回归模型函数形式
第5章 回归模型的函数形式

E
Y的变动百分数 X的变动百分数
=
Y X
Y 100 = Y X 100 X
X Y
=slope
X Y
因此,如果Y代表了商品的需求量,X代表了单 位价格,E就是需求的价格弹性。
图 5-1
双对数模型的假设检验
双对数模型的假设检验与线性模型的检验 方法没有什么不同。
• 5.2线性模型与双对数回归模型的比较 (1)根据弹性定义公式,我们可以得出这 样的结论:对于线性模型,弹性系数是一 个变量;对于对数模型,其弹性系数为一 常量。
• 在实际经济活动中,经济变量的关系是复杂的, 直接表现为线性关系的情况并不多见。
• 如著名的Cobb- Dauglas生产函数表现为幂函数 曲线形式、宏观经济学中的菲利普斯曲线 (Pillips cuves)表现为双曲线形式等。
• 但是,大部分非线性关系又可以通过一些简单的 数学处理,使之化为数学上的线性关系,从而可 以运用线性回归模型的理论方法。
• 例5-2:柯布-道格拉斯生产函数
– 反应了产出与劳动力和资本投入之间的关系函 数。
– 劳动投入弹性+资本投入弹性=规模报酬参数
(1)规模报酬递增—规模报酬参数>1 (2)规模报酬递减—规模报酬参数<1 (3)规模报酬不变—规模报酬参数=1
• 例5-3:对能源的需求(P107)
二、半对数模型(semilog model)
对数-线性模型——测量增长率
例5-4:以时间t作为解释变量模型—增长模型
我们来研究一下在货币、银行及金融等课程中
介绍过的复利计算公式:
等式两端取对数:
Yt Y0 (1 r)t
ln Yt ln Y0 t ln(1 r)
回归模型的函数形式

回归模型的函数形式回归模型是一种描述自变量和因变量之间关系的数学模型。
它可以用来预测因变量的值,基于给定的自变量值。
回归模型可以是线性的或非线性的,具体选择哪种形式取决于数据的特点和研究的目标。
以下是一些常见的回归模型的函数形式:1.线性回归模型:线性回归模型假设因变量与自变量之间存在线性关系。
最简单的线性回归模型称为简单线性回归模型,可以使用一条直线来描述自变量和因变量之间的关系:Y=β0+β1X+ε其中,Y表示因变量,X表示自变量,β0表示Y截距,β1表示X的系数,ε表示误差项。
2.多元线性回归模型:多元线性回归模型用于描述多个自变量与因变量之间的线性关系。
它的函数形式为:Y=β0+β1X1+β2X2+...+βnXn+ε其中,Y表示因变量,Xi表示第i个自变量,βi表示Xi的系数,ε表示误差项。
3.多项式回归模型:多项式回归模型用于描述自变量和因变量之间的非线性关系。
它可以通过引入自变量的幂次项来逼近非线性函数:Y=β0+β1X+β2X^2+...+βnX^n+ε4.对数回归模型:对数回归模型适用于自变量与因变量之间存在指数关系的情况。
它可以将自变量或因变量取对数,将非线性关系转化为线性关系:ln(Y) = β0 + β1X + ε5. Logistic回归模型:Logistic回归模型用于描述分类变量的概率。
它的函数形式是Sigmoid函数,将自变量的线性组合映射到0和1之间的概率值:P(Y=1,X)=1/(1+e^(-β0-β1X))以上是几种常见的回归模型的函数形式。
回归模型的选择取决于数据的特征和研究的目标,需要考虑线性或非线性关系、自变量的数量、相关性等因素。
根据实际情况,可以选择合适的模型进行建模和预测。
回归函数公式范文

回归函数公式范文回归函数是指通过统计方法分析相关数据的数值关系,进而构建一个函数来描述这种关系的数学模型。
一般来说,回归函数用于描述一个或多个自变量与因变量之间的线性或非线性关系。
在简单线性回归中,回归函数的一般形式为:y=β0+β1*x+ε其中,y表示因变量,x表示自变量,β0和β1表示线性模型的系数,ε表示误差项。
在多元回归中,回归函数的一般形式为:y = β0 + β1 * x1 + β2 * x2 + ... + βn * xn + ε其中,n表示自变量的个数。
回归函数的目的是根据观测数据拟合出最佳的模型,使得预测值与实际值之间的误差最小化。
