1.3直线、射线、线段概念

合集下载

七年级数学上册1.3线段、射线和直线

七年级数学上册1.3线段、射线和直线

C
练习:作出符合下列要求的图形 (1)直线AB经过点C . (4)直线m,n,l相交于点P
(2)点D不在直线EF上
( 3)直线a,b都过点G
课堂小结 1、线段、射线都是直线的一部分
3、平面上的两条直线有相交和不相交 (平行)两种位置关系
l
A
B
直线AB或线直BA或 者直线l
例1 如图 A,B,C是直线L上的3个点.
(1)图中共有几条线段?这些线段怎样表示?
(2)图中共有几条射线?以点B为端点的射线如何表示?
(3)直线L还可以怎样表示?
C B
A
解 (1)图中共有3条线段,分别是线段AB (或线段BA)、 线段AC (或线段CA)、线段BC(或线段CB). (2)由于每一个点都把直线分成了两题射线,所以图中 共有6条射线.以点B为端点 的射线是射线BA与射线BC. (3)直线L还可以表示为直线AB(或直线BA)、直线AC(或 直线CA)、直线BC(或直线CB).
练习;1.射线OA与射线AO相同吗?区别在哪里?
O
A
端点与方向不同
2.用直尺画图:延长线段AB,得到射线AB.
A
B
A
B
3.如图,看图填空:
O
C
(1)图中以点O为端点的射线有____射__线_O__A_射__线__O_B__射_ 线OC
(2)图中以点B为端点的线段有___线__段__B_A__线_段___B_O__线_ 段BC
(3)图中共有_6__条线段,它们分别是_____________
_线_段___O_A__线_段___O_B__线__段__O_C__线__段_A__B_线__段__A_C__线__段__B_C___.
知识点3:点与直线位置关系、直线的性质

线段、射线、直线

线段、射线、直线

档案号主页———————教学教案————————一是点在直线上,也叫做直线经过这点;直线外,也叫做直线不经过这个点.B.点D.直线定义:直线上一点和它一旁的部分,叫做射线.它是直线的一部分.表示法:同直线一样,射线也有两种表示方法,一种是用一个小写字母表示:B.射线AC线段的基本性质:两点的所有连线中,线段最短,简单的说成:“两点之间,的距离:连接两点的线段的长度,叫做这两点间的距离.测量法:量出每一条线段的长度,求出它们的和差,画一条线段等于计算结果的,画一条线段,使它等于,在这条射线上连续截取【例4】如图,已知线段测量法:就是用刻度尺测量出两条线段的长度,再比较它们的大小.叠合法:把两条线段的一端对齐,放在一起进行比较.如图:【例5】已知:如图,完成下列填空:(1)图中的线段有________、________、________共六条.(2)AB=________+________+________;(2)拓展:把一条线段分成相等的三条线段的点叫做这条线段的三等分点…(3)等量关系:在上图中:7.关于延长线的认识延长线是重要的,也是应用较多的几何术语,几种常见的错误,延长射线AB或延长直线延长射线AB.【例7-1】若AC=12AB,那么点CA.点C在AB上C.点C在AB延长线上.无法确定【例7-2】画线段AB=5 cm,延长为避免重复,我们一般可以按以下方法来数线段的条数:即,线段总数为3+2+1=6,若是更多的点,由以段的条数可以看出,每个点除了自身以外,和其他任何一个点都能组成一条线段,因如图所示,线段AB=4,点O是线段条直线时,每条直线上有4个交点,共计有,既在直线上也在直线a上,因而多算了一次,其他交点也是如此,因=10个,同样的道理,当有n-1)个交点,共有n条直线,交点总数就是1某条公路上,某条河上等,所以要满足所有条件.14cm,在直线AB上有一点C,且BC=4cm【变式】个单位长度________C.在直线l上顺次取A、B 点,那么线段OB的长度是(.2㎝ B.0.5。

七年级上学期数学知识点:直线、射线、线段

七年级上学期数学知识点:直线、射线、线段

七年级上学期数学知识点:直线、射线、线段鉴于数学知识点的重要性,小编为您提供了这篇七年级上学期数学知识点:直线、射线、线段,希望对同学们的数学有所帮助。

1、基本概念图形直线射线线段端点个数无一个两个表示法直线a直线AB(BA) 射线AB 线段a线段AB(BA)作法叙述作直线AB;作直线a 作射线AB 作线段a;作线段AB;连接AB延长叙述不能延长反向延长射线AB 延长线段AB;反向延长线段BA2、直线的性质经过两点有一条直线,并且只有一条直线.简单地:两点确定一条直线.3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的大小比较方法(1)度量法(2)叠合法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点.图形:A M B符号:若点M是线段AB的中点,则AM=BM=AB,AB=2AM=2BM.6、线段的性质两点的所有连线中,线段最短.简单地:两点之间,线段最短.7、两点的距离连接两点的线段长度叫做两点的距离.宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。

