2019年高考数学总复习:样本频率分布直方图、茎叶图
2019年高考专题:概率与统计试题及答案

2019年高考专题:概率与统计1.【2019年高考全国Ⅲ卷文数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( )A .0.5 B .0.6 C .0.7 D .0.8 【解析】由题意得,阅读过《西游记》的学生人数为90-80+60=70, 则其与该校学生人数之比为70÷100=0.7.故选C . 2.【2019年高考全国Ⅰ卷文数】某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( ) A .8号学生B .200号学生C .616号学生D .815号学生【解析】由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =,所以610n a n=+()n *∈N ,若8610n =+,解得15n =,不合题意;若200610n =+,解得19.4n =,不合题意;若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 3.【2019年高考全国Ⅱ卷文数】生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( ) A .23B .35 C .25D .15【解析】设其中做过测试的3只兔子为,,a b c ,剩余的2只为,A B , 则从这5只中任取3只的所有取法有{,,},{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B b c A ,{,,},{,,},{,,}b c B b A B c A B ,共10种.其中恰有2只做过测试的取法有{,,},{,,},{,,},{,,},a b A a b B a c A a c B {,,},{,,}b c A b c B ,共6种,所以恰有2只做过测试的概率为63105=,故选B .4.【2019年高考江苏卷】已知一组数据6,7,8,8,9,10,则该组数据的方差是______________. 【解析】由题意,该组数据的平均数为678891086+++++=,所以该组数据的方差是22222215[(68)(78)(88)(88)(98)(108)]63-+-+-+-+-+-=. 5.【2019年高考全国Ⅱ卷文数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______________.【解析】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10201040++=,所以该站所有高铁平均正点率约为39.20.9840=. 6.【安徽省江淮十校2019届高三年级5月考前最后一卷】《易经》是我国古代预测未来的著作,其中同时抛掷三枚古钱币观察正反面进行预测未知,则抛掷一次时出现两枚正面、一枚反面的概率为 A .18B .14 C .38D .12【解析】抛掷三枚古钱币出现的基本事件有:正正正,正正反,正反正,反正正,正反反,反正反,反反正,反反反,共8种,其中出现两正一反的共有3种,故所求概率为38.故选C . 7.【山东省济宁市2019届高三第一次模拟考试】某学校从编号依次为01,02,…,90的90个学生中用系统抽样(等间距抽样)的方法抽取一个样本,已知样本中相邻的两个组的编号分别为14,23,则该样本中来自第四组的学生的编号为( )A .32 B .33 C .41 D .42 【解析】因为相邻的两个组的编号分别为14,23,所以样本间隔为23149-=, 所以第一组的编号为1495-=,所以第四组的编号为53932+⨯=,故选A . 8.【河南省洛阳市2019届高三第三次统一考试】已知某地区中小学生人数和近视情况分别如图甲和图乙所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( ) A .100,10B .100,20C .200,10D .200,20【解析】由题得样本容量为(350020004500)2%100002%200++⨯=⨯=,抽取的高中生人数为20002%40⨯=人,则近视人数为400.520⨯=人,故选D .9.【西藏拉萨中学2019届高三第六次月考】某次知识竞赛中,四个参赛小队的初始积分都是10分,在答题过程中,各小队每答对1题加0.5分,若答题过程中四个小队答对的题数分别是3道,7道,7道,3道,则四个小队积分的方差为( ) A .0.5B .0.75C .1D .1.25【解析】四个小队积分分别为11.5,13.5,13.5,11.5,平均数为11.513.513.511.512.54+++=,故四个小队积分的方差为221[(11.512.5)2(13.512.5)2]14⨯-⨯+-⨯=,故选C . 10.【陕西省2019届高三第三次联考】口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.38,摸出白球的概率是0.32,那么摸出黑球的概率是( ) A .0.42B .0.28C .0.3D .0.7【解析】在口袋中摸球,摸到红球、摸到黑球、摸到白球这三个事件是互斥的,因为摸出红球的概率是0.38,摸出白球的概率是0.32,且摸出黑球是摸出红球或摸出白球的对立事件,所以摸出黑球的概率是10.380.320.3--=.故选C .11.【河南省郑州市2019届高三第三次质量检测】某同学10次测评成绩的数据如茎叶图所示,总体的中位数为12,若要使该总体的标准差最小,则42x y +的值是( )A .12 B .14 C .16 D .18【解析】因为中位数为12,所以4x y +=,数据的平均数为1(223420191910x y ⨯+++++++++2021)11.4+=,要使该总体的标准差最小,即方差最小,所以22(1011.4)(1011.4)x y +-++-=2222.8( 1.4)( 1.4)2()0.722x y x y +--+-≥=,当且仅当 1.4 1.4x y -=-,即2x y ==时取等号,此时总体标准差最小,4212x y +=,故选A . 12.【江西省新八校2019届高三第二次联考】某学校高一年级1802人,高二年级1600人,高三年级1499人,先采用分层抽样的方法从中抽取98名学生参加全国中学生禁毒知识竞赛,则在高一、高二、高三三个年级中抽取的人数分别为( ) A .35,33,30B .36,32,30C .36,33,29D .35,32,31【解析】先将每个年级的人数凑整,得高一:1800人,高二:1600人,高三:1500人,则三个年级的总人数所占比例分别为1849,1649,1549, 因此,各年级抽取人数分别为18983649⨯=,16983249⨯=,15983049⨯=,故选B . 13.【广东省汕头市2019届高三第二次模拟考试(B 卷)】在某次高中学科竞赛中,4000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中数据用该组区间中点作代表,则下列说法中有误的是( )A .