习题4弯曲内力与5弯曲应力
习题解答4(弯曲内力)

M2 FS2
M3 FS3
M2 = - F×1 = - 10 kN· m
F C
FS3 = F = 10 kN M3 = 0
P73 40-1(d) a = l
12 3 O(3Fa) F M
A
F A
B
12
C
3
FS1 M1
D FD
Fy = 0
FD = 10 kN
FS1 = - F = - 10 kN
3 qa2 2
FS 图
1 qa2 2
1 M(x) = - qa×(2a- a-x) 2 3 2 = qax - qa 2 BC段: FS(x) = q ×(2a-x) = 2qa - qx 1 M(x) = q×(2a-x)× (2a-x) 2 1 2 = - qx + 2qax - 2qa2 2 1 = - q× ( 2a- x) 2 2
A 1 ql 4 C B A C
B A
C
B
l/ 2
l/ 2
1 ql 2 1 ql FS 图(q) 2
FS 图(M0)
1 ql 4 1 ql2 8 1 ql2 8
FS 图
3 ql 4
1 ql2 32 5 ql2 1 ql2 32 4
1 ql2 8
M图
M 图 ( q)
M 图(M0)
P78 42-2-1 叠加法 (过程)
F M0(Fa) C B A F
A B C A
M0(Fa) C B
a
a
F
F
3Fa
FS 图
2Fa Fa
FS 图(F)
2Fa
FS 图(M0)
Fa
《材料力学》 第五章 弯曲内力与弯曲应力

第五章 弯曲内力与应力 §5—1 工程实例、基本概念一、实例工厂厂房的天车大梁,火车的轮轴,楼房的横梁,阳台的挑梁等。
二、弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线。
变形特点——杆轴线由直线变为一条平面的曲线。
三、梁的概念:主要产生弯曲变形的杆。
四、平面弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线,且都在梁的纵向对称平面内(通过或平行形心主轴且过弯曲中心)。
变形特点——杆的轴线在梁的纵向对称面内由直线变为一条平面曲线。
五、弯曲的分类:1、按杆的形状分——直杆的弯曲;曲杆的弯曲。
2、按杆的长短分——细长杆的弯曲;短粗杆的弯曲。
3、按杆的横截面有无对称轴分——有对称轴的弯曲;无对称轴的弯曲。
4、按杆的变形分——平面弯曲;斜弯曲;弹性弯曲;塑性弯曲。
5、按杆的横截面上的应力分——纯弯曲;横力弯曲。
六、梁、荷载及支座的简化(一)、简化的原则:便于计算,且符合实际要求。
(二)、梁的简化:以梁的轴线代替梁本身。
(三)、荷载的简化:1、集中力——荷载作用的范围与整个杆的长度相比非常小时。
2、分布力——荷载作用的范围与整个杆的长度相比不很小时。
3、集中力偶(分布力偶)——作用于杆的纵向对称面内的力偶。
(四)、支座的简化:1、固定端——有三个约束反力。
2、固定铰支座——有二个约束反力。
3、可动铰支座——有一个约束反力。
(五)、梁的三种基本形式:1、悬臂梁:2、简支梁:3、外伸梁:(L 称为梁的跨长) (六)、静定梁与超静定梁静定梁:由静力学方程可求出支反力,如上述三种基本形式的静定梁。
超静定梁:由静力学方程不可求出支反力或不能求出全部支反力。
§5—2 弯曲内力与内力图一、内力的确定(截面法):[举例]已知:如图,F ,a ,l 。
求:距A 端x 处截面上内力。
解:①求外力la l F Y l FaF m F X AYBY A AX)(F, 0 , 00 , 0-=∴==∴==∴=∑∑∑ F AX =0 以后可省略不求 ②求内力xF M m l a l F F F Y AY C AY s ⋅=∴=-==∴=∑∑ , 0)( , 0∴ 弯曲构件内力:剪力和弯矩1. 弯矩:M ;构件受弯时,横截面上存在垂直于截面的内力偶矩。
材料力学弯曲变形答案