至元明清之县学一律循之不变。

明朝入选翰林院的进士之师称“教习”。

到清末,学堂兴起,各科教师仍沿用“教习”一称。

其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。

而相应府和州掌管教育生员者则谓“教授”和“学正”。

“教授”“学正”和“教谕”的副手一律称“训导”。

于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。

在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。

8、点与直线的位置关系(1)点在直线上 (2)点在直线外.宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。

至元明清之县学一律循之不变。

明朝入选翰林院的进士之师称“教习”。

到清末,学堂兴起,各科教师仍沿用“教习”一称。

其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。

七年级(初一)数学-几何图形初步-线段、射线、直线讲义

七年级(初一)数学-几何图形初步-线段、射线、直线讲义

内容基本要求略高要求较高要求线段、射线、直线会表示点、线段、射线、直线,知道它们之间的联系和区别;结合图形理解两点之间的距离的概念;会比较两条线段的大小,并能进行与线段有关的简单计算会用尺规作图:做一条线段等于已知线段,做已知线段的垂直平分线;会用线段中点的知识解决简单问题;结合图形认识线段间的数量关系会运用两点间的距离解决有关问题板块一 基本概念直线、射线、线段的概念:① 在直线的基础上定义射线、线段:直线上的一点和这点一旁的部分叫射线,这个点叫做射线的端点. 直线上两点和中间的部分叫线段,这两个点叫线段的端点. ② 在线段的基础上定义直线、射线:把线段向一方无限延伸所形成的图形叫射线, 把线段向两方无限延伸所形成的图形是直线. 点与直线的关系:点在直线上;点在直线外. 两个重要公理:① 经过两点有且只有一条直线,也称为“两点确定一条直线”. ② 两点之间的连线中,线段最短,简称“两点之间,线段最短”. 两点之间的距离:两点确定的线段的长度.⑴ 点的表示方法:我们经常用一个大写的英文字母表示点:A ,B ,C ,D ,…… ⑵ 直线的表示方法:① 用两个大写字母来表示,这两个大写字母表示直线上的点,不分先后顺序,如直线AB ,如下图⑴也可以写作直线BA .(1) (2)lA B② 用一个小写字母来表示,如直线l ,如上图⑵.注意:在直线的表示前面必须加上“直线”二字;用两个大写字母表示时字母不分先后顺序. ⑶ 射线的表示方法:① 用两个大写字母来表示.第一个大写字母表示射线的端点,第二个大写字母表示射线上的点.如射线OA ,如图⑶,但不能写作射线AO .② 用一个小写字母来表示,如射线l ,如图⑷.(3) (4)lAO注意:在射线的表示前面必须加上“射线”二字.用两个大写字母表示射线时字母有先后顺序,射线的端点在前.例题精讲中考要求线段、射线、直线⑷ 线段的表示方法:① 用两个大写字母来表示,这两个大写字母表示线段的两个端点,无先后顺序之分,如线段AB ,如图⑸,也可以写作线段BA .② 也可以用一个小写字母来表示:如线段l ,如图⑹.(5) (6)AB注意:在线段的表示前面必须加上“线段”二字.用两个大写字母表示线段时字母不分先后顺序.中点:【例1】 下列说法正确的是( )A. 直线上一点一旁的部分叫做射线B. 直线是射线的2倍C. 射线AB 与射线BA 是同一条射线D. 过两点P Q 、可画出两条射线【巩固】 下列说法中正确的是( )A. 直线的一半是射线B. 延长线段AB 至C ,使BC ABC. 从北京到上海火车行驶的路程就是这两地的距离D. 三条直线两两相交,有三个交点【巩固】 下面说法中错误的是( )A. 直线AB 和直线BA 是同一条直线B.射线AB 和射线BA是同一条射线 C. 线段AB 和线段BA 是同一条线段D.把线段AB 向两端无限延伸便得到直线BA【巩固】 下列叙述正确的是( )A .孙悟空在天上画一条十万八千里的直线B .笔直的公路是一条直线C .点A 一定在直线A B 上D .过点A 、B 可以画两条不同的直线,分别为直线A B 和直线B A【例2】 根据直线、射线、线段各自的性质,如下图,能够相交的是( )D.C.B.B AA.【巩固】下列四个图形中各有一条射线和一条线段,它们能相交的是()C.B.A.【例3】下列叙述正确的是( )A.可以画一条长5cm的直线B.一根拉紧的线是一条直线C.直线AB经过C点D.直线AB与直线BA是不同的直线【例4】如图所示根据要求作图:⑴连结AB;⑵作射线AC;⑶作直线BC.ABC板块二点线问题公理:两点确定一条直线【例5】如图,图中共有条线段.ED FCA【巩固】平面上有三个点,经过两点画一条直线,则可以画几条直线?【例6】平面上有四个点,经过两点画一条直线,则可以画几条直线?【巩固】已知平面上任意四点A、B、C、D过其中每两点画一条直线,最多可以画()A.6条B.4条C.1条D.6条,4条或1条【例7】平面内两两相交的6条直线,其交点个数最少为多少个?最多为多少个?【例8】在一个圆上有6个点,它们之间可以连一些线段,那么至少连多少条线段,可以使得这6个点钟任意三点之间都至少有一条线段?请说明理由。