成绩在[70,80]分的考生人数最多B .不及格的考生人数为1000人C .考生竞赛成绩的平均分约70.5分D .考生竞赛成绩的中位数为75分【解析】由频率分布直方图可得,成绩在[70,80]的频率最高,因此考生人数最多,故A 正确;由频率分布直方图可得,成绩在[40,60)的频率为0.25,因此,不及格的人数为40000.251000⨯=,故B 正确;由频率分布直方图可得:平均分等于450.1550.15650.2750.3850.15⨯+⨯+⨯+⨯+⨯+950.170.5⨯=,故C 正确;因为成绩在[40,70)的频率为0.45,由[70,80]的频率为0.3,所以中位数为0.05701071.670.3+⨯≈,故D 错误.故选D . 14.【福建省泉州市2019届高三第二次(5月)质检】已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为x ,方差为2s ,则( ) A .270,75x s =<B .270,75x s =>C .270,75x s ><D .270,75x s ><【解析】由题意,可得7050806070907050x ⨯+-+-==,设收集的48个准确数据分别记为1248,,,x x x ,则222221248175[(70)(70)(70)(6070)(9070)]50x x x =-+-++-+-+-22212481[(70)(70)(70)500]50x x x =-+-++-+, 22222212481[(70)(70)(70)(8070)(7070)]50s x x x =-+-++-+-+-22212481[(70)(70)(70)100]7550x x x =-+-++-+<,所以275s <.故选A .15.【2019年高考全国Ⅰ卷文数】某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++.【解析】(1)由调查数据,男顾客中对该商场服务满意的比率为400.850=, 因此男顾客对该商场服务满意的概率的估计值为0.8. 女顾客中对该商场服务满意的比率为300.650=, 因此女顾客对该商场服务满意的概率的估计值为0.6.(2)由题可得22100(40203010) 4.76250507030K ⨯⨯-⨯=≈⨯⨯⨯.由于4.762 3.841>,故有95%的把握认为男、女顾客对该商场服务的评价有差异.16.【2019年高考全国Ⅱ卷文数】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例; (2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.018.602≈.【解析】(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为1470.21100+=. 产值负增长的企业频率为20.02100=. 用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%. (2)1(0.1020.10240.30530.50140.707)0.30100y =-⨯+⨯+⨯+⨯+⨯=, ()52211100i i i s n y y ==-∑222221(0.40)2(0.20)240530.20140.407100⎡⎤=-⨯+-⨯+⨯+⨯+⨯⎣⎦ =0.0296,0.020.17s ==≈,所以,这类企业产值增长率的平均数与标准差的估计值分别为30%,17%.17.【2019年高考全国Ⅲ卷文数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70. (1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表). 【解析】(1)由已知得0.700.200.15a =++,故0.35a =.10.050.150.700.10b =---=.(2)甲离子残留百分比的平均值的估计值为20.1530.2040.3050.2060.1070.05 4.05⨯+⨯+⨯+⨯+⨯+⨯=.乙离子残留百分比的平均值的估计值为30.0540.1050.1560.3570.2080.15 6.00⨯+⨯+⨯+⨯+⨯+⨯=.18.【2019年高考天津卷文数】2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为,,,,,A B C D E F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.【答案】(1)应从老、中、青员工中分别抽取6人,9人,10人;(2)(i)见解析,(ii)11 15.【分析】本题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识,考查运用概率知识解决简单实际问题的能力.【解析】(1)由已知,老、中、青员工人数之比为6 : 9 : 10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人,9人,10人.(2)(i)从已知的6人中随机抽取2人的所有可能结果为{, },{, },{, },{, },{, },{, },A B A C A D A E A F B C{, },{, },{, },{, {,}},,B D B E B FCD C E{,},C F {,},{,},{,}D E D F E F,共15种.(ii)由表格知,符合题意的所有可能结果为{, },{, },{, },{, },{, },{, },{, {,},{,},{,},{,},}A B A D A E A F B D B CE BF E C F D F E F,共11种.所以,事件M发生的概率11 ()15P M .19.【北京市清华大学附属中学2019届高三第三次模拟考试】手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性、300名男性)进行调查,对手机进行评分,评分的频数分布表如下:(1)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);(2)把评分不低于70分的用户称为“评分良好用户”,能否有90%的把握认为“是否是评分良好用户”与性别有关?参考公式及数据:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.【解析】(1)女性用户和男性用户的频率分布直方图分别如下图所示:女性用户男性用户由图可得女性用户的波动小,男性用户的波动大.(2)由题可得22⨯列联表如下:则22500(14012018060)1255.208 2.70620030032018024K⨯⨯-⨯=≈>⨯⨯⨯=,所以有90%的把握认为“是否是评分良好用户”与性别有关.20.【2019年甘肃省兰州市高考数学一诊】“一本书,一碗面,一条河,一座桥”曾是兰州的城市名片,而现在“兰州马拉松”又成为了兰州的另一张名片,随着全民运动健康意识的提高,马拉松运动不仅在兰州,而且在全国各大城市逐渐兴起,参与马拉松训练与比赛的人口逐年增加.