常用的方法包括最小二乘法、梯度下降法等。
最小二乘法是一种常用的回归分析方法,通过最小化残差平方和来估计回归系数。
简单线性回归中的最小二乘法可以通过以下公式计算回归系数:β1 = Σ((xi - x̄)(yi - ȳ)) / Σ((xi - x̄)^2)β0=ȳ-β1*x̄其中,xi表示自变量的第i个观测值,yi表示因变量的第i个观测值,x̄和ȳ分别表示自变量和因变量的均值。
梯度下降法是一种优化算法,通过迭代的方式逐步调整回归系数的值,使得损失函数逐渐减小。
在梯度下降法中,回归系数的更新公式为:βj = βj - α * Σ(yi - ȳ) * xi其中,α表示学习率,控制每次迭代的步长。
除了线性回归,还有许多其他形式的回归函数,比如多项式回归、指数回归、对数回归等。
这些回归函数可以更好地描述数据的非线性关系。
总之,回归函数是一种用于分析和描述变量之间关系的数学模型。
通过构建回归函数,可以基于已有数据进行预测和推断,从而帮助我们理解和解释复杂现象。
4 回归模型的函数形式b

多元双对数模型: 多元双对数模型:两个实例
P185
ln Yi = B1 + B2 ln X 2i + B3 ln X 3i + ui
B2:保持X3不变,X2每变化1%,Y变化B2* 1% B3:保持X2不变,X3每变化1%,Y变化B3* 1% 偏弹性。 它们分别度量了Y对 X2和X3变化的偏弹性 偏弹性
B2度量了Y对X的弹性: 的弹性: 度量了 对 的弹性 X变化 ,Y将变化 2×1% 变化1%, 将变化 将变化B 变化
关于弹性
d ln Y dY / Y Y / Y X E= = = = (斜率) ( ) d ln X dX / X X / X Y
当E的绝对值大于1,Y对X有弹性 有弹性 当E的绝对值小于1,Y对X缺乏弹性 缺乏弹性 当E的绝对值等于1,Y对X有单位弹性 有单位弹性
若B2+B3 >1,规模报酬递增 (increasing returns to scale) 若B2+B3 <1,规模报酬递(decreasing) 若B2+B3 =1,规模报酬不变(constant) 表9-2:墨西哥生产函数(1955-1974) :墨西哥生产函数( - )
例9-3 OECD国家的能源需求 国家的能源需求
P191,9.5
关键:解释斜率系数B 关键:解释斜率系数B2的含义
ln Yi = B1 + B2 X i + ui
d ln Y Y / Y B2= = dX X
log-lin:X变化一单位,Y会变(100×B2)%
Yi = B1 + B2 ln X i + ui
dY Y B2= = d ln X X / X
虽然双对数模型改变了变量xy的函数形式但由于仍是参数线性模型模型的参数估计假设检验tfp值预测等都与第67章介绍的方法类似可直接套用
计量经济学_詹姆斯斯托克_第8章_非线性的回归模型

Ln(TestScore) = 6.336 + 0.0554 ln(Incomei) (0.006) (0.0021)
假设 Income 从$10,000 增加到$11,000(或者 10%)。
则 TestScore 增加大约 0.0554 10% = 0.554%。
如果 TestScore = 650, 意味着测试成绩预计会增加
非线性的回归模型
非线性的回归函数
“非线性”的含义:
(1)非线性的函数 自变量与解释变量之间的非线性
函 数形式。
(2)非线性的回归 参数与随机项的非线性形式。
非线性的回归函数
一、多项式回归 二、对数回归 三、自变量的交互作用 四、其他非线性形式的回归 五*、非线性回归(参数非线性)
一、多项式回归
1、指数函数曲线
指数函数方程有两种形式:
yˆ aebx yˆ abx
y a>0,b>0
a>0,b<0
x
图11.1方yˆ 程 aebx 的图象
二、对数函数曲线
对数函数方程的一般表达式为:
yˆ a b ln x
y
b>0
b<0
x
图11.2 方程yˆ =a+blnx 的图象
(2)根据拟合程度的好坏来确定(如,利用spss 的相关功能) 在社会科学领域里,阶数不会太高!