80.线段、射线、直线的概念

80.线段、射线、直线的概念
学习线段、射线、直线的概念 掌握线段、射线、直线的画法
运用本课的学习内容去解题
1.什么是线段: 铅笔、人行横道和路旁的电线杆都可以近似地看做线段 如图就是一条线段
2.什么是射线: 射线可以看做是将线段向一个方向无限延长形成的图形。 如下图,把线段向一方无限延伸,就是一条射线。
3.什么是直线: 直线可以看做将线段向两个方向无限延伸形成的。 如右图就是一条直线。
线段
①线段是直的; ②线段有2个端点; ③线段的长度是有限的,可度量; ④线段可以向两方延长。
射线
①射线是直的; ②射线有1个端点; ③因为射线向一方无限延伸,所以射线没有长短,不可测量; ④射线可以反点; ③向两方无限延长,没有长短,不可测量 。
注意
因为直线是线段向两方无限延长形成的, 所以我们不能说延长某条直线,即直线不 能延长。不管是线段、射线,还是直线, 都没有粗细之分。
1.下列语句正确的是 ( )
A 画直线AB=10 厘米 B 画线段AB=4 厘米 C 画射线OB=3 厘米 D 延长线段AB 至点C ,使得AC=AB
B
本题较简单,要熟知直线、射线、线段、定义及性质 即可得答案.
2.下列说法中,错误的有( ) ①射线是直线的一部分; ②画一条射线,使它的长度为3cm; ③线段AB和线段BA是同一条线段;④射线AB和射线BA是同一条射线.
A 1个
B 2个
C 3个
D 4个

B
射线无限延伸,不可度量,表示射线时,必须是 端点字母在前,故错误的是②④.
理解了什么是线段、射线和直线 掌握了线段、射线和直线的画法 熟练运用本课的学习内容去解题

数学直线、射线和线段

数学直线、射线和线段
数学直线、射线和线段
目录
• 引言 • 直线的基本性质 • 射线和线段的基本概念 • 直线、射线和线段的应用 • 总结与回顾
01 引言
主题简介
01
直线、射线和线段是几何学中最 基本的元素,是研究平面和空间 图形的基础。
02
直线是无限长的,没有端点;射 线有一个固定端点,另一侧无限 延伸;线段有两个端点,长度有 限。
直线在平面内,是连 接两点的所有点的集 合。
直线是两点之间最短 的距离。
直线的表示方法
直线的表示方法有三种:点斜式、两 点式和截距式。
点斜式表示直线通过一个已知点和一 个已知斜率;两点式表示直线通过两 个已知点;截距式表示直线与x轴、y 轴的交点。
直线的性质
直线是连续的,没有中断或跳跃。 直线是平面的组成部分,可以在三维空间中表示。
学习目标和意义
掌握直线、射线和线段的基本性 质和特点,理解它制直线、射线和线段,培养几
何作图能力。
通过学习直线、射线和线段,为 进一步学习几何学打下基础,培 养空间想象力和逻辑思维能力。
02 直线的基本性质
直线的定义
直线是无限长的,没 有起点和终点。
线段没有方向,因为其两个端点之间 的所有点都是等距离的。
线段的两端点都是可见的,并且线段 本身是有限的,长度固定。
线段与射线的比较
射线与线段的主要区别在于射线 的长度是无限的,而线段的长度
是有限的。
射线有一个固定端点和一个无限 延伸的方向,而线段的两端点都
是可见的,并且长度固定。
在几何学中,射线通常用于表示 有方向的直线,而线段则用于表
考和练习,我逐渐克服了这些困难。
本章的学习内容与日常生活密切相关, 如道路、桥梁等建筑物的设计和规划, 让我更加认识到数学在实际应用中的重