为此,某市对人们参加马拉松运动的情况进行了统计调查.其中一项调查是调查人员从参与马拉松运动的人中随机抽取200人,对其每周参与马拉松长跑训练的天数进行统计,得到以下统计表:若某人平均每周进行长跑训练天数不少于5天,则称其为“热烈参与者”,否则称为“非热烈参与者”.(1)经调查,该市约有2万人参与马拉松运动,试估计其中“热烈参与者”的人数;(2)根据上表的数据,填写下列22⨯列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“是否热烈参与马拉松”与性别有关?参考公式及数据:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.【解析】(1)以200人中“热烈参与者”的频率作为概率,可得该市“热烈参与者”的人数约为40 200004000200⨯=.(2)由题可得22⨯列联表如下:则22200(35551055)1757.292 6.635401601406024K⨯⨯-⨯==≈>⨯⨯⨯,所以能在犯错误的概率不超过0.01的前提下认为“是否热烈参与马拉松”与性别有关.21.【四川省成都七中2019届高三5月高考模拟测试】某学校为担任班主任的教师办理手机语音月卡套餐,为了解通话时长,采用随机抽样的方法,得到该校100位班主任每人的月平均通话时长T(单位:分钟)的数据,其频率分布直方图如图所示,将频率视为概率.(1)求图中m的值;(2)估计该校担任班主任的教师月平均通话时长的中位数;(3)在[450,500),[500,550]这两组中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求抽取的2人恰在同一组的概率.【解析】(1)依题意,根据频率分布直方图的性质,可得:50(0.00400.00500.00660.00160.0008)1m⨯+++++=,解得0.0020m=.(2)设该校担任班主任的教师月平均通话时长的中位数为t.因为前2组的频率之和为(0.00200.0040)500.30.5+⨯=<,前3组的频率之和为(0.00200.00400.0050)500.550.5++⨯=>,所以350400t <<,由0.30.0050(350)0.5t +⨯-=,得390t =.所以该校担任班主任的教师月平均通话时长的中位数为390分钟.(3)由题意,可得在[450,500)内抽取0.0016640.00160.0008⨯=+人,分别记为a b c d ,,,, 在[500,550]内抽取2人,记为,e f ,则6人中抽取2人的取法有:{,}a b ,{,}a c ,{,}a d ,{,}a e ,{,}a f ,{,}b c ,{,}b d ,{,}b e ,{,}b f ,{,}c d ,{,}c e ,{,}c f ,{,}d e ,{,}d f ,{,}e f ,共15种等可能的取法.其中抽取的2人恰在同一组的有{,}a b ,{,}a c ,{,}a d ,{,}b c ,{,}b d ,{,}c d ,{,}e f ,共7种取法,所以从这6人中随机抽取的2人恰在同一组的概率715P =. 22.【西南名校联盟重庆市第八中学2019届高三5月高考适应性月考(六)】某种产品的质量按照其质量指标值M 进行等级划分,具体如下表: 质量指标值M80M < 80110M ≤< 110M ≥ 等级 三等品 二等品 一等品现从某企业生产的这种产品中随机抽取了100件作为样本,对其质量指标值M 进行统计分析,得到如图所示的频率分布直方图.(1)记A 表示事件“一件这种产品为二等品或一等品”,试估计事件A 的概率;(2)已知该企业的这种产品每件一等品、二等品、三等品的利润分别为10元、6元、2元,试估计该企业销售10000件该产品的利润;(3)根据该产品质量指标值M 的频率分布直方图,求质量指标值M 的中位数的估计值(精确到0.01).【解析】(1)记B 表示事件“一件这种产品为二等品”,C 表示事件“一件这种产品为一等品”, 则事件B ,C 互斥,且由频率分布直方图估计()0.20.30.150.65P B =++=,()0.10.090.19P C =+=,又()()()()0.84P A P B C P B P C =+=+=,所以事件A 的概率估计为0.84.(2)由(1)知,任取一件产品是一等品、二等品的概率估计值分别为0.19,0.65,故任取一件产品是三等品的概率估计值为0.16,从而10000件产品估计有一等品、二等品、三等品分别为1900,6500,1600件,故利润估计为190010650061600261200⨯+⨯+⨯=元.(3)因为在产品质量指标值M的频率分布直方图中,质量指标值90M<的频率为0.060.10.20.360.5++=<,质量指标值100M<的频率为0.060.1020.30.660.5+++=>,故质量指标值M的中位数估计值为0.50.369094.670.03-+≈.。
高考数学易错题10.2 统计图表的应用-2019届高三数学提分精品讲义

专题十概率、统计问题二:统计图表的应用一、考情分析统计图表有频率分布直方图、茎叶图、折线图、条形图、饼形图、雷达图等,它们广泛应用于实际生活之中,也是历年高考的热点,求解此类的关键是由图表读出有用的数据,再根据数据进行分析.二、经验分享1.明确频率分布直方图的意义,即图中的每一个小矩形的面积是数据落在该区间上的频率,所有小矩形的面积和为1.学科-网2.对于统计图表类题目,最重要的是认真观察图表,从中提炼有用的信息和数据.由茎叶图可以清晰地看到数据的分布情况,这一点同频率分布直方图类似.它优于频率分布直方图的第一点是从茎叶图中能看到原始数据,没有任何信息损失,第二点是茎叶图便于记录和表示.其缺点是当样本容量较大时,作图较烦琐.3.频率分布直方图是高考考查的热点,考查频率很高,题型有选择题、填空题,也有解答题,难度为低中档.用样本频率分布来估计总体分布的重点是频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布;难点是频率分布表和频率分布直方图的理解及应用.在计数和计算时一定要准确,在绘制小矩形时,宽窄要一致.通过频率分布表和频率分布直方图可以对总体作出估计.频率分布直方图的纵坐标为频率/组距,每一个小长方形的面积表示样本个体落在该区间内的频率;条形图的纵坐标为频数或频率,把直方图视为条形图是常见的错误.三、知识拓展统计图是利用点、线、面、体等绘制成几何图形,以表示各种数量间的关系及其变动情况的工具。
表现统计数字大小和变动的各种图形总称。
其中有条形统计图、扇形统计图、折线统计图、象形图等。
在统计学中把利用统计图形表现统计资料的方法叫做统计图示法。
其特点是:形象具体、简明生动、通俗易懂、一目了然。
其主要用途有:表示现象间的对比关系;揭露总体结构;检查计划的执行情况;揭示现象间的依存关系,反映总体单位的分配情况;说明现象在空间上的分布情况。
一般采用直角坐标系.横坐标用来表示事物的组别或自变量x,纵坐标常用来表示事物出现的次数或因变量y;或采用角度坐标(如圆形图)、地理坐标(如地形图)等。