一、多项式回归
形式: Y 0 1X 2 X 2 ...r X r u
(2)多项式的本质 泰勒展开
一、多项式回归
形式: Y 0 1X 2 X 2 ...r X r u
Y——收入; D1——性别(1——男;0——女) D2——学历(1——大学学历;0——没有)
计量经济学课件 第5章 回归模型的函数形式

• 模型选择的重点不是在判定系数大小,而是要考 虑进入模型的解释变量之间的相关性(即理论基 础)、解释变量系数的预期符号、变量的统计显 著性、以及弹性系数这样的度量工具。
线性回归模型的弹性系数计算
• 平均弹性:
E
Y X
X Y
B2
X Y
多元对数线性回归模型
• 偏弹性系数的含义: 在其他变量(如,X3)保持不变的条件下,X2 每变动1%,被解释变量Y变动的百分比为B2;
• (3)菲利普斯曲线
被解释变量:英国货币工资变化率,解释变量:失业率 结论:失业率上升,工资增长率会下降。 在自然失业率UN上下,工资变动幅度快慢不同。即失业率低于自然失业率时,工 资随失业率单位变化而上升快于失业率高于自然失业率时工资随失业率单位变化而下 降。
(P113例5-6) 倒数模型: 菲利普斯曲线
依据经济理论,失业率上升,工资增长率会下降;且 当失业率处于不同水平时,工资变动率变动的程度会 不一样,即Y对X 的斜率(Y / X)不会是常数。
Y / X 20.588*(1/ X 2 )
R2 0.6594
模型选择:
1、依据经济理论
以及经验判断;
2、辅助于对拟合
R2 0.5153 Y / X 0.79
1、B1、B2、B4 0; 2、B3 0 3、B32 3B2B4
WHY? —所以经济理论的学习对于模型的建立、选择
和检验有非常关键和重要的意义。 24
四、模型(形式)选择的依据
经济理论
工作经验
1、模型的建立需要正确地理论、合适可用的数据、 对各种模型统计性质的完整理解以及经验判断。
模型选择的基本准则:进入模型中的解释变量的关系(即 理论基础)、解释变量系数的预期符号、弹性系数等经济 指标、统计显著性等
logistic回归模型方程

logistic回归模型方程Logistic回归模型方程是一种常用的分类算法,它可以将数据分为两个或多个类别。
在这篇文章中,我们将介绍Logistic回归模型方程的基本概念和应用。
Logistic回归模型方程是一种基于概率的分类算法,它可以将数据分为两个或多个类别。
在Logistic回归模型中,我们使用一个S形函数来将输入变量映射到输出变量。
这个S形函数被称为Logistic 函数,它的形式如下:$$P(y=1|x)=\frac{1}{1+e^{-\beta_0-\beta_1x_1-\beta_2x_2-...-\beta_px_p}}$$其中,$P(y=1|x)$表示当输入变量为$x$时,输出变量为1的概率。
$\beta_0,\beta_1,\beta_2,...,\beta_p$是模型的参数,$x_1,x_2,...,x_p$是输入变量。
Logistic回归模型的训练过程是通过最大化似然函数来确定模型参数的。
似然函数是一个关于模型参数的函数,它描述了给定模型参数下观察到数据的概率。
在Logistic回归模型中,似然函数的形式如下:$$L(\beta)=\prod_{i=1}^{n}P(y_i|x_i;\beta)^{y_i}(1-P(y_i|x_i;\beta))^{1-y_i}$$其中,$n$是样本数量,$y_i$是第$i$个样本的输出变量,$x_i$是第$i$个样本的输入变量。
最大化似然函数的过程可以使用梯度下降等优化算法来实现。
Logistic回归模型可以应用于许多分类问题,例如垃圾邮件分类、疾病诊断等。
在这些问题中,我们需要将输入变量映射到输出变量,以便进行分类。