4.1、线段、直线、射线

1 线段、射线、直线1.线段、射线、直线的概念(1)线段概念:铅笔、人行横道线和路旁的电线杆都可以近似地看做线段,下图就是一条线段.线段的特征:①线段是直的;②线段有2个端点;③线段的长度是有限的,可度量.线段可以向两方无限延长;线段是没有粗细之分的.(2)射线概念:射线可以看做由线段向一个方向无限延长形成的图形.如图,把线段AB向一个方向无限延伸,就是一条射线.射线的特征:①射线是直的;②射线有一个端点;③因射线向一个方向无限延长,所以射线没有长短,不可测量.射线可以反向延长;射线没有粗细之分.(3)直线概念:直线可以看做由线段向两个方向无限延长形成的.直线的特征:①直线是直的;②直线没有端点;③向两个方向无限延长,没有长短,不可测量.因为直线是线段向两个方向无限延长形成的,所以我们不能说延长某条直线,即直线不能延长.【例1】下列说法正确的有( ).①画一条射线等于5 cm;②线段AB为直线AB的一部分;③在直线、射线、线段中,线段最短;④射线与其反向延长线形成一条直线.A.1个B.2个C.3个D.4个解析:①×射线向一个方向无限延伸,不可度量②√直线上两点间的部分是线段③×直线、射线无长短,不能比较④√将射线反向延长后形成的图形是直线答案:B2.线段、射线、直线的表示方法(1)线段的表示方法①用两个表示端点的大写字母来表示.如图,以A,B为端点的线段,可记作“线段AB”或“线段BA”.②用一个小写字母来表示.如线段AB也可记作“线段a”.(2)射线的表示方法用两个大写字母表示.一条射线可用它的端点和射线上的另一点来表示,如图中的射线,可记作“射线AB”(端点必须在前面).射线的识别:判断两条射线是否是同一条射线,首先看端点是否相同,再看延伸方向是否相同,如果这两点都符合,那么这两条射线是同一条射线.①端点相同,延伸方向也相同的射线是同一条射线,如图射线MB,MC,MN都表示同一条射线.②端点相同,但延伸方向不相同的射线不是同一条射线,如图中射线AB,AC就不是同一条射线.③端点不同的射线不是同一条射线,如图中的射线BN,CN的延伸方向一致,但端点不同,所以不是同一条射线.【例2-1】射线OA,OB表示同一条射线,下面的图形正确的是( ).解析:答案:D(3)直线的表示方法直线有两种表示方法:①可以用表示这条直线上任意两个点的大写字母来表示,注意表示直线上任意两个点的字母没有顺序性.如图甲中的直线可记作“直线AB”或“直线BA”;②可用一个小写字母来表示,如图乙中的直线可记作“直线l”.图甲图乙辨误区、射线、直线的联系①表示线段、射线、直线时,都要在字母前面注明“线段、射线或直线”;②用两个大写字母表示线段和直线时,两个字母没有顺序性,可以交换位置,如“线段BA”和“线段AB”表示同一条线段,“直线AB”和“直线BA”表示同一条直线;③表示射线的两个大写字母有一定的顺序,表示端点的字母必须写在前面.【例2-2】如图所示,下列说法( ).A.都错误B.都正确C.只有一个正确D.有两个正确错解:B错解分析:误以为直线可以用两个小写字母、一个大写字母或者大小写字母混合表示.正解:D正解思路:直线可以用两个大写字母或一个小写字母表示.3.直线的性质(1)经过两点有且只有一条直线.①它包含两层含义:一是“肯定有”,二是“只有一条”,不会有两条、三条……;②它可简单地说成“两点确定一条直线”.(2)直线的其他性质:①经过一点的直线有无数条;②不同的两条直线最多有一个交点.【例3】工人师傅要将一块长条钢板固定在机器上,则至少要用__________个螺钉.解析:根据“两点确定一条直线”可知至少需要2个螺钉.答案:24.射线、线段的计数方法射线和线段可以看做直线的一部分,因此在一条直线上,取一些点时,会出现射线和线段.(1)点数与射线的条数射线向一方无限延伸,因此射线的条数是由端点的个数决定的.在直线上,以一个点为端点的射线有2条,若直线上有n 个点,则共有2n 条射线.(2)点数与线段的条数线段有两个端点,直线上每两个点之间的部分就是一条线段.因此,数线段时,只要判断这些点共有多少种组合即可.析规律 数线段条数的方法确定线段的条数时,可以先固定第一个点为一个端点,再以其余的点为另一个端点组成线段,然后固定第二个点为一个端点,与其余的点(第一个点除外)组成线段……,依此类推,直到找出最后的线段为止.________________________________________________________________________________________________________________ ________________________________________________________ ________________________________________________________________________________________________________________【例4】 画出线段AB :(1)如图(1),在线段AB 上画出1个点,这时图中共有几条线段?(2)如图(2),在线段AB 上画出2个点,这时图中共有几条线段?(3)如图(3),在线段AB 上画出3个点,这时图中共有几条线段?(4)如图(4),在线段AB 上画出n 个点时,猜一猜:图中共有几条线段?解:(1)线段上一共有三个点(线段AB 的两个端点和点C ),以每个点为端点的线段各有2条,这样一共有(2+1)×2=6条线段,因为线段无端点顺序,如线段AB 和线段BA 是同一条线段,这样6条线段重复一半,所以图(1)中共有线段的条数是(1+2)×22=3; (2)在线段上画出2个点,这时图中共有4个点,以每个点为端点的线段各有3条,这样一共有(2+2)×3=12条线段,同样重复一半,这样图(2)中共有线段的条数是(2+2)×32=6;(3)在线段上画出3个点,这时图中共有5个点,以每个点为端点的线段各有4条,这样一共有(2+3)×4=20条线段,同样重复一半,这样图(3)中共有线段的条数是(3+2)×42=10;(4)在线段上画出n 个点,这时图中共有(n +2)个点,以每个点为端点的线段各有(n +1)条,这样一共可画(n +2)·(n +1)条线段,同样重复一半,这样图(4)中共有线段的条数是(n +2)(n +1)2.5.直线性质的应用生活中的很多实际问题要用到直线的性质,如木工师傅在锯木料之前,先在木板上画出两个点,然后过这两个点弹条墨线,就是利用了直线的“两点确定一条直线”的性质,沿着这条线能锯成直的,而不会歪斜.【例5】 建房屋垒墙时,建筑工人都要在墙的两端固定绳子,请利用所学的知识,说明其中道理.分析:利用直线的性质“经过两点有且只有一条直线”进行说明.解:拉紧的绳子可以近似看成一条直线,固定在墙的两端是固定的两点,因为过两点有且只有一条直线,所以这样垒出的墙是直的.6.与直线有关的规律探究(1)两点确定一条直线,在同一平面内,不同的点可以确定不同的直线.当任意三点均不在同一直线上时,点数与直线条数的关系见下表:(2)平面上若有n (n >1)条直线两两相交,则交点个数最多有12n (n -1)个. 【例6】平面上有五个点,过其中任意两点画一条直线,最多能得到多少条直线?请画出另外三种不同情况的图形.分析:五个点有四种不同的关系:①五个点在同一条直线上;②有四个点在同一条直线上;③有三个点在同一条直线上;④五个点中任意三个点都不在同一条直线上.解:当任意三点都不在同一条直线上时,最多有:5×(5-1)×12=10(条),所以最多能得到10条直线.另外三种情况如下图所示.(二)与线段中点有关的问题线段的中点定义:文字语言:若一个点把线段分成相等的两部分,那么这个点叫做线段的中点图形语言:M几何语言: ∵ M 是线段AB 的中点∴ 12AM BM AB ==,22AM BM AB == 典型例题:1.由下列条件一定能得到“P 是线段AB 的中点”的是( D )(A )AP=21AB (B )AB =2PB (C )AP =PB (D )AP =PB=21AB 2.若点B 在直线AC 上,下列表达式:①AC AB 21=;②AB=BC ;③AC=2AB ;④AB+BC=AC . 其中能表示B 是线段AC 的中点的有( A )A .1个B .2个C .3个D .4个3.如果点C 在线段AB 上,下列表达式①AC=12AB;②AB=2BC;③AC=BC;④AC+BC=AB 中, 能表示C 是AB 中点的有( C )NA.1个B.2个C.3个D.4个4.已知线段MN ,P 是MN 的中点,Q 是PN 的中点,R 是MQ 的中点,那么MR = ______ MN . 分析:据题意画出图形 设QN=x ,则PQ=x ,MP=2x ,MQ=3x , 所以,MR=23x ,则83423==x x MN MR 5.如图所示,B 、C 是线段AD 上任意两点,M 是AB 的中点,N 是CD 中点,若MN=a ,BC=b ,则线段AD 的长是( )A 2(a-b )B 2a-bC a+bD a-b分析:不妨设CN=ND=x ,AM=MB=y因为MN=MB+BC+CN所以a=x+y+b因为AD=AM+MN+ND所以AD=y+a+x=a-b+a=2a-bD。

