七年级数学上册 整式的加减第1课时整式教案 人教新课标版
2024版七年级数学上册第四单元整式的加减 第1课时 利用合并同类项解一元一次方程(人教版)

因此,前年这所学校购买了 20 台计算机.
检验一下x =20是方程 x +2x + 4x =140的解.
思考
上面解方程过程中“合并同类项”起了什么作用?
合并同类项的目的就是化简方程,它是一种 恒等变形,可以使方程变得简单,并逐步使方程 向 x = a 的形式转化.
例 题 【教材P120】
例 1 解下列方程: (1)2x- 5 x=6-8 ;
新知探索
问题 1 某校三年共购买计算机 140 台,去年购买的
数量是前年的 2 倍,今年购买的数量又是去年的 2 倍. 前
年这所学校购买了多少台计算机?
分析:设前年购买__x__台,则去年购买__2_x_台,
今年购买__4_x__台.
“各个分量的和=总量”
根据问题中的相关等量关系: 是一个基本的相等关系
解:设需要用到甘草、党参、苏叶的质量分别是 x kg, 2x kg,4x kg. 根据题意,得 x + 2x + 4x = 210. 解得 x = 30. 所以 2x = 60,4x = 120. 答:需要用到甘草、党参、苏叶的质量分别是 30 kg, 60 kg,120 kg.
列一元一次方程解决实际问题的一般步骤:
练习
合并同类项: (1)x + 2x + 4x = 7x (2)5y - 3y - 4y = -2y (3)4a - 1.5a - 2.5a = 0
你知道吗?
约 820 年,阿拉伯数学家花拉 子米写了一本代数书,重点论述怎 样解方程. 这本书的拉丁译本为 《对消与还原》.“对消”与“还 原”是什么意思呢?
设未知数
解方程
实际问题
一元一次方程
作答
2024整式的加减教案人教版数学七年级上册教案

2024整式的加减教案人教版数学七年级上册教案一、教学目标1.理解整式的概念,掌握整式的加减运算。
2.能够熟练运用整式的加减法则,解决实际问题。
3.培养学生的数学思维能力,提高解决问题的能力。
二、教学重点与难点1.教学重点:整式的加减运算。
2.教学难点:整式加减法则的应用。
三、教学过程1.导入新课同学们,我们在上一节课学习了整式的概念,那么大家知道整式之间可以进行哪些运算吗?对,今天我们就来学习整式的加减运算。
2.学习整式的加减法则我们来看一下什么是整式的加减运算。
整式的加减运算,就是将两个或多个整式合并成一个整式的过程。
我们来看一下整式的加减法则。
整式的加减法则可以概括为:同类项相加减,系数相加减。
3.示例讲解下面,我们通过几个例子来具体讲解整式的加减运算。
例1:将整式3x^2+2x5和2x^23x+4合并成一个整式。
解:3x^2+2x5+2x^23x+4=5x^2x1例2:将整式4x^32x^2+x和3x^22x1合并成一个整式。
解:4x^32x^2+x+3x^22x1=4x^3+x^2x14.练习与巩固下面,我们来做一些练习题,巩固一下整式的加减运算。
练习题1:将整式5x^23x+2和2x^2+x1合并成一个整式。
解:5x^23x+2+2x^2+x1=7x^22x+1练习题2:将整式6x^34x^2+3x和x^22x+1合并成一个整式。
解:6x^34x^2+3x+x^22x+1=6x^33x^2+x+15.解决实际问题下面,我们来看一个实际问题,看看如何运用整式的加减运算来解决问题。
问题:某工厂生产一批产品,每件产品的成本为2x+3y元,其中x表示原材料成本,y表示人工成本。
如果工厂要生产100件产品,那么总共的成本是多少?解:总成本=100×(2x+3y)=200x+300y通过今天的学习,我们掌握了整式的加减运算,可以解决一些实际问题。
大家在课后要加强练习,熟练掌握整式的加减法则,提高解决问题的能力。