Logistic回归模型可以通过学习输入变量和输出变量之间的关系来实现这一目标。
Logistic回归模型方程是一种常用的分类算法,它可以将数据分为两个或多个类别。
在Logistic回归模型中,我们使用一个S形函数来将输入变量映射到输出变量。
回归分析模型

定义
TSS y i y
i 1
n
2
称因变量 y 的总变差平方。它刻画了因变量取值总的波动程度。
TSS 作适当分解 y 波动的两方面原因对 我们希望能根据导致
ˆi y ˆ i y RSS SS回 TSS y i y y i y
这表明回归函数 f x1 , x 2 , , x p 实质上就是在自变量 x1 , x 2 , , x p
根据回归函数 f x1 , x 2 , , x p 的不同数学形式,对回归模型可作 如下大致分类: 若 f x1 , x 2 , , x p 是自变量的线性函数,称线性回归模型
b0 b1 x1 b2 x 2 b p x p
能最大限度地解释
就第i 次试验而言,因变量的实际观测值yi 与可以通过回归函数加以解释的量
b0 b1 x i1 b2 x i 2 b p x ip 之间的偏差为 y i b0 b1 x i1 b2 x i 2 b p x ip .
R b0 , b1 , , b p y i b0 b1 xi1 b2 xi 2 b p xip
n i 1
2
y 的取值,很自然地取使残差平方和 为了使回归函数能最大限度地解释因变量 ˆ ,b ˆ ,b ˆ , , b ˆ R b0 , b1 , , b p b 0 1 2 p 达到最小的 作为回归系数的估计。 这种方法称最小二乘
回归方程的显著性检验 从 回 归 系 数 的 求 法 , 原 则 上 , 对 任 何n 组 观 测 数 据 xi1 , xi 2 , , xip ; yi ,i 1,2,, n (无论 y 与x1 , x 2 , , x p 是否有 线性相关关系)都可以得到一个经验回归方程。但是,只有 当 y 与 x1 , x 2 , , x p 确实具有线性相关关系时,相应的经验回 y 与x1 , x 2 , , x p 是否确实具有 归方程才有意义。因此,考查 线性相关关系, 是能否进一步将所得经验回归方程用于预测 或控制的前提。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图5-2数学S.A.T分数的双对数模型散点图
9-12
5.1 如何度量弹性:双对数模型
数学S.A.T分数函数取对数后的回归过程
9-13
5.1 如何度量弹性:双对数模型
数学S.A.T分数函数取对数后的回归结果
ˆ InYi 4.887712773 0.1258045149InX i se (0.1573)(0.0148) t (31.0740)(8.5095) p (0.0000)(0.0000)
9-21
5.2 比较线性和双对数回归模型
注意2 !!!
对线性模型而言,其弹性系数随着需求曲 线上的点的不同而变化,而对双对数模型而言, 它在需求曲线上任何一点的弹性系数都是相同 的。因此,在这两类模型之间进行选择模型时, 我们可以根据这个特点作出判断。
9-22
5.2 比较线性和双对数回归模型
对于线性模型的弹性通常用平均弹性系数来计算 :
9-14
r 2 0.900513
5.1 如何度量弹性:双对数模型
双对数线性模型的假设检验
就假设检验而言,线性模型与对数线性模型并没有 什么不同。在随机误差项服从正态分布 ( 均值为 0 ,方 差为 2)的假定下,每一个估计的回归系数均服从正态 分布。或者,如果用 2 的无偏估计量代替它,则每一 个估计的回归系数服从自由度为(n-k)的t分布,其中k 为包括截距在内的参数的个数。
9-20
5.2 比较线性和双对数回归模型
注意1!!!