第一章 绪论一、是非判断题1.1 材料力学的研究方法与理论力学的研究方法完全相同。
( ) 1.2 内力只作用在杆件截面的形心处。
( ) 1.3 杆件某截面上的内力是该截面上应力的代数和。
( ) 1.4 确定截面内力的截面法,适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况。
( ) 1.5 根据各向同性假设,可认为材料的弹性常数在各方向都相同。
( ) 1.6 根据均匀性假设,可认为构件的弹性常数在各点处都相同。
( ) 1.7 同一截面上正应力ζ与切应力η必相互垂直。
( ) 1.8 同一截面上各点的正应力ζ必定大小相等,方向相同。
( ) 1.9 同一截面上各点的切应力η必相互平行。
( ) 1.10 应变分为正应变ε和切应变γ。
( ) 1.11 应变为无量纲量。
( ) 1.12 若物体各部分均无变形,则物体内各点的应变均为零。
( ) 1.13 若物体内各点的应变均为零,则物体无位移。
( ) 1.14 平衡状态弹性体的任意部分的内力都与外力保持平衡。
( )1.15 题1.15图所示结构中,AD 杆发生的变形为弯曲与压缩的组合变形。
( )1.16 题1.16图所示结构中,AB 杆将发生弯曲与压缩的组合变形。
( )二、填空题1.1 材料力学主要研究 受力后发生的 ,以及由此产生的 。
1.2 拉伸或压缩的受力特征是 ,变形特征是 。
1.3 剪切的受力特征是 ,变形特征是 。
1.4 扭转的受力特征是 ,变形特征是 。
B题1.15图题1.16图1.5 弯曲的受力特征是 ,变形特征是 。
1.6 组合受力与变形是指 。
1.7 构件的承载能力包括 , 和 三个方面。
1.8 所谓 ,是指材料或构件抵抗破坏的能力。
所谓 ,是指构件抵抗变形的能力。
所谓 ,是指材料或构件保持其原有平衡形式的能力。
1.9 根据固体材料的性能作如下三个基本假设 , , 。
材料力学B试的题目5弯曲应力

(A)(B)(C)(D)弯曲应力1. 圆形截面简支梁A,B套成,A,B层间不计摩擦,材料的弹性模量2B AE E=。
求在外力偶矩e M作用下,A,B中最大正应力的比值maxminABσσ有4个答案:(A)16; (B)14;(C)18; (D)110。
答:B2. 矩形截面纯弯梁,材料的抗拉弹性模量tE大于材料的抗压弹性模量cE,则正应力在截面上的分布图有以下4种答案:答:C3. 将厚度为2 mm的钢板尺与一曲面密实接触,已知测得钢尺点A处的应变为11000-,则该曲面在点A处的曲率半径为mm。
答:999 mm4. 边长为a的正方形截面梁,按图示两种不同形式放置,在相同弯矩作用下,两者最大正应力之比max amax b()()σσ=。
(a)(b)答:2/15. 一工字截面梁,截面尺寸如图,, 10h b b t ==。
试证明,此梁上,下翼缘承担的弯矩约为截面上总弯矩的88%。
证:412, (d ) 1 8203BA z z zMy M Mt M y yb y I I I σ==⨯=⨯⎰4690z I t=41411 82088%3690M t M t=⨯⨯≈ 其中:积分限1 , 22h h B t A M =+=为翼缘弯矩6. 直径20 mm d =的圆截面钢梁受力如图,已知弹性模量200 GPa E =, 200 mm a =,欲将其中段AB 弯成 m ρ=12的圆弧,试解:1MEIρ=而M Fa =4840.78510 m , 0.654 kN 64d EII F aπρ-==⨯==33max80.654100.22010167 MPa 2220.78510M d Fad I I σ--⋅⨯⨯⨯⨯====⨯⨯ 7. 钢筋横截面积为A ,密度为 ρ,放在刚性平面上,一端加力F ,提起钢筋离开地面长度3l解:截面C 曲率为零2(/3)0, 326C Fl gA l gAl M F ρρ=-==8. 矩形截面钢条长l ,总重为F ,放在刚性水平面上,在钢条A 端作用3F解:在截面C 处, 有 10C M EIρ==2()2 0, 323AC C AC AC l F F lM l l l =⨯-⨯==即AC段可视为受均布载荷q 作用的简支梁2maxmax 22()/8/63AC M q l FlWbt bt σ===9. 图示组合梁由正方形的铝管和正方形钢杆套成,在两端用刚性平板牢固联接。