1.3 线段、射线和直线(第1课时)

将线段向一个方向无限 延伸就形成了射线. 射线有_一__个端点.
表示方法:
B
点用一个大写字母表示,记作:点A,点B. A
线段、射线、直线都可以用两个大写字母表示.
A
B 线段AB或线段BA
A
B
射线AB
(端点字母A在前)
A
B
直线AB或直线BA
. 线段、射线、直线也可以用一个小写字母表示
a m
n
记作:线段a 记作:射线m 记作:直线n
A. 线段 B.射线 C.直线 D.折线 ()下列语句不正确的是(C )
A.直线AB与直线BA是同一条直线 B.射线OA与射线OB是同一条射线 C.射线OA与射线AB是同一条射线 D.线段AB与线段BA是同一条线段
O AB
2.判断题.
(1)射线是直线的一半. (2)延长直线MN到点C. (3)线段是直线的一部分.
1. 如果直线m上有4个点A,B,C,D.
(1)图中共有几条线段? (2)图中共有几条射线? A
BC
(1)6条 (2)8条
Dm
2.如果直线m上有5个点,则图中共有几条线段? 10条
实际运用
单县和菏泽之间, 途中有成武、定陶 两个站点,问单县 和菏泽之间共有几 种票价?
菏泽 定陶
6种票价
成武
单县
1.选择题. ( 1)手电筒发射出去的光线,给我们的形象似(B )
(× ) (× )
(√ )
3.射线OA与射线AO相同吗?区别在哪里?
O
A
不同,端点不同,方 向不同
4.用直尺画图:延长线段AB,得到射线AB.
A
B
5.如图,图中线段、射线、直线分别有几条? OC
3条线段