2019年高考数学二轮复习解题思维提升专题18统计知识及统计案例小题部分训练手册(附答案)

专题18 统计知识及统计案例小题部分【训练目标】1、理解简单随机抽样每个个体被抽取的概率相等,掌握简单随机抽样,系统抽样,分层抽样的方法和本质;2、掌握频率分布直方图的画法和性质,能够根据频率分布直方图计算平均数、中位数、众数和方差;3、能根据茎叶图计算平均数、中位数、众数和方差;4、能看懂条形图,扇形统计图,雷达图,折线统计图等常见的统计图表;5、熟记平均数,方差的计算公式及性质,理解平均数,中位数,众数,方差的实际意义;6、能根据数据和公式求线性回归方程,把握线性回归方程的核心即一定经过样本中心点(),x y;7、理解相关系数,残差等概念及相应的含义,并能正确的使用公式求解;8、会根据数据列22⨯列联表,掌握利用2κ公式进行独立性检验的方法;【温馨小提示】此类问题在高考中属于必考题,一般在大题或者小题中出现,所占分值比重较大,题目容易,但是阅读量大,需要学生能够快速准确的把握题目的核心,同时计算量也偏大,另外要求学生多加训练,解出各种统计的题型,知晓解题方法。
【名校试题荟萃】1、气象意义上从春季进入夏季的标志为:“连续5天的日平均温度均不低于”.现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数):①甲地:5个数据的中位数为24,众数为22;②乙地:5个数据的中位数为27,总体均值为24;③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为.则肯定进入夏季的地区有()A.①②③B.①③C.②③D.①【答案】B2、某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是(说明:结余=收入-支出)()A.收入最高值与收入最低值的比是B.结余最高的月份是月C.至月份的收入的变化率与至月份的收入的变化率相同D.前个月的平均收入为万元【答案】D3、某公司将职员每月的工作业绩用的自然数表示,甲、乙两职员在2018年月份的工作业绩的茎叶图如图,则下列说法正确的是()A.两职员的平均业绩相同,甲职员的业绩比乙职员的业绩稳定B.两职员的平均业绩不同,甲职员的业绩比乙职员的业绩稳定C.两职员的平均业绩相同,乙职员的业绩比甲职员的业绩稳定D.两职员的平均业绩不同,乙职员的业绩比甲职员的业绩稳定【答案】C【解析】设甲、乙两职员的平均业绩分别为,方差分别为.由茎叶图可得:,,由平均数和方差可知,两职员的平均业绩相同,乙职员的业绩比甲职员的业绩稳定.4、如图是一名篮球运动员在最近5场比赛中所得分数的茎叶图,若该运动员在这5场比赛中的得分的中位数为12,则该运动员这5场比赛得分的平均数不可能为()A. B. C.14 D.【答案】D5、等差数列的公差为1,这组数据的方差为()A. B. C. D.【答案】B【解析】∵是等差数列,∴,∵公差为1,∴,故选B.6、为了了解某校九年级名学生的体能情况,随机抽查了部分学生,测试1分钟仰卧起坐的成绩(次数),将数据整理后绘制成如图所示的频率分布直方图,根据统计图的数据,下列结论错误的是( )A.该校九年级学生分钟仰卧起坐的次数的中位数为次B.该校九年级学生分钟仰卧起坐的次数的众数为次C.该校九年级学生分钟仰卧起坐的次数超过次的人数约有人D.该校九年级学生分钟仰卧起坐的次数少于次的人数约有人【答案】D7、总体由编号为00,01,02,…48,49的50个个体组成,利用下面的随机数表选取8个个体,选取方法是从随机数表第6行的第9列和第10列数字开始由左到右依次选取两个数字,则选出来的第8个个体的编号为()附:第6行至第9行的随机数表2635 7900 3370 9160 1620 3882 7757 49503211 4919 7306 4916 7677 8733 9974 67322748 6198 7164 4148 7086 2888 8519 16207477 0111 1630 2404 2979 7991 9683 5125A.16B.19C.20D.38【答案】B【解析】从随机数表第行的第列和第列数字开始由左到右依次选取两个数字,符合条件依次为:,故第个数为.8、如图是某位篮球运动员场比赛得分的茎叶图,其中一个数据上污渍用代替,那么这位运动员这场比赛的得分平均数不小于得分中位数的概率为()A. B. C. D.【答案】B9、某工厂采用系统抽样方法,从一车间全体名职工中抽取名职工进行一项安全生产调查,现将名职工从到进行编号,已知从到这个编号中抽到的编号是,则在到中随机抽到的编号应是()A. B. C.6 D.7【答案】C【解析】某工厂采用系统抽样方法,从一车间全体名职工中抽取名职工进行一项安全生产调查,∴抽样间隔为:,现将名职工从到进行编号,从到这个编号中抽到的编号是,则在到中随机抽到的编号应是:.10、为了调查某重点高校年大学生就业质量,一调查公司从该校的本科毕业生、硕士毕业生、博士毕业生中共分层抽取了人作为样本研究,已知该校本科毕业生比硕士毕业生多人,其中本科生抽取了人,硕士毕业生抽取了人,则该校共有毕业生人数为()A. B. C. D.【答案】A11、若的平均数为3,标准差为4,且,,则新数据的平均数和标准差分别为()A.、B.、C.、D.、【答案】D【解析】由平均数和标准差的性质可知,若的平均数为,标准差为,则:的平均数为,标准差为,据此结合题意可得:的平均数为:,标准差分别为12、名工人某天生产同一零件,生产的件数是,设其平均数为,中位数为,众数为,则有()A. B. C. D.【答案】D13、将参加夏令营的名学生编号为:,采用系统抽样的方法抽取一个容量为的样本,且随机抽得的号码为,这名学生分住在三个营区,从到在第一营区,从到在第二营区,从到在第三营区,三个营区被抽中的人数为()A. B. C. D.【答案】B【解析】根据系统抽样特点,被抽到号码.第号被抽到,因此第二营区应有人,所以三个营区被抽中的人数为.14、从2007名学生中选取50名参加全国数学联赛,若采用下面的方法选取:先用简单随机抽样从2007人中剔除7人,剩下的2000人再按系统抽样的方法抽取,则每人入选的可能性()A.不全相等B.均不相等C.都相等,且为D.都相等,且为【答案】D【解析】用简单随机抽样从2007人中剔除7人,每个人被剔除的概率相等,剩下的人再按系统抽样的方法抽取,每个人被抽取的概率也相等,∴这种方法下,每人入选的概率是相等的,为,故选D.15、某公司新研发了两种不同型号的平板电脑,公司统计了消费者对这两种型号平板电脑的评分情况,如下图,则下列说法不正确的是( )A.甲、乙型号平板电脑的综合得分相同B.乙型号平板电脑的拍照功能比较好C.在性能方面,乙型号平板电脑做得比较好D.消费者比较喜欢乙型号平板电脑的屏幕【答案】D16、某产品的广告费用与销售额的统计数据如下表:根据上表可得回归方程中的为,据此模型预报广告费用为万元时销售额为()A.万元 B.万元 C.万元 D.万元【答案】B【解析】回归方程为,中心点为,代入回归方程得,回归方程为,当时.17、观测一组的数据,利用两种回归模型计算得.①与②,经计算得模型①的,模型②的,下列说法中正确的是()A.