材料力学答案4弯曲内力

A
C
B 出剪力图和弯矩图。
x1
x2
解:1.确定约束力
FAy
l
FBy
M /l
M A=0, MB=0
Fs:
Ma / l
M:
FAy=M / l FBy= -M / l
2.写出剪力和弯矩方程
AC FS x1=M / l 0 x1 a
M x1=Mx1 / l 0 x1 a
剪力图和弯矩图
例1
1kN.m
A
C D B 解法2:1.确定约束力
FAY
Fs( kN) 0.89
1.5m
1.5m
2kN
1.5m
FBY
1.11
(+)
FAy=0.89 kN FFy=1.11 kN
(-)
2.确定控制面为A、C 、D、B两侧截面。
3.从A截面左侧开始画
剪力图。
19
剪力图和弯矩图
例1
x 5.确定控制面上的 弯矩值,并将其标在
M-x中。
22
剪力图和弯矩图
例2
q
D 解法2:1.确定约束力
A
B
FAy
9qa/4
4a
a qa FBy
FAy=
9 4
qa
,
FBy=
3 4
qa
Fs (+)
(-) qa
7qa/4
2.确定控制面,即A 、B、D两侧截面。
3.从A截面左测开始画
剪力图。
23
剪力图和弯矩图
Mb / l
CB FS x2 =M / l 0 x2 b
M x2 = Mx2 / l 0 x2 b
材料力学习题册1-14概念答案

第一章绪论一、是非判断题材料力学的研究方法与理论力学的研究方法完全相同。
( × ) 内力只作用在杆件截面的形心处。
( × )杆件某截面上的内力是该截面上应力的代数和。
( × )确定截面内力的截面法,适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况。
( ∨ )根据各向同性假设,可认为材料的弹性常数在各方向都相同。
( ∨ )根据均匀性假设,可认为构件的弹性常数在各点处都相同。
( ∨ )同一截面上正应力σ与切应力τ必相互垂直。
( ∨ )同一截面上各点的正应力σ必定大小相等,方向相同。
( × )同一截面上各点的切应力τ必相互平行。
( × )应变分为正应变ε和切应变γ。
( ∨ )应变为无量纲量。
( ∨ )若物体各部分均无变形,则物体内各点的应变均为零。
( ∨ )若物体内各点的应变均为零,则物体无位移。
( × )平衡状态弹性体的任意部分的内力都与外力保持平衡。
( ∨ )题图所示结构中,AD杆发生的变形为弯曲与压缩的组合变形。
( ∨ )题图所示结构中,AB杆将发生弯曲与压缩的组合变形。
( × )B题图题图二、填空题材料力学主要研究 受力后发生的,以及由此产生的 。
拉伸或压缩的受力特征是 ,变形特征是 。
剪切的受力特征是 ,变形特征是。
扭转的受力特征是 ,变形特征是 。
弯曲的受力特征是 ,变形特征是 。
组合受力与变形是指 。
构件的承载能力包括 , 和 三个方面。
所谓 ,是指材料或构件抵抗破坏的能力。
所谓 ,是指构件抵抗变形的能力。
所谓 ,是指材料或构件保持其原有平衡形式的能力。
根据固体材料的性能作如下三个基本假设 , , 。
认为固体在其整个几何空间内无间隙地充满了组成该物体的物质,这样的假设称为 。
根据这一假设构件的 、 和 就可以用坐标的连续函数来表示。
填题图所示结构中,杆1发生 变形, 杆2发生 变形,杆3发生 变形。
弯曲应力力习题