七年级几何第一讲:直线、射线、线段

七年级几何第一讲:直线、射线、线段一、直线、射线、线段的基本概念及性质1、直线(1) 思考:经过一点可以得到几条直线?经过两点可以得到几条直线?直线公理:经过两点有一条直线,并且只有一条直线,简述为:两点确定一条直线(2) 直线的表示方法:①l;②AB(3) 点和直线的位置关系:点在直线上;点在直线外2、射线(1) 射线的概念:直线上的一点和它一旁的部分叫做射线,这个点叫做射线的端点(2) 射线的表示方法3、线段(1) 线段的概念:直线上的两个点和它们之间的部分叫做线段,这两个点叫做线段的端点(2) 线段公理:所有连接两点的线中,线段最短,即两点之间线段最短(3) 线段的表示方法:如图1,用两个大写字母表示,记作线段AB或线段BA;或用一个小写字母表示,记作线段a注:①线段AB和线段BA是同一条线段;②连接AB就是画以A、B为端点的线段;③延长线段AB是指按从A到B的方向延长(4) 线段的中点及等分点的概念:例1.如果线段AB=10cm,MA+MB=14cm,那么下列说法中正确的是()A.M点在线段AB上B.M点在直线AB上C.M点在直线AB外D.M点可能在直线AB上,也可能在直线AB外例2.下列四个图中的线段(或直线、射线)能相交的是()A.(1)B.(2)C.(3)D.(4)例3.观察图形,下列说法正确的个数是()(1) 直线BA和直线AB是同一条直线(2) 射线AC和射线AD是同一条射线(3)AB+BD>AD(4) 三条直线两两相交时,一定有三个交点A.1个B.2个C.3个D.4个二、几何计数问题例4.如图,点A、B、C、D是直线L上的四点.已知点E是直线L外的一点.则图中的线段有_________条,三角形有_________个例5.观察图①,由点A和点B可确定_________条直线观察图②,由不在同一直线上的三点A、B和C最多能确定_________条直线(1) 动手画一画图③中经过A、B、C、D四点的所有直线,最多共可作_________条直线(2) 在同一平面内任三点不在同一直线的五个点最多能确定_________条直线、n 个点(n ≥2)最多能确定_________条直线例6.观察下列图形,并阅读下面相关文字:则n 条直线最多有___________个交点例7.① 如图1直线l 上有2个点,则图中有2条可用图中字母表示的射线,有1条线段② 如图2直线l 上有3个点,则图中有________条可用图中字母表示的射线,有_______条线段 ③ 如图3直线上有n 个点,则图中有________条可用图中字母表示的射线,有________条线段 ④ 应用③中发现的规律解决问题:某校七年级共有6个班进行足球比赛,准备进行循环赛(即每两队之间赛一场),预计全部赛完共需________场比赛有关线段的计算专题一:直接求线段长度 例1.(2013·江岸)如图,已知AD =21DB ,E 是BC 的中点,BE =51AC =2cm ,求线段AB 和DE 的长练1.(2013·硚口)如图,线段AD 上有两个点C 、B ,AB =3CB ,M 、N 分别是线段AB 和线段CD 的中点,若AB =12cm ,MN =10cm ,则线段AD 的长为( ) A .20 cmB .21 cmC .22 cmD .24 cm练2.(2014·武汉三初12月月考)已知:如图,点C 为线段AB 的中点,点E 为线段AB 上的点,点D 为线段AE 的中点,若线段AB =15,CE =4.5,求线段DE练3.(2014·江岸期末)已知线段AB =6cm ,延长AB 至点C ,使BC =AB ,反向延长线段AB 至D ,使AD =21AB (1) 按题意画出图形,并求出CD 的长(2) 若M 、N 分别是AD 、BC 的中点,求MN 的长练4.(2013·洪山)已知线段AB 的长度是a cm ,线段BC 的长度比线段AB 的长度的2倍多5 cm ,线段AD 的长度比线段BC 长度2倍少5 cm (1) 求线段CD 的长度(用含a 的代数式表示) (2) 当a =15时,求线段CD 的长练5.(2014·东湖开发区)如图(1),长方形纸片ABCD ,点E 、F 分别在边AB 、CD 上,连接EF ,将∠BEF 对折,点B 落在直线EF 上的点B ′处,得折痕EM ;将AEF 对折,点A 落在直线EF 上的A ′处,得折痕EN(1) 若A ′F ∶FB ′∶B ′E =2∶3∶1且FB ′=6,求线段EB 的长度 (2) 如图(2),若F 为边DC 的一点,BE =83AB ,长方形ABCD 的面积为48,求三角形FEB 的面积专题二:作图并求线段长度例2.(2013·洪山)已知线段AB =3cm ,反向延长线段AB 到C ,使BC =53AB ,D 是BC 的中点,则线段AD 的长为( )cm A .12B .1C .52D .4练1.(2014·硚口期末)根据条件画出图形,并解答问题:(1) 已知三条直线a 、b 、c ,且直线a 、c 相交于点B ,直线b 、c 相交于点A ,直线a 、b 相交于点C ,点D 在线段AC 上,点E 在线段DC 上,请你按已知画出图形 (2) 在(1)的基础上,若AD 的2倍比AE 少4,且AE =16,试求DE 的长练2.