模型①拟合效果好B.模型①与②的拟合效果一样好C.模型②拟合效果好D.模型①负相关【答案】C【解析】系数反映了回归模型的拟合度,一个是,一个是,相关指数的值越大,模型拟合的效果越好.故选C.18、以下四个命题中:①在回归分析中,可用相关指数的值判断模型的拟合效果,越大,模拟的拟合效果越好;②两个随机变量的线性相关性越强,相关系数的绝对值越接近于;③若数据的方差为,则的方差为;④对分类变量与的随机变量的观测值来说,越小,判断“与有关系”的把握程度越大.其中真命题的个数为()A. B. C. D.【答案】B19、一位母亲记录了儿子岁的身高,由此建立的身高与年龄的回归模型为,用这个模型预测这孩子岁时的身高,则正确的叙述是( )A.身高一定是B.身高在以上C.身高在以下D.身高在左右【答案】D【解析】由回归直线方程可得当,时,但回归分析是对实际生产和生活问题的估测,还要受其它一些因素的影响,可能大于估算值,也可能小于估算值,故应选D.20、给出下列四个命题:①使用统计量作列联表的独立性检验时,要求表中的个数据都要大于;②使用统计量进行独立性检验时,若,则有的把握认为两个事件有关;③回归直线就是散点图中经过样本数据点最多的那条直线④在线性回归分析中,如果两个变量的相关性越强,则相关系数就越接近于.其中真命题的个数为()A.个B.个C.个D.个【答案】A21、在西非肆虐的“埃博拉病毒”的传播速度很快,这已经成为全球性的威胁.为了考察某种埃博拉病毒疫苗的效果,现随机抽取只小鼠进行试验,得到如下列联表:参照附表,下列结论正确的是()A.在犯错误的概率不超过的前提下,认为“小动物是否被感染与有没有服用疫苗有关”B.在犯错误的概率不超过的前提下,认为“小动物是否被感染与有没有服用疫苗无关”C.有的把握认为“小动物是否被感染与有没有服用疫苗有关”D.有的把握认为“小动物是否被感染与有没有服用疫苗无关”【答案】A【解析】由公式可得,所以在犯错误的概率不超过的前提下,认为“小动物是否被感染与有没有服用疫苗有关”.故A正确.22、如图是一容量为100的样本的质量的频率分布直方图,样本质量均在内,其分组为,则样本质量落在内的频数为______.【答案】2023、一组数据共有7个数,记得其中有,还有一个数没记清,但知道这组数的平均数、中位数、众数依次成等差数列,这个数的所有可能值的和为_______.【答案】9【解析】设这个数为,则平均数为,众数为,若,则中位数为,此时;若,则中位数为,此时,;若,则中位数为,,.所有可能值为,故其和为.24、某高校有教授120人,副教授100人,讲师80人,助教60人,现用分层抽样的方法从以上所有老师中抽取一个容量为的样本.已知从讲师中抽取的人数为16,那么_______.【答案】72【解析】依题意得,,由此解得.25、某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了次试验.根据收集到的数据(如下表),由最小二乘法求得回归方程,现发现表中有一个数据模糊看不清,请你推断出该数据的值为_______.【答案】26、为了检验某套眼保健操预防学生的作用,把名做该套眼保健操的学生与另外名未做该套眼保健操的学生的视力情况作记录并比较,提出假设:“这套眼保健操不能起到预防近视的作用”,利用列联表计算所得的.经查对临界表知.对此,四名同学得出了以下结论:①有的把握认为“这套眼保健操能起到预防近视的作用”;②若某人未做该套眼保健操,那么他有的可能近视;③这套眼保健操预防近视的有效率为;④这套眼保健操预防近视的有效率为.其中所有正确结论的序号是_________.【答案】①【解析】根据查对临界表知,故有的把握认为“这套眼保健操能起到预防近视的作用”,即①正确;仅指“这套眼保健操能起到预防近视的作用”的可信程度,所以②③④错误.27、某报考音乐专业的学生在次音乐测试中,音乐成绩如下表所示:根据上表得到音乐成绩与考次的回归方程为,若直线:与直线:垂直,则________.【答案】28、下表为“民生生鲜超市”的员工工作年限(单位:年)与平均月薪(单位:千元)的对照表.利用最小二乘法求得关于的线性回归方程为,则,,这三个样本点中落在回归直线上方的个数为_________.【答案】【解析】由表中数据得,,,样本中心点一定在回归直线上, ,解得.当时, ,点在回归直线下方;当时, ,点在回归直线上方;当时, ,点在回归直线下方.29、已知下列命题:①在线性回归模型中,相关指数表示解释变量对于预报变量的贡献率,越接近于,表示回归效果越好;②两个变量相关性越强,则相关系数的绝对值就越接近于;③在回归直线方程中,当解释变量每增加一个单位时,预报变量平均减少个单位;④对分类变量与,它们的随机变量的观测值来说,越小,“与有关系”的把握程度越大.其中正确命题的序号是________.【答案】①②③【解析】根据统计的相关知识易得①②③均正确,对于④,观测值越大,“与有关系”的把握程度越大,④错误,所以正确命题的序号是①②③.30、某校中午采取回宿舍午休制度以来,学生睡眠质量得到提高,全校人的下午上课的精神状态有了较大提升但仍需改进。
《统计与概率》高考模拟

《统计与概率》高考模拟一、选择题(本大题共12小题,每小题5分,共60分)1.(2019·成都统考)某工厂生产,,A B C 三种不同型号的产品,产品数量之比为:5:3k ,现用分层抽样的方法抽出个容量为120的样本,已知A 型号产品抽取了24件,则C 型号产品抽取的件数为( ) A.24 B.30 C.36 D.402.(2019·菏泽模拟)在样本频率分布直方图中,共有9个小长方形,若某个小长方形的面积等于其他8个小长方形的面积和的25,且样本容量为140,则该组的频数为( ) A.28 B.40 C.56 D.603.(2019·河南八市高一联考)如图所示的茎叶图记录了甲、乙两名同学在10次英语听力比赛中的成绩(单位:分),已知甲得分的中位数为76分,乙得分的平均数是75分,则下列结论正确的是( )A.76x =甲B.甲数据中3x =,乙数据中6y =C.甲数据中6x =,乙数据中3y =D.乙同学成绩较为稳定4.在5件产品中,有4件正品,从中任取2件,2件都是正品的概率是( )A.4 5B.1 5C.3 5D.2 55.有一个容量为200的样本,其频率分布直方图如图所示,根据样本的频率分布直方图估计,样本数据落在区间[10,12)内的频数为()A.18B.36C.54D.726.(2019·辽宁实验中学月考)甲盒中有200个螺杆,其中有x个A型的,乙盒中有240个螺母,其中有y个A型的.今从甲、乙两盒中各任取一个,不能配成A型螺栓的概率为25,则恰可配成A型螺栓的概率为()A.1 20B.15 16C.3 5D.19 207.(2019·绵阳中学高一期末)口袋中有100个大小相同的红球、白球、黑球,其中红球45个,从口袋中摸出一个球,摸出白球的概率为0.23,则摸出黑球的概率为()A.0.45B.0.67C.0.64D.0.328.随机猜测“选择题”的答案,每道题猜对的概率为0.25,则两道选择题至少猜对一道的概率为()A.7 16B.1 16C.9 16D.3 89.(2019·绵阳中学高一期末)现有10道题,其中6道甲类题,4道乙类题,小明同学从中任取3道题解答.