第五章弯曲应力力习题(共6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第五章 弯曲应力习题一、单项选择题1、梁纯弯曲时,梁横截面上产生的应力为( ) A 、正应力 B 、拉应力 C 、压应力 D 、切应力二、填空题1、对于圆形截面的梁,其对圆心的极惯性矩I p = ;截面对过圆心的Z 轴的惯性矩I z = ;截面的抗扭截面系数W p = ;截面的抗弯截面系数W z =2、在梁弯曲变形时1ZMEI ρ=,式中ρ 表示梁中性层的曲率半径,M 表示梁横截面上的 ,I z 表示梁横截面的 ,EI z 称为梁的抗弯 。
3、梁纯弯曲时,梁纯弯曲时,横截面上的正应力沿高度方向呈 分布,横截面上距中性轴愈远的点处应力的绝对值 ,中性轴上的各点应力为 . 4、根据梁弯曲的平面假设,梁上其间存在一层既不伸长也不缩短的纤维,这一层纤维称为 。
该层与梁横截面的交线称为 。
三、计算题1、由50a 号工字钢制成的简支梁如图所示,q =30kN/m ,a =3m ,50a 号工字钢的抗弯截面系数W z =1860×10-6m 3,大梁材料的许用应力[σ]=160Mpa ,试校核梁的强度。
2、如图所示矩形截面悬臂梁,外载荷F =3kN ,梁长l =300mm ,其高宽比为h /b =3,材料的许用应力[σ]=160Mpa ,试按梁的弯曲强度条件设计该矩形截面梁的尺寸。
图3、如图所示的简支梁,梁横截面为圆形,直径D =25mm ,P =60N ,m =180N •m, a =2m ,圆形截面梁材料的许用应力[σ]=140Mpa ,试校核梁的强度。
4、如图所示悬臂梁,外伸部分长度为l ,截面为b ×4b 的矩形,自由端作用力为P 。
拟用图(a )和图(b )两种方式搁置,试求图(a )情形下梁横截面上的最大拉应力(σmax ) 和图(b )情形下梁横截面上的最大拉应力(σmax )。
弯曲应力练习题

弯曲应力练习题弯曲应力是工程力学中的重要概念,涉及到物体在受到弯曲力作用时的应力分布和变化。
掌握弯曲应力的计算方法对于力学领域的学习至关重要。
在本文中,我们将介绍一些常见的弯曲应力练习题,旨在帮助读者加深对弯曲应力的理解和运用。
1. 长方形截面材料的弯曲应力考虑一块长度为L、宽度为b、高度为h的长方形截面材料,在其最大弯曲力矩为M的作用下,我们希望计算其截面处的最大弯曲应力σ。
根据工程力学的理论,我们可以使用以下公式进行计算:σ = (M * y) / (I * c)其中,y表示距离截面中性轴的距离,I是截面的惯性矩,c是截面最大应力面的最大距离。
2. 悬臂梁的最大弯曲应力考虑一个长度为L、所受力矩为M的悬臂梁,我们希望计算其截面处的最大弯曲应力σ。
对于悬臂梁而言,最大弯曲应力出现在悬臂梁固定端。
根据工程力学的理论,我们可以使用以下公式进行计算:σ = (M * L) / (I * c)其中,M是所受力矩,L是悬臂梁的长度,I是截面的惯性矩,c是截面最大应力面的最大距离。
3. 圆柱体的弯曲应力考虑一个半径为r、所受力矩为M的圆柱体,我们希望计算其截面处的最大弯曲应力σ。
根据工程力学的理论,我们可以使用以下公式进行计算:σ = (M * r) / (I * c)其中,M是所受力矩,r是圆柱体的半径,I是截面的惯性矩,c是截面最大应力面的最大距离。
以上是三个常见的弯曲应力计算问题的解决方法。
在实际的工程应用中,我们需要根据具体情况选择合适的公式并进行计算。
同时,为了准确评估材料的弯曲性能,我们还需要了解材料的力学性质,如弹性模量、截面惯性矩等。
通过练习和实践,我们可以逐渐提高对弯曲应力问题的解决能力。
总结:本文简要介绍了弯曲应力的概念和计算方法,并提供了三个常见的弯曲应力练习题。
这些题目涉及到了不同结构的材料,如长方形截面材料、悬臂梁和圆柱体。
通过解决这些练习题,读者可以深入理解弯曲应力的计算过程,进一步掌握工程力学的基础知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答案: B
