生坐标变化,当规定了三轴光栅尺零位后,读数头就读取的是当前机器坐标系下的坐标值,读数头再把数据通过控制系统传递到电脑、软件。
这样我们就在软件上看到的当前坐标值。
光栅尺、读数头“图”3.计数原理1、在坐标空间中,可以用坐标来描述每一个点的位置。
2、2、多个点可以用数学的方法拟合成几何元素,如:面、线、圆、圆柱、圆锥等。
3、利用几何元素的特征,如:圆的直径、圆心点、面的法矢、圆柱的轴线、圆锥顶点等可以计算这些几何元素之间的距离和位置关系、进行形位公差的评价。