已知所取的3道题中有2道甲类题,1道乙类题.若小明同学答对每道甲类题的概率都是35,答对每道乙类题的概率都是45,且各题答对与否相互独立.则小明同学至少答对2道题的概率为()A.12 25B.57 125C.36 125D.93 12510.设矩形的长为a,宽为b,其比满足1:0.6182b a=≈,这种矩形给人以美感,称为黄金矩形.黄金矩形常应用于工艺品设计中,下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本甲批次:甲批次:0.598 0.625 0.628 0.595 0.639乙批次:0.618 0.613 0.592 0.622 0.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是()A.甲批次的总体平均数与标准值更接近B.乙批次的总体平均数与标准值更接近C.两个批次总体平均数与标准值接近程度相同D.两个批次总体平均数与标准值接近程度不能确定11.从甲、乙两个城市分布随机抽取14台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图),设甲、乙两组数据的平均数分别为,x x 甲乙,中位数分别为,m m 甲乙,则( )A.,x x m m <>甲乙甲乙B.,x x m m <<甲乙甲乙C.,x x m m >>甲乙甲乙D.,x x m m ><甲乙甲乙12.(2019·武昌模拟)学校要从甲、乙、丙三名同学中选取两名去参加物理竞赛,因为他们的水平相当,所以准备采取抽签的方式决定.学校制作了三个签,其中两个写有“参赛”,一个写有“不参赛”.抽签时,由甲先抽,然后乙抽,最后丙抽.记事件A :甲抽中“参赛”,事件B :乙抽中“参赛”,则( ) A.()()P A P B =且事件,A B 独立 B.()()P A P B =且事件,A B 不独立 C.()()P A P B >且事件,A B 独立 D.()()P A P B >且事件,A B 不独立二、填空题(本大题共4小题,每小题5分,共20分)13.(2019·南阳检测)为了调查某野生动物保护区内某种野生动物数量,调查人员逮到这种动物1200只,作过标记后放回,一星期后,调查人员再次逮到该种动物1000只,其中作过标记的有100只,估计保护区有这种动物______只. 14.(2019·郑州一中期末)用两种不同的颜色给图中三个矩形随机涂色,每个矩形只涂一种颜色,则相邻两个矩形涂不同颜色的概率是_________.15.(2019沈阳质检)某工厂生产,A B两种元件,先从一批产品中随机抽取这两种元件各5件进行检测,检测结果记录如下:由于表格被污损,数据,x y看不清,统计员只记得,A B两种元件的检测数据的平均数相等,方差也相等,则xy ________.16.两台机床同时生产直径为10的零件,为了检验产品质量,质量检验员从两台机床生产的产品中各抽出4件进行测量,结果如下:如果你是质量检验员,在收集到上述数据后,你将通过运算来判断哪台机床生产的零件质量更好、更符合要求,那么你的判断是_________.三、解答题(本大题共6小题,共70分)17.(2019·武汉二中月考)(10分)一个地区共有5个乡镇,人口3万人,其中人口比例为3:2:5:2:3.从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的抽样方法?并写出具体过程.18.(2019·海口一中质检)(12分)随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图所示.(1)根据茎叶图判断哪个班的平均身高较高; (2)计算甲班的样本方差.19.(2019·育才中学期中)(12分)一个口袋内装有大小相同的1个白球和已编有号码的3个黑球,从中摸出2个球. (1)共有多少种不同的结果?(2)2个球均为黑球有多少种不同结果? (3)2个球均为黑球的概率是多少?20.(2019·北京十一中学期中)(12分)某校进入高中数学竞赛复赛的学生中,高一年级有6人,高二年级有12人,高三年级有24人,现采用分层抽样的方法从这些学生中抽取7人进行采访. (1)求应从各年级分别抽取的人数;(2)若从抽取的7人中再随机抽取2人做进一步了解(注高一学生记为i A ,高二学生记为i B ,高三学生记为1,2,3,i C i =⋅⋅⋅,). ①列出所有可能的抽取结果;②求抽取的2人均为高三年级学生的概率.21.(2019·济南模拟)(12分)现有甲、乙、丙三名学生参加某大学的自主招生考试,考试分两轮,第一轮笔试,第二轮面试,只有第一轮笔试通过才有资格进入第二轮面试,面试通过就可以在高考录取中获得该校的优惠加分,两轮考试相互独立.根据以往多次的模拟测试,甲、乙、丙三名学生能通过笔试的概率分别为0.4,0.8,0.5,能通过面试的概率分别为0.8,0.4,0.64.根据这些数据我们可以预测:(1)甲、乙、丙三名学生中至少有两名学生通过第一轮笔试的概率 (2)甲、乙、丙三名学生恰有2人获得该校优惠加分的概率.22.(2019·长沙八校联考)(12分)某医药公司研发一种新的保健产品,从生产的一批产品中抽取200盒作为样本,测量产品的一项质量指标值,该指标值越高越好,由测量结果得到如图所示的频率分布直方图:(1)求a,并试估计这200盒产品的该项指标的平均值;(2)国家有关部门规定每盒产品该项指标值不低于150均为合格,且按指标值的从低到高依次分为合格、优良、优秀三个等级,其中(185,215)为优良,不高于185为合格,不低于215为优秀.用样本的该项质量指标值的频率代替产品的该项质量指标值的概率.①求产品该项指标值的优秀率;②现从这批产品中随机抽取3盒,求其中至少有1盒该项质量指标值为优秀的概率.参考答案 1. 答案:C 解析:由2453120k k =++得2k =,故C 型号产品抽取的件数为312036253⨯=++.2.答案:B解析:设该小长方形的面积为x ,则2(1)5x x =-,解得27x =,即该组的频率为27,所以频数为2140407⨯=.3. 答案:C解析:因为甲得分的中位数为76分,所以6x =,所以75x =甲,故A 、B 错误;因为乙得分的平均数是75分,所以5668687072(70)808688897510y ++++++++++=,解得3y =,故C 正确;由茎叶图中甲、乙成绩的分布可知D 错误. 4. 答案:C 解析: 5. 答案:B解析:从左到右四个矩形的面积分别为0.04、0.1、0.3、0.38,所以第五个矩形的面积为10.040.10.30.380.18----=,即样本数据落在区间[10,12)内的频率为0.18,所以样本数据落在区间[10,12)内的频数为2000.1836⨯=. 6. 答案:C 解析: 7. 答案:D 解析:答案:A解析:每道题猜对的概率为10.254=,则猜错的概率为34,由独立事件概率的计算公式得:两道选择题都猜错的概率为3394416⨯=,所以至少猜对一道的概率为9711616-=.故选A. 9. 答案:D解析:设小明同学答对题的个数为X ,则23134257(2)255555125P X ⎛⎫==⨯+⨯⨯⨯= ⎪⎝⎭,23436(3)55125P X ⎛⎫==⨯=⎪⎝⎭,故93(2)(2)(3)125P X P X P X ==+==≥.