A
0.89kN
1kN m
C
D
E F
2kN
B
1.11kN
1.5m
1.5m
1.5m
3. 梁受力如图,剪力图和 弯距图正确的是( )。
P
P P
a
Pa
2a
a
(A)
P
Q Q Q
Pa Pa Pa Pa
M M M M
(B)
P
P
(C)
P
P P
Pa Pa
P
P
(D)
3 3
mB
2.列方程作图(a)所示梁的剪力图与弯距图
P
m Pa
mB 3Pa
A x
x
2a
C
B
2a
x
YB P
(a)
解:如图(a)建x轴,列方程作Q、M图的步骤如下: 1)求支承约束力 用整梁平衡条件求得YB P、mB 3Pa(图( a))。 2)列Q x 、M x 方程 AC段Q x P (0<x 2a) M x Px (0 x<2a) CB段Q x P (2a x<4a) M x PxPa (2a<x<4a)
2
0
A
a
(c )
2 O 2
M2
Q2
mO ( F ) M 2 qa a 2qa 2 0
对Q2的说明同1 );M 2为正值,说明它实际转向与所设 相同,即逆时针,按弯距+、-号规定也应为正值。
3)求3-3截面上Q3、M 3 方法同上,由图(d)有
1 q0 l 6
C
l/ 3
1 q0 l 3
Q
b
M图(图(c))M A 0,M B 0,M x 为三曲线, 由dQ/dx Q x 可知,M x 的斜率开始为正值,越来越 小,经0(C面)变成负的,绝对值越来越大,它使M曲 线形成“上凸”(在规定M 坐标下)的三次曲线。在C 面(x l / 3)弯距取极值 1 l 1 q0 l 1 2 M 极 q0l q l 0 6 3 6 l 3 9 3 1 1 ) Q max = q0l,(x l); M max q0l 2 (x l / 3)。 6 9 3
(a)
a
解:现用设正法 1)求1-1截面上Q1、M 1 用截面1 1截取梁左段为研究对象。如图(b)所示,设 截面上作用有正向Q1、M 1,O为截面形心。由静力平衡条件
Y qa Q
1
0
A
q
YA
Q1 qa mO ( F ) M 1 qa a 0 M 1 qa 2
)给定分段面(控制面)上Q、M 值并连线作图 根据AC、CB段Q x P,知Q图为一水平线(图(b))。 AC段M x Px,M A M O 0,M C左 M 2a 2 Pa 弯距图为一斜直线(斜率为 P)。CB段M x PxPa, M C右 M 2a Pa,M B左 3Pa,弯距图为一斜直线(斜 率也为-P),得M图如图(c)。
h/4
h
答案:
7 M 8
M
h/4
b
4.图示横截面为等腰梯形的纯弯梁受弯距M 作用,已知 B 3b、h 2b则最大弯曲拉应力与最大弯曲压应力之比 ( max)( t / max) c为(
5 答案: 7
)。
M
b h
B
二、选择题
1.图示梁CB段的剪力、弯距方程为Q (x)=-3m / 2a, 3mx M (x)= m,其相应的适用区间分别为( )。 2a
Q
Pa
答案: D
4.纯弯梁的横截面形状、尺寸如图(a)、(b)、(c)所示。 h 它们都是在2b 2h的矩形内对称于y轴挖空一个面积为b 的 2 小矩形。在相同弯距作用下,它们最大弯曲正应力大小的排 序是( )。 (A)(a)>(b)>(c) (C)(a)<(b)<(c) y b (B)(b)>(a)>(c) (D)(b)<(a)<(c) y y b b
(a)
m Pa
2P
A
C
B
a
2P
a
P
B
YB P
A
(b)
()
Pa
() ()
C
YA P
m Pa
P
B
(c)
A
P YA 2
Pa
P 2
()
1 Pa 2
YB
P 2
叠加
将分段面上的Q、M相应值相加,然后按相应
图上线型(现均为直线),连线即可得总Q、M图(d), 3 3 并有 Q max = P、 M max Pa。 2 2
答案:
4.平面弯曲是指梁的横截面变形前是平面, 受力变弯后仍为平面的弯曲。 ( )
答案:
四、计算题
1.梁受力如图(a)所示,求1-1,2-2,3-3面上的剪力 与弯距。其中1-1面与2-2面分别在紧靠外力偶m作用面C 的左则与右则。
qa
m 2qa2
A
1 2 3 1 2a 3
q
mB
C
2
B
YB
a
1Q1
a
O1
M1
(b ) Q1为负值,说明它实际方向向上。同时,按剪力
+、-号规定也应为负值,说明它实际转向为顺时针, 按弯距+、-号规定也应为负值。
2)求2-2截面上Q2、M 2 取截面,设正后研究对象受力如图(c)
qa
2qa 2
Y qa Q
Q2 qa M 2 qa 2
qa
2qa 2 q
A
3 3
M3 Q3
a Y qa q 2 -Q3 0 (d ) Q3 qa 3a a a mO ( F ) M 3 qa q 2qa 2 0 2 2 4 3 M 3 qa 2 8 对Q3、M 3的说明同2)。
)列Q x 、M x 方程 本题载荷为x的一次函数,Q x 、M x 分别为二次、三次 曲线方程,利用方程辅以微分关系作图较为方便。应注意 此时不能再用R代替分布载荷来写内力方程了(为什么?) q0 取x面左段为研究对象,x面上载荷集度为q x x。 l 1 1 1 1 q0 2 Q x q0l q x x q0l x x l 6 2 6 2 l 1 1 1 1 1 q0 3 M x q0l x q x x x q0lx x x l 6 2 3 6 6 l
3 Pa 2
()
1 P 2
Pa
()
3 P 2
()
(d )
5.图a所示为一T字形铸铁梁,已知受弯时抗拉许用应力
t 30MPa,抗压 c 60MPa。试校核此梁是否安全。
图示截面尺寸长度单位为mm。
9kN 4kN
y
80 20
A
C
1m 1m
B
1m
D
z0
yc z
20
C
120
弯曲内力与弯曲应力
一、填空
1)图示外伸梁受均布载荷作用,欲使MA = MB = -MC。
则要求 l / a 的比值为( );欲使MC =0,则要求比值为
( )。
q
A B
l/2
C
a
l/2
a
答案: l / a 2 2;l / a 2。
3. 图示矩形截面纯弯梁受弯距M 作用,梁发生弹性变形, 横截面上图示阴影面积上承担的弯距为( )。
(A)(a x 2a),(a x 2a) (C)(a x 2a),(a x 2a)
A
(B)(a x 2a),(a x 2a) (D)(a x 2a),(a x 2a)
m
C
B
2m
D
x
a
a
YB = 3m 2a
a
答案: C
YA =
3m 2a
2.梁受力如图所示,指kN定截面C、D、E、F上正确的 Q、M 值应为( )。 (A)QC 0.89kN,M C 0.89 1.5 1 2.335kN m (B)QD 0.89kN,M D 0.89 1.5 1 0.335kN m (C)QE 1.11kN,M E 1.111.5 1.665kN m (D)QF 1.11kN,M F 1.111.5 1.665kN m
a
C
a/2
4)取右段平衡求Q3、M 3 为此应先由整梁平衡(见图(a))求出固定端约束力 1 YB 2qa,mB qa 2。取右段,设正后(注意此时Q3、 2 q Q3 M 3的正值方向)如图(e) a M3 B Y Q q 2qa 0 3 2 a/2 Y B (e) Q3 qa a a a 1 mO ( F ) M 3 q 2qa qa 2 0 2 4 2 2 3 M 3 qa 2 8 结果与取左段相同,符合同一截面上两侧的内力为 作用反作用关系。因此4)也可作为步骤3)所得结果 正确性的校核。
2h
h 2
答案: A
h 2
h
h 2
h h
h
2b
(a)
2b
(b)
2b
(c)
三、判断题
1.在集中力作用处,梁的剪力图要发生突变,弯距图的斜率 要发生突变。
答案:
2.在Q=0处,弯距必取 M max 。 ( )