2 R 即使两个模型中的因变量相同,两个 值可以直接比较,
我们也建议不要根据最高值这一标准选择模型。而应该首 先考虑进入模型中的解释变量之间的相关性、解释变量系 数的预期符号、统计显著性以及类似弹性系数这样的度量 工具。(也就是根据理论推理,得出模型具体形式)
Yi* LnYi X i* LnX i 则InYi B1 B2 InXi u i 可写成: Yi* B1 B2 X i* u i 与前面讨论的模型相似 :它不仅是参数线性的 ,而且也是变量线性的 。
9-5
1 如何度量弹性:双对数模型
双对数模型中斜率 B2的经济意义:
LnYi B1 B2 LnX i ui
dLnY B2 dLnX
B2 dY / Y Y的相对变化量 (Y / Y) 100 dX / X X 的相对变化量 (X / X ) 100
在双对数模型中,X变化1%引起Y变化 B2 %
9-6
5.1 如何度量弹性:双对数模型
双对数线性模型的特点---不变弹性模型
斜率B2 度量了Y对X的弹性,即X的一个(微小) 变动引起Y变动的百分比。
定义弹性E为:
Y Y 变动的% Y X Y 100 E = X 变动的% X X Y X 100 X X 斜率 slope( ) Y Y
9-7
5.1 如何度量弹性:双对数模型
9-8
图5-1 不变弹性模型 (后面讲解)
5.1 如何度量弹性:双对数模型
例5.1 数学S.A.T分数函数
9-9
5.1 如何度量弹性:双对数模型
数学S.A.T分数函数取对数后的Excel数据
9-10
5.1 如何度量弹性:双对数模型
数学S.A.T分数函数取对数后的Eviews数据
9-11
5.1 如何度量弹性:双对数模型
9-19
5.2 比较线性和双对数回归模型
能否用判定系数R2来选择模型?
如果两个模型的被解释变量形式是相同的,可用 R 作 为选择标准。 但下列两模型, R 2度量的意义不同
2
Y B B X u
i 1 2 i
i
InY i B 1 B2 InXi ui
2 不能根据最高 R 2值这一标准(high r value criterion)来 选择模型
第5章 回归模型的函数形式
Essentials of Econometrics
第5章回归模型的函数形式
本章讨论以下几种形式的回归模型
(1) 双对数线性模型或不变弹性模型 (2) 半对数模型 (3) 倒数模型 (4) 多项式回归模型 (5) 过原点的回归模型,或零截距模型
9-2
5.1 如何度量弹性:双对数模型
回顾数学S.A.T函数一例,建立了家庭收入(x)与数 学S.A.T成绩(Y)的双变量线性回归模型: EYi B2 B2 X i
对于变量之间是线性的模型来说,解释变量每
变动一个单位,因变量的变化率为一常数。
9-3
5.1 如何度量弹性:双对数模型
能否使用如下的指数形式来描述数学S.A.T成绩(Y) 与家庭收入(X)的关系呢?
t= (25.5774)(0.0006) r2=0.7869
9-18
P值=(5.85*10-9)(0.0006) d.f.=8
5.2 比较线性和双对数回归模型
如何来选择模型 规律之一是根据数据作图。如果散点图表 明两个变量之间的关系近似线性的 (也即是一 条直线),那么假定模型是线性的就比较合适。 但如果散点图表明变量之间的关系是非线 性的,则需要作 logY对 logX的图形,如果这 个图形表明它们之间是近似线性的,则假定 模型是对数线性模型就比较合适。(只适用于 双变量的情况)
9-15
5.2 比较线性和双对数回归模型
回归模型的函数形式成为一个经验性问题。 在模型选择过程中,要遵循哪些经验规律呢?
数学S.A.T的原始数据
9-16
5.2 比较线性和双对数回归模型
9-17
5.2 比较线性和双对数回归模型
ˆ Y i
= 432.4138+0.0013Xi
Se= (16.9061)(0.000245)
Y X 平均弹性系数 X Y
9-23
5.2 比较线性和双对数回归模型
数学S.A.T分数函数
两边求对数:
Yi AX
B2 i
InYi InA B2 InXi
令 B1 LnA
InYi B1 B2 InXi
9-4
5.1 如何度量弹性:双对数模型
得到模型---“双对数线性模型”
InYi B1 B2 InXi ui
问题:这样一个非线性模型是如何通过适当变换成为 线性模型的呢? 下面进行对数变换,令