新人教版七年级数学上册《整式的加减》优秀教案

新人教版七年级数学上册《整式的加减》优秀教案2.1 整式(第1课时)教学目标:1.理解字母表示数的意义,能够用含有字母的式子表示实际问题中的数量关系。
2.通过具体问题的抽象过程,发展符号意识。
教学重点:1.理解字母表示数的意义,正确分析实际问题中的数量关系并用含有字母的式子表示数量关系。
2.感受其中“抽象”的数学思想。
教学难点:将实际问题中与数量有关的语句,用含有数、字母和运算符号的式子表示出来。
教法与学法:教法:互动探究法。
学法:小组研讨法。
教学过程:一、情境引入问题1:在青藏铁路线上,有一段很长的冻土地段,列车在冻土地段的行驶速度是100km/h。
列车在冻土地段行驶时,根据已知数据求出列车行驶的路程。
1.2 h行驶多少千米?3 h呢?8 h呢?th呢?2.字母t表示时间有什么意义?3.如果用v表示速度,列车行驶的路程是多少?4.回顾以前所学的知识,你还能举出用字母表示数或数量关系的例子吗?学生合作探究:找出题目中的已知量和未知量,并分析两者之间的关系。
学生:2 h行驶200 km,3h行驶300 km,8h行驶800 km,th行驶100tkm。
教师:上面这种用含有字母的式子来表示数量,就是我们今天要研究的新知识——用字母表示数。
二、范例研究例11.XXX原价是每千克p元,按8折优惠出售,用式子表示现价。
2.某产品前年的产量是n件,去年的产量是前年产量的m 倍,用式子表示去年的产量。
3.一个长方体包装盒的长和宽都是acm,高是hcm,用式子表示它的体积。
4.用式子表示数n的相反数。
学生活动:小组合作探究,得出答案。
师生合作探究:我们可以将题目中的字母看成数字,然后分析问题中的数量关系,列出含有字母的式子表示这些数量关系。
教师总结:1.上面各个问题的结果分别是:0.8p,mn,a²h,-n。
2.数与字母、字母与字母相乘省略乘号;数与字母相乘时数字在前;带分数与字母相乘时,把带分数化成假分数。
七年级数学上册(人教版)2.2整式的加减(第1课时)合并同类项优秀教学案例

4.动态情境展示,直观感受同类项和合并同类项的意义:利用多媒体技术,我展示了与整式加减相关的动态场景,让学生直观地感受同类项和合并同类项的意义。这种教学方式有助于学生更好地理解和掌握知识。
在导入环节,我会注重创设生动有趣的情境,激发学生的学习兴趣。通过生活情境的展示,让学生感受到数学与生活的紧密联系,引出本节课的主题。同时,我会设计一些简单的数学问题,让学生尝试解决,从而引出同类项和合并同类项的概念。
(二)讲授新知
1.同类项的定义:通过具体的例子,解释同类项的概念,让学生明白同类项的定义及特点。
五、案例亮点
1.生活情境导入,激发学生学习兴趣:通过展示与整式加减相关的生活场景,激发学生的学习兴趣,引导学生主动参与学习活动。这种情境导入的方式能够让学生感受到数学与生活的紧密联系,提高他们的学习积极性。
2.小组合作学习,培养团队合作精神:在教学过程中,我将学生合理分组,让他们在小组合作中完成任务。这样的教学方式不仅能够提高学生的学习效果,还能够培养他们的团队合作精神和沟通能力。
在实际教学中,我发现很多学生在解决整式加减问题时,往往因为对同类项辨识不清而导致错误。针对这一问题,我设计了本节课的教学案例,旨在通过生动有趣的教学活动,让学生深刻理解同类项的概念,熟练掌握合并同类项的方法,提高他们的数学运算能力。
为了达到这个目标,我采用了情境教学法、小组合作学习和任务驱动法等多种教学方法。在教学过程中,我注重引导学生主动探究、积极讨论,培养他们的独立思考能力和团队合作精神。同时,我还设计了一系列具有针对性的练习题,让学生在实践中巩固所学知识,提高解决问题的能力。
人教版七年级数学上册整式的加减《整式(第1课时)》示范教学设计