(2014·东湖开发区)如图,说明题.如图,已知四个点A 、B 、C 、D(1) 画射线AD ;(2) 画线段BC ;(3) 画∠ACD ;(4) 画出一点P ,使P 到点A 、B 、C 、D 的距离之和最小,并说明理由练3.(2013·硚口)如图,同一平面内有五个点A 、B 、C 、D 、E ,位置如图所示,按下列要求解答:(1) 画直线AB(2) 连接DA 并延长DA 至点M ,使AM =2DA(3) 在平面内是否存在一点P ,使P A +PE +PC +PD 最小?若存在,在图中画出点P ,并简要说明理由;若不存在,直接回答不存在专题三、线段条数问题例3.(2014·江汉期末)将线段AB 延长至C ,再将线段AB 反向延长至D ,则图中线段一共有( ) A .8条B .7条C .6条D .5条练1.(2014·武昌期末)如图,C 为线段AB 延长线上一点,D 为线段BC 上一点,CD =2BD ,E 为线段AC 上一点,CE =2AE (1) 若AB =18,BC =21,求DE 的长(2) 若AB =a ,求DE 的长(用含a 的代数式表示) (3) 若图中所有线段的长度之和是线段AD 长度的7倍,则ACAD的值为专题四、多选项问题1.(2013·江岸)已知点A 、B 、C 是同一条直线上的三个不同点,下列论断:① 若点C 为线段AB 的中点,则AC =BC ;② 若AC =BC ,则点C 为线段AB 的中点;③ 若点C 为线段AB 的中点,则AB =2BC ;④ 若AB =2BC ,则点C 为线段AB 的中点,其中正确的有( ) A .①②③B .①②③④C .②③④D .①③④2.(2014·东湖开发区)如图所示,B 在线段AC 上,且BC =3AB ,D 是线段AB 的中点,E 是BC 的三等分点,则下列结论:① EC =31AE ;② DE =5BD ;③ BE =21(AE +BC );④ AE =56(BC-AD ),其中正确结论的有( ) A .①②B .①②④C .②③④D .①②③④3.(2014·武汉三初12月月考)如图,C 为射线AB 上一点,AB =30,AC 比BC 的41多5,P 、Q 两点分别从A 、B 两点同时出发,分别以2单位/秒和1单位/秒的速度在射线AB 上沿AB 方向运动,运动时间为t 秒,M 为BP 的中点,N 为QM 的中点,以下结论:① BC =2AC ;② AB =4NQ ;③ 当PB =21BQ 时,t =12,其中正确结论的个数是( ) A .1B .2C .3D .4针对练习1.(2012·武昌期末)四位同学做“读语句画图”练习.甲同学读语句“直线经过A ,B ,C 三点,且点C 在点A 与点B 之间”,画出图形(1);乙同学读语句“两条线段AB ,CD 相交于点P ”画出图形(2);丙同学读语句“点P 在直线l 上,点Q 在直线l 外”画出图形(3);丁同学读语句“点M 在线段AB 的延长线上,点N 在线段AB 的反向延长线上”画出图形(4).其中画的不正确的是( )A .甲同学B .乙同学C .丙同学D .丁同学2.(2012·武昌期末)如图,点C ,D 在线段AB 上,AC =31AB ,CD =21CB ,若AB =3,则图中所有线段长的和是( ) A .6B .8C .10D .123.(2012·青山期末)如图,线段AB =9cm ,C 、D 、E 分别为线段AB (端点A ,B 除外)上顺次的三个不同的动点,图中所有线段的和等于40cm ,则下列结论一定成立的是( ) A .CD =1cm B .CE =2cm C .CE =3cm D .DE =2cm4.(2012·江岸区)已知:如图,点C 为线段AB 的中点,点E 为线段AB 上的点,点D 为线段AE 的中点(1) 若线段AB =a ,CE =b ,|a -15|+(b -4.5)2=0,求a 、b (2) 如图1,在(1)的条件下,求线段DE (3) 如图2,若AB =15,AD =2BE ,求线段CE5.(2011·江岸区)如图,已知线段AB ,点C 在AB 的延长线上,AC =35BC ,D 在AB 的反向延长线上,BD =53DC (1) 在图上画出点C 和点D 的位置(2) 设线段AB 长为x ,则BC =________,AD =________(用含x 的代数式表示) (3) 若AB =12 cm ,求线段CD 的长6.(2012·青山期末)已知m 、n 满足|m -12|+(n -m +10)2=0 (1) 求m 、n 的值(2) 已知线段AB =m ,在直线AB 上取一点P ,恰好是AP =nPB ,点Q 为BP 的中点,求线段AQ 的长7.已知方程5m -6=4m 的解也是关于x 的方程2(x -3)-n =4的解 (1) 求m 、n 的值(2) 已知线段AB =m ,在直线AB 上取一点P ,恰好使PBAP=n ,点Q 为PB 的中点,求线段AQ 的长。