则小明同学至少答对2道题的概率为93125.选D. 10. 答案:A 解析:0.5980.6250.6280.5950.6390.6175x ++++==甲,0.6180.6130.5920.6220.6200.6135x ++++==乙,故选A.11. 答案:A解析:由题中茎叶图可得56101014182225303038414348170147x +++++++++++++==甲, 88101220222323313234344243171147x +++++++++++++==乙, 23.5,23m m ==甲乙,故,x x m m <>甲乙甲乙,故选A. 12. 答案:B解析:因为221122(),()332323P A P B ==⨯+⨯=,所以()()P A P B =,但211()323P AB =⨯=,从而()()()P AB P A P B ≠,故,A B 相互不独立.答案:12000解析:设保护区内有这种动物x 只,每只动物被逮到的概率是相同的,所以12001001000x =,解得12000x =. 14. 答案:14解析:由于只有两种颜色,不妨将其标注为1和2.若只用一种颜色,则有111,222,共2种情况;若用两种颜色,则有122,212,221,211,121,112,共6种情况.所以基本事件共有8个,其中相邻两个矩形颜色不同的事件有2个,故所求概率2184P ==. 15. 答案:72解析:因为1(777.599.5)8,5A B x x =⨯++++==1(68.58.5)5x y ⨯++++,所以由A B x x =,得17x y +=.①因为21(110.251 2.25) 1.15A s =⨯++++=,22214(8)0.250.25(8)5B s x y ⎡⎤=⨯+-+++-⎣⎦,所以由22A B s s =,得22(8)(8)1x y -+-=.②由①②,解得72xy =. 16. 答案:乙解析:先计算平均直径:1(109.810 10. 2) 104x =+++=甲;1(10.1109.910)104z x =+++=.由于x x =甲乙,因此,平均直径不能反映两台机床生产的零件的质量优劣.再计算方差:222221(1010)(9.810)(1010)(10.210)0.024s ⎡⎤=-+-+-+-=⎣⎦甲; 222221(10.110)(1010)(9.910)(1010)0.0054s ⎡⎤=-+-+-+-=⎣⎦乙.由于22s s <乙甲,这说明乙机床生产出的零件直径波动小.因此,从产品质量稳定性的角度考虑,乙机床生产的零件质量更好、更符合要求.17.答案:见解析解析:因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而采用分层抽样的方法,具体过程如下:①3万人分为5层,其中一个乡镇为一层.②按照样本容量的比例随机抽取各乡镇应抽取的样本.33006015⨯=(人),23004015⨯=(人),530010015⨯=(人),23004015⨯=(人),33006015⨯=(人),因此各乡镇抽取人数分别为60人、40人、100人、40人、60人.③将抽取的300人组到一起,即得到一个300人的样本.18.答案:见解析解析:(1)甲、乙两班同学的平均身高分别为:170,171.1x x ==甲乙,所以乙班同学的平均身高较高.(2)甲班的样本方差为:22221[(158170)(162170)(163170)10s =-+-+-+甲222222(168170)(168170)(170170)(171170)(179170)(179170)-+-+-+-+-+-2(182170)]57.2+-=.19.答案:见解析解析:(1)设已编号的3个黑球分别为黑1、黑2黑3,则从中摸出2个球,共有6种不同的结果,分别为(黑1,黑2)、(黑1,黑3)、(黑2,黑3)、(白,黑1)、(白,黑2)、(白,黑3).(2)由(1)知,2个球均为黑球有3种不同的结果.(3)由于6种结果是等可能的,其中2个球均为黑球(记为事件A )有3种不同的结果,31()62P A ∴==. 20.答案:见解析解析:(1)由分层抽样的特征,得61271;726122461224⨯=⨯=++++;247461224⨯=++,所以应从高一年级抽取1人,高二年级抽取2人,高三年级抽取4人.(2)由(1)知,高一年级有1人,记为1A ,高二年级有2人,记为12,B B ,高三年级有4人,记为1234,,,C C C C .①从中抽取2人,所有可能的结果为:11121112131412,,,,,,A B A B AC AC AC AC B B , 1112131421222324121314232434,,,,,,,,,,,,,B C B C B C B C B C B C B C B C C C C C C C C C C C C C ,共21种.②由①知,共有21种情况,抽取的2人均为高三年级学生的可能结果为:121314232434,,,,,C C C C C C C C C C C C ,共6种,所以抽取的2人均为高三年级学生的概率62217P ==. 21.答案:见解析解析:(1)记事件A :甲通过第一轮笔试,事件B :乙通过第一轮笔试,事件C :丙通过第一轮笔试,事件D :至少有两名学生通过第一轮笔试,则()0.4P A =,()0.8,()0.5P B P C ==.()()()()()()()()()()()P D P ABC P ABC P ABC P ABC P A P B P C P A P B P C =+++=+()()()()()()0.40.80.50.40.20.50.60.80.5P A P B P C P A P B P C ++=⨯⨯+⨯⨯+⨯⨯0.40.80.50.6+⨯⨯=,所以至少有两名学生通过第一轮笔试的概率为0.6.(2)因为甲、乙、丙三名学生中每个人获得优惠加分(两轮都通过)的概率均为0.32,故恰有2人获得优惠加分的概率为230.320.680.208896⨯⨯=. 22.答案:见解析解析:(1)由10(20.0020.0080.0090.0220.024)1a ⨯⨯+++++=,解得0.033a =. 设平均值为x ,则0.021700.091800.221900.332000.24x =⨯+⨯+⨯+⨯+⨯ 2100.082200.02230200+⨯+⨯=,即产品的该项指标的平均值为200.(2)①由直方图知该指标值不低于215包括直方图中的最后2个长方形区域,由互斥事件的概率公式可得该项指标值的优秀率10(0.0080.002)0.1P =⨯+=.②设抽取的3盒中恰好有X 盒该项质量指标值为优秀,由①可得随机抽取1盒不是优秀的概率为10.10.9-=,则由独立事件的概率可得,抽取的3盒该项质量指标值均不是优秀的概率为30.90.729=,由对立事件的概率可得,抽取的3盒中至少有1盒该项质量指标值为优秀的概率为10.7290.271-=.。
2019年高考数学试题带答案