2.1整式(第1课时)教学目标1.进一步理解用字母表示数的意义,会用含有字母的式子表示实际问题中的数量关系.2.经历用含有字母的式子表示实际问题中的数量关系的过程,体会从具体到抽象的认识过程,发展符号意识.教学重点进一步理解用字母表示数的意义,正确分析实际问题中的数量关系,并用含有字母的式子表示数量关系.教学难点正确分析实际问题中的数量关系,用含有字母的式子表示数量关系.教学过程新课导入设a,b,c表示三个有理数,则新知探究一、探究学习【问题】青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段.列车在冻土地段的行驶速度是100 km/h.列车在冻土地段行驶时,2 h行驶的路程是多少?3 h呢?t h呢?【思考】在式子100×t=100t中,字母t表示什么?100t又表示什么?【师生活动】学生独立回答.教师引导学生归纳:用字母t表示时间,字母t可以像数一样参与运算,并且可以简明地表示列车行驶的路程与时间、速度的关系.【设计意图】让学生经历由数到式的过程,感受从特殊到一般的认识过程,体会用字母表示数的简捷性和必要性,为继续学习用含有字母的式子表示数量关系做好方法上的引导.二、新知精讲【例1】(1)苹果原价是每千克p元,按八折优惠出售,用式子表示现价:_________________;(2)某产品前年的产量是n件,去年的产量是前年产量的m倍,用式子表示去年的产量:_________________;(3)一个长方体包装盒的长和宽都是 a cm,高是h cm,用式子表示它的体积:_________________;(4)用式子表示数n的相反数:___________;(5)7人共同完成一项工作,若每人的工作效率相同,总工作量为m,用式子表示每人需要完成的工作量:__________.m 【答案】(1)0.8p元(2)mn件(3)a2h cm3(4)-n(5)7【师生活动】学生先独立列式,然后同桌交流,教师巡视指导.【设计意图】熟悉用含有字母的式子表示实际问题中的数量关系,理解字母可以像数一样参与运算,为后面的学习进行铺垫.【思考】含有字母的式子有什么书写特点?【师生活动】学生对写出的几个式子进行观察,教师引导学生从式子的字母和数字两方面进行回答.【设计意图】熟悉用字母表示数的书写要求,在答题中能正确写出式子.【例2】(1)一条河的水流速度是2.5 km/h,船在静水中的速度是v km/h,用式子表示船在这条河中顺水行驶和逆水行驶时的速度;(2)买一个篮球需要x元,买一个排球需要y元,买一个足球需要z元,用式子表示买3个篮球、5个排球、2个足球共需要的钱数;(3)如图(图中长度单位:cm),用式子表示三角尺的面积;(4)一所住宅的建筑平面图(图中长度单位:m)如图所示,用式子表示这所住宅的建筑面积.【思考】船在河流中行驶时,船的速度要分几种情况讨论?【师生活动】学生讨论之后,进行回答,教师根据学生回答的结果进行点评.【设计意图】让学生意识到,在特殊情形下用字母表示数时,可能会有多种情况存在.【答案】解:(1)船在这条河中顺水行驶的速度是(v+2.5) km/h,逆水行驶的速度是(v-2.5) km/h;(2)买3个篮球、5个排球、2个足球共需要(3x+5y+2z)元;(3)三角尺的面积(单位:cm2)是12ab-πr2;(4)这所住宅的建筑面积(单位:m2)是x2+2x+18.【师生活动】学生先独立列式,然后同桌交流,教师巡视指导.【设计意图】进一步熟悉用含有字母的式子表示实际问题中的数量关系,体会字母的含义,进一步理解字母可以像数一样参与运算,为形成多项式的概念进行铺垫.【思考】观察(1)(2)中写出的式子,总结特点.【师生活动】学生独立回答.【设计意图】让学生知道在书写后面带有单位的式子时,所写的式子要加括号.【思考】在(2)中,当x=70,y=50,z=80时,共需要多少钱?