线段、射线、直线知识点总结及习题

M O a线段、射线、直线【知识要点】知识点1、线段、直线、射线的概念:线段:一段拉直的棉线可近似地看作线段,线段有两个端点。

线段的画法:(1)画线段时,要画出两个端点之间的部分,不要画出向任何一方延伸的情况.(2)以后我们说“连结 ”就是指画以A 、B 为端点的线段.射线:将线段向一个方向无限延长,就形成了射线,射线有一个端点。

如手电筒、探照灯射出的光线等。

射线的画法:画射线 一要画出射线端点 ;二要画出射线经过一点,并向一旁延伸的情况.直线:将线段向两个方向无限延长就形成了直线,直线没有端点。

如笔直的铁轨等。

直线的画法:用直尺画直线,但只能画出一部分,不能画端点。

知识点2、线段、直线、射线的表示方法:(1) 点的记法:用一个大写英文字母(2) 线段的记法:①用两个端点的字母来表示 ②用一个小写英文字母表示 如图:记作线段AB 或线段BA , 记作线段a ,与字母顺序无关 此时要在图中标出此小写字母(3) 射线的记法:用端点及射线上一点来表示,注意端点的字母写在前面如图:记作射线OM,但不能记作射线MO(4) 直线的记法:①用直线上两个点来表示 ②用一个小写字母来表示如图:记作直线AB 或直线BA , 记作直线l与字母顺序无关。

此时要在图中标出此小写字母知识点3、线段、射线、直线的区别与联系:联系:三者都是直的,线段向一个方向延长可得到射线,线段向两个方向延长可得到直线,故射线、线段都是直线的一部分,线段是射线的一部分。

区别:直线可以向两方延伸,射线可以向一方无限延伸,线段不能延伸,三者的区别见下表:BA BAlB AaMOBAkB A名称图形表示方法界限端点长度线段线段AB(或线段BA)(字母无序)线段a 两方有界两个有射线射线AB(字母有序) 一方有界,一方无限一个无直线直线AB(或直线BA)(字母无序)直线l 两方无限无无知识点4、直线的基本性质(重点)(1)经过一点可以画无数条直线(2)经过两点只可以画一条直线直线的基本性质:经过两点有且只有一条直线(也就是说:两点确定一条直线)注:“确定”体现了“有”,又体现了“只有”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

画一画
2.已知道四点A、B、C、D按要求画图 (1)画直线BC (2)连接AB、AC (3)画射线AD (4)延长线段AB、反向延长线段AB;
A. D.
B.
C.
1.下列给线段取名正确的是 ( A.线段M B.线段m C.线段Mm D.线段mn

2.下列语句中正确的个数有 ( ) ①直线MN与直线NM是同一条直线 ②射线AB与射线BA是同一条射线 ③线段PQ与线段QP是同一条线段 ④直线上一点把这条直线分成的两部分都 是射线. A.1个 B.2个 C.3个 D.4个
再 见
直线 射线 AB AB 线段 AB
A
BHale Waihona Puke 线段和射线都是直线的一部分.
生活中有很多物体可以近似地看成线段、射线 、直线
人行横道都可以近似地看做线段。 电筒的光柱类似射线; 笔直的马路给我们以直线的形象.
2、直线有两种表示方法: ①用一个小写字母表示; ②用两个大写字母表示。
a 直线a A
·
直线AB
B
义务教育教科书
数学
七年级
上册
1.3直线、射线、线段
第1课时
小学已经学习了关于直线、线段、射线, 你能知道多少?你能分别画出一条吗?
线段、射线、直线的区别与联系
类型 线段 射线 端点数 2个 1个 延伸 不能延伸 度量 可度量 不可度量
向一个方向 无限延伸
向两个方向 无限延伸
直线
无端点
不可度量
• 已知线段AB,你能由线段AB得到射 线AB和直线AB吗?
·
自学指导2: P125——P126 射线,线段的表示方法
3.线段、射线、直线的表示方法.
(1)
A a B
线段 AB(或线段BA)
线段 a 射线 OA
B
(2)
O
A
A a
(3)
直线 AB(或直线BA) 直线 a
注意:
• 都要在字母前注明“线段”“射 线”“直线”; • 用大写字母表示直线和线段时,两 字母地位平等可交换位置; • 表示射线时两字母不能交换位置, 必须把端点字母放前面。
3下列各线的表示方法对吗?不对的,请改 正。 A b (1) 记作:直线Ab
(2)
(3)


记作:射线PO b 记作:直线ab
a
拓展练习
1、下图中能用字母表示的线段、射线、 直线各有几条?
A B

探究 1.图中:
A
B
C
D
上图中共有多少条线段? 若线段上有n个点,共有多少 条线段?
【反思】
本节课你学到了什么?
相关文档
最新文档