【师生活动】学生讨论之后,派代表在黑板上写出计算过程和答案,教师根据答题结果进行讲解.【设计意图】通过这一步,让学生知道,在字母的取值确定时,式子的取值是确定的.【思考】结合前面的例题,组内讨论:用字母表示数,有什么特点?【师生活动】学生分组讨论,教师展示课件上的总结,让学生对照学习.【设计意图】知道用字母表示数的必要性,为后续整式的相关学习做铺垫.【新知】讨论:如何分析题目,找数量关系?(1)抓关键词,明确它们的意义以及它们之间的关系,如:和、差、积、商;大、小;倍、分、比……提高/降低、顺水/逆水、打折等.(2)理清语句层次,明确运算顺序.(3)牢记概念和公式.【师生活动】学生小组讨论,如何找出数量关系,推举代表进行回答,教师根据回答结果进行点评,并给出正确的方法.【设计意图】通过对问题中的文字语言进行分析,转化成符号语言,进一步熟练列出式子,用字母表示数.【新知】用字母表示数的书写要求.【师生活动】教师在课件中给出表格,引导学生进行填空.【设计意图】检验学生是否准确掌握了用字母表示数的书写要求,进一步规范学生的式子写法.课堂小结板书设计一、字母可以表示任何数二、字母可以简明地表示数量关系三、用字母表示数的书写格式课后任务完成教材第56页练习1~4题.。
最新人教版《整式的加法》七年级数学教学设计教案(第1课时)

第二章整式的加减2.2 整式的加减第1课时一、教学目标【知识与技能】1. 理解同类项的概念,并能正确辨别同类项。
2. 掌握合并同类项的法则,能进行同类项的合并。
3.会利用合并同类项将整式化简。
【过程与方法】1.探索在具体情境中用整式表示事物之间的数量关系,发展学生的抽象概括力。
2.通过类比得出合并同类项的法则,在教学中渗透“类比”的数学思想。
【情感态度与价值观】1.通过参与同类项、合并同类项法则的探究活动,提高学习数学的兴趣。
2.培养学生合作交流的意识和探索精神。
二、课型新授课三、课时第1课时,共3课时。
四、教学重难点【教学重点】合并同类项法则。
【教学难点】对同类项概念的理解以及合并同类项法则的应用。
五、课前准备教师:课件、直尺、各类水果、同类项图片等。
学生:三角尺、练习本、铅笔、圆珠笔或钢笔。
六、教学过程(一)导入新课观看课件图片,思考问题(出示课件2-3)如果有一罐硬币(分别为一角、五角、一元的),你会如何去数呢?(二)探索新知1.师生互动,探究同类项的概念数硬币的时候,我们知道把相同类的放在一起数比较简单,而且不容易数错。
既然说到类别问题,请同学们帮我把下列水果进行分类。
(出示,菠萝,樱桃,猕猴桃等一系列水果。
学生回答:学生分类后回答.教师:很显然,我们可以把菠萝,樱桃和猕猴桃各自放在一起。
其实像这样的分类问题在我们的日常生活中随处可见。
那么在我们的数学学习中也有分类问题,请同学们思考下面这个问题。
(小组讨论)探讨:猴子要搬新家啦!有八只小猴子,每只身上都标有一个单项式,你能根据这些单项式的特征将这些小猴子分到不同的房间里吗?(用几个房间都可以)(出示课件5)8n -7a2b 3ab22a2b 6xy 5n -3xy -ab2学生回答:各种分类方法都有。
如:按系数的正负分,按所含字母分。
教师问1:同学们进一步想一想,如果按字母以及相同字母的指数来分,该如何分呢?学生回答:可以分为四组:(出示课件6)(1)8n,5n;(2)3ab2,-ab2;(3)6xy,-3xy;(4)-7a2b,2a2b.教师问2:同学们把这八个单项式分成了4类,我们来共同来看看他是依据什么来进行分类的?我们可以从两个不同的角度入手①所含字母有什么特点②相同字母的指数有什么特点学生回答:所含字母相同,相同字母的指数也相同。
人教版七年级数学上册整式的加减(第1课时)教案

(2)各项的系数是多少?
(3)那些项可以合并成一项?为什么?
【设计意图:通过视察、讨论、类比得出合并同类项的方法,并且进行适当的巩固.体会合并同类项的过程就是化简多项式的过程,让学生进一步了解化简过程的根据.】
师生活动:由一学生板演,其他同学独立完成.师生共同订正板演过程,教师详细讲授,并板书示范过程.教师引导学生类比有理数的运算,共同探究归纳合并同类项的法则.教师强调:一般情况,先将多项式按照某个字母进行降幂或升幂排列.
师生活动:学生独立思考,逐一完成各个问题.教师巡回指点,待学生完成后,抽学生口答,其他学生判断评价.
教师强调:
(1)几个单项式是不是同类项与字母和字母的指数有关,与单项式的系数无关.
(2)几个单项式是不是同类项与字母的顺序无关.
想一想:你能写出几个单项式是同类项的例子吗?
【设计意图:这类开放性问题的答案不唯一,但是答案有共性,可拓展学生的思维,帮助每个学生以自己所学的知识为基础,进一步巩固同类项的定义,建构自己的理解,培养学生应用知识的能力.】
(根据实际情况,如果学生已经掌握很好,可以不用这一环节.)
师生活动:学生自己动手独立完成后,小组内交流,视察写出的结果是否符合要求,注意思考答案的共性,教师参与指点.
三、释疑解难、பைடு நூலகம்讲点拨
试着把多项式4x2+2x+7+3x-8x2-2合并同类项:
如果学生对于合并同类项已经掌握很好,教师可以直接让学生处理即可;如果学生感到有些难度,师生共同分析,教师尝试以下问题的引导.
师板书法则,并强调:
(1) 合并的前提是同类项.
(2) 合并指的是系数相加,字母和字母的指数保持不变.
整式的加减 第一课时_教案2022-2023学年人教版数学七年级上册

《2.2整式加减(1)》教学设计一、教学目标1. 认识同类项,能判断两个式子是否是同类项.2. 能独立完成合并同类项,求多项式的值.3.能用整式表示生活中的数量关系,解决生活中问题.二、重点难点重点:理解同类项的概念;正确合并同类项.难点:根据同类项的概念在多项式中找同类,正确合并同类项.三、教学过程(一)情境引入问题1:在西宁到拉萨路段,列车在冻土地段的行驶速度是100 km/h,在非冻土地段的行驶速度是120 km/h,列车通过非冻土地段所需时间是通过冻土地段所需时间的2.1倍,如果通过冻土地段需要t h,你能用含t的式子表示这段铁路的全长吗?列式:100t+120×2.1t==100t+252t教师追问:这个式子还能化简吗?设计意图:引入实际问题,使学生感受到学习含有字母的式子的运算是实际需要,理解化筒100t+252t的方法是运用有理数的运算律“分配律”,初步体会“数式通性”,促使学生的学习形成正迁移.(二)类比探究1.运用有理数的运算律计算:⑴100×2+252×2=⑵100×(-2)+252×(-2)=归纳:3个式子的结构相同,整式中的字母表示数,可以类比数的运算,运用数的运算法则和运算律进行整式运算.设计意图:通过用分配律进行有理数的运算,帮助学生理解用分配律化简式子100t + 252t 的方法,为进一步类比学习整式的运算提供方法上的借鉴.通过引导学生观察比较,发现三个算式的联系,理解由于式子100t+252t中的字母表示数,因此可以依据分配律对式子进行化简,理解整式的运算与有理数的运算具有一致性,为更一般的同类项的合并提供方法上指导.体会由“数”到“式”是由特殊到一般的思想方法,初步感受“数式通性”和类比的数学思想. 2.运用刚才方法填空:①100252t t-②2232x x+③2234ab ab-观察:上述各多项式的项有什么共同特点?同类项:⑴所含字母相同;⑵相同字母的指数也分别相同.设计意图:进一步引导学生类比前面关于式子100t+252t 的化简,讨论更一般的同类项(多项式中的项的次数高于1,字母不止一个等)的合并,进一步理解分配律的运用,体会“数式通性”和类比的数学思想,通过几组不同形式的同类项,感受不同类型式子的组成,突出同类项的特点,为归纳同类项的概念和合并同类项法则做好铺垫.3.观察多项式100252t t-,2232x x+,2234ab ab-上述多项式中同类项的运算过程有什么共同特点?归纳:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变.设计意图:在观察、比较中,发现各多项式的项的共同特征,分析运算特点,归纳出同类项、合并同类项的定义及合并同类项的法则.(三)例题讲解例:4x2+2x+7+3x-8x2-2解:=4x2-8x2+2x+3x+7-2 (交换律)=(4x2-8x2 )+(2x+3x)+(7-2) (结合律)=(4-8)x2+(2+3)x+(7-2) (分配律)=-4x2+5x+5 (按字母x的指数从大到小顺序排列)归纳步骤:(1)找出同类项并做标记;(2)运用交换律、结合律将多项式的同类项结合;(3)合并同类项;(4)按同一个字母的降幂(或升幂)排列.设计意图:归纳化简多项式的一般步骤.例2 (1)求多项式22225432x x x x x-++--的值,其中=12x;22)45()312(234522222--=-+-+-+=--++-x x x x x x x x 解:25-2-21-21===时,原式当x方法总结:在求多项式的值时,可以先将多项式化简(同类项合并),然后再求值. (2)求多项式 22113333a abc c a c +--+ 的值,其中16a =-,2b = , 3c =- . 设计意图:归纳化简求值的方法,先将多项式化简,然后再求值.使运算更简便.例3: (1)水库中水位第一天连续下降了a 小时,每小时平均下降2cm ;第二天连续上升了a 小时,每小时平均上升0.5cm ,这两天水位总的变化情况如何?(2)某商店原有5袋大米,每袋大米为x 千克. 上午卖出3袋,下午又购进同样包装的大米4袋.进货后这个商店有大米多少千克?解:(1)把下降的水位变化量记为负,把上升的水位变化量记为正.则有:-2a + 0.5a = -1.5a答:这两天水位总的变化情况为下降了1.5a cm.(2)把进货的数量记为正,售出的数量记为负.则有:5x -3x +4x =6x答:进货后这个商店有大米6x 千克.设计意图: 本题让学生体会到数学知识之间的相互联系,同时体会到数学在生活中处处存在,数学来源于生活又服务于生活.(四)巩固提升1.判断同类项:(1) -5ab 3 与 3a 3b( ) (2) 3xy 与 3x( ) (3) -5m 2n 3 与 2n 3m 2( ) (4) 53 与 35( ) (5) x 3 与 53( )判断同类项要注意:① 字母 相同 ,相同字母的指数也 相同 .② 与 系数 无关,与 字母顺序 无关.③常数都是同类项.2. 单项式236ab c -的同类项可以是 . 3. 5x 2y 和42y m x n 是同类项,则 m=_______, n=________.4.判断下列计算是否正确?y 2x 5xy y 3x (4)02ba 2ab (3)32y 5y (2)5ab2b 3a (1)22222-=-=-=-=+注意:1.多项式中只有同类项才能合并;2.若两个同类项的系数互为相反数,则两项的和等于零.5. 下列运算,正确的是 (填序号).①2235a a a += ; ② 22532a b ab ab -= ;③ 22232x x x -= ;④22651m m -=. 6.–x m-3y 与 45y n+1x 3是同类项,则 m=_____,n=______.7.填空(1)x 的4倍与x 的5倍的和是多少?(2)x 的3倍比x 的一半大多少?8.如图,大圆的半径是R,小圆的面积是大圆面积的 94,求阴影部分的面积.9. 用式子表示十位上的数是a ,个位上的数是b 的两位数,再把这个两位数的十位上的数与个位上的数交换位置,计算所得数与原数的和.解:原来的两位数为:10a +b ,新的两位数为:10b +a两个数的和为:10a+b+10b+a=11a+11b所得数与原数的和能被11整除吗?∵11a+11b=11(a+b)∴所得数与原数的和能被11整除.设计意图:设置有梯度的练习题,加深对同类项和合并同类项法则的理解和运用,提高运算能力.(五)课堂小结1.回顾本节课的学习过程.2.本节课运用了什么思想方法研究问题?3.化简求值4.把实际问题抽象为数学模型5.挖掘已知条件,构造所求整式设计意图:通过小结,使学生梳理本节课所学内容,掌握本节课的核心一同类项的概念、合并同类项的概念和法则,感受“数式通性”和类比的数学思想.(六)巩固提高已知m是绝对值最小的有理数,且11m ya b++-与33x a b是同类项,求2222 23639x xy x mx mxy my -+-+-的值.设计意图:提高学生对同类项概念的理解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1课时:整式(1)
教学内容:
教科书第54—56页,2.1整式:1.单项式。
教学目标和要求:
1.理解单项式及单项式系数、次数的概念。
2.会准确迅速地确定一个单项式的系数和次数。
3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
4.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。
教学重点和难点:
重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。
难点:单项式概念的建立。
教学方法:
分层次教学,讲授、练习相结合。
教学过程:
一、复习引入:
1、列代数式
(1)若正方形的边长为a,则正方形的面积是;
(2)若三角形一边长为a,并且这边上的高为h,则这个三角形的面积为;
(3)若x表示正方形棱长,则正方形的体积是;
(4)若m表示一个有理数,则它的相反数是;
(5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款元。
(数学教学要紧密联系学生的生活实际,这是新课程标准所赋予的任务。
让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育。
)
2、请学生说出所列代数式的意义。
3、请学生观察所列代数式包含哪些运算,有何共同运算特征。
由小组讨论后,经小组推荐人员回答,教师适当点拨。
(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。
)
二、讲授新课:
1.单项式:
通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并板书归纳得出的单项式的概念,即由数与字母的乘积组成的代数式称为单项式。
然后教师补充,单独一个数或一个字母也是单项式,如a,5。
2.练习:判断下列各代数式哪些是单项式?
(1)
21
x
; (2)a bc; (3)b2; (4)-5a b2; (5)y; (6)-xy2; (7)-5。
(加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系
数和次数的教学)
3.单项式系数和次数:
直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的。
以四个单项式3
1a 2h ,2πr ,a bc ,-m 为例,让学生说出它们的数字因数是什么,从而引入单项式系数的概念并板书,接着让学生说出以上几个单项式的字母因数是什么,各字母指数分别是多少,从而引入单项式次数的概念并板书。
4.例题:
例1:判断下列各代数式是否是单项式。
如不是,请说明理由;如是,请指出它的系数和次数。
①x +1; ②x 1; ③πr 2; ④-2
3a 2
b 。
答:①不是,因为原代数式中出现了加法运算;②不是,因为原代数式是1与x 的商;
③是,它的系数是π,次数是2; ④是,它的系数是-2
3,次数是3。
例2:下面各题的判断是否正确?
①-7xy 2的系数是7; ②-x 2y 3与x 3没有系数; ③-a b 3c 2的次数是0+3+2;
④-a 3的系数是-1; ⑤-32x 2y 3的次数是7; ⑥31πr 2
h 的系数是3
1。
通过其中的反例练习及例题,强调应注意以下几点:
①圆周率π是常数;
②当一个单项式的系数是1或-1时,“1”通常省略不写,如x 2,-a 2b 等;
③单项式次数只与字母指数有关。
5.游戏:
规则:一个小组学生说出一个单项式,然后指定另一个小组的学生回答他的系数和次数;然后交换,看两小组哪一组回答得快而准。
(学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的形式,且由编题学生指定某位同学回答,可使课堂气氛活跃,学生思维活跃,使学生能够透彻理解知识,同时培养同学之间的竞争意识。
)
6.课堂练习:课本p56:1,2。
三、课堂小结:
①单项式及单项式的系数、次数。
②根据教学过程反馈的信息对出现的问题有针对性地进行小结。
③通过判断一个单项式的系数、次数,培养学生理解运用新知识的能力,已达到本节课的教学目的。
四、课堂作业: 课本p59:1,2。
板书设计:
教学后记:
本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习。
为突出重点,突破难点,教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫。
针对七年级学生学习热情高,但观察、分析、认识问题能力较弱的特点,教学时将以启发为主,同时辅之以讨论、练习、合作交流等学习活动,达到掌握知识的目的,并逐步培养起学生观察、分析、抽象、概括的能力,为进一步学习同类项打下坚实的基础。