2019年高考数学试题带答案一、选择题1.设1i2i 1iz -=++,则||z = A .0B .12C .1D .22.现有甲、乙、丙、丁4名学生平均分成两个志愿者小组到校外参加两项活动,则乙、丙两人恰好参加同一项活动的概率为 A .12B .13C .16D .1123.已知长方体的长、宽、高分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ) A .25π B .50πC .125πD .都不对4.()()31i 2i i --+=( )A .3i +B .3i --C .3i -+D .3i -5.如图是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到第14次的考试成绩依次记为1214,,A A A ,下图是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图,那么算法流程图输出的结果是( )A .7B .8C .9D .106.已知非零向量a b ,满足2a b =,且b a b ⊥(–),则a 与b 的夹角为A .π6B .π3C .2π3D .5π67.已知向量()3,1a =,b 是不平行于x 轴的单位向量,且3a b ⋅=,则b =( )A .31,22⎛⎫ ⎪ ⎪⎝⎭B .13,2⎛⎫⎪ ⎪⎝⎭C .133,44⎛⎫⎪ ⎪⎝⎭D .()1,08.函数()23x f x x+=的图象关于( )A .x 轴对称B .原点对称C .y 轴对称D .直线y x =对称9.两个实习生每人加工一个零件.加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为A .12B .512C .14D .1610.已知函数()3sin 2cos 2[0,]2f x x x m π=+-在上有两个零点,则m 的取值范围是A .(1,2)B .[1,2)C .(1,2]D .[l,2]11.已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( )A .108cm 3B .100cm 3C .92cm 3D .84cm 312.在样本的频率分布直方图中,共有11个小长方形,若中间一个长方形的面积等于其他十个小长方形面积的和的,且样本容量是160,则中间一组的频数为( ) A .32B .0.2C .40D .0.25二、填空题13.在区间[﹣2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为,则m= _________ .14.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,若3A π=,3a =b=1,则c =_____________15.已知复数z=1+2i (i 是虚数单位),则|z|= _________ .16.371()x x+的展开式中5x 的系数是 .(用数字填写答案)17.在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆2cos ρθ=相切,则a =__________.18.若45100a b ==,则122()a b+=_____________.19.已知正三棱锥P ABC -的底面边长为3,外接球的表面积为16π,则正三棱锥P ABC -的体积为________.20.已知集合P 中含有0,2,5三个元素,集合Q 中含有1,2,6三个元素,定义集合P+Q 中的元素为a+b ,其中a ∈P ,b ∈Q ,则集合P+Q 中元素的个数是_____.三、解答题21.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行调查,通过抽样,获得某年100为居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.(1)求直方图的的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由; (3)估计居民月用水量的中位数.22.在直角坐标系xOy 中,曲线C 的参数方程为2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,(t 为参数),以坐标原点O为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2cos 3sin 110ρθρθ++=.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值. 23.定义在R 的函数()f x 满足对任意x y R 、恒有()()()f xy f x f y =+且()f x 不恒为0.(1)求(1)(1)f f -、的值; (2)判断()f x 的奇偶性并加以证明;(3)若0x ≥时,()f x 是增函数,求满足不等式(1)(2)0f x f x +--≤的x 的集合. 24.如图,在几何体111ABC A B C -中,平面11A ACC ⊥底面ABC ,四边形11A ACC 是正方形,1l //B C BC ,Q 是1A B 的中点,1122,3AC BC B C ACB π==∠=(I )求证:1//QB 平面11A ACC (Ⅱ)求二面角11A BB C --的余弦值.25.(辽宁省葫芦岛市2018年二模)直角坐标系xOy 中,直线l 的参数方程为21x tcos y tsin αα=+⎧⎨=+⎩ (t 为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点为极点,以x 轴正半轴为极轴)中,圆C 的方程为6cos ρθ=.(1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点,A B ,若点P 的坐标为()2,1,求PA PB +的最小值. 26.如图,边长为2的正方形ABCD 中,E 、F 分别是AB 、BC 边的中点,将AED ,DCF 分别沿DE ,DF 折起,使得A ,C 两点重合于点M .(1) 求证:MD EF ⊥; (2) 求三棱锥M EFD -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数z ,然后求解复数的模. 详解:()()()()1i 1i 1i2i 2i 1i 1i 1i z ---=+=++-+i 2i i =-+=,则1z =,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.2.B解析:B 【解析】 【分析】求得基本事件的总数为222422226C C n A A =⨯=,其中乙丙两人恰好参加同一项活动的基本事件个数为2222222m C C A ==,利用古典概型及其概率的计算公式,即可求解.【详解】由题意,现有甲乙丙丁4名学生平均分成两个志愿者小组到校外参加两项活动,基本事件的总数为222422226C C n A A =⨯=, 其中乙丙两人恰好参加同一项活动的基本事件个数为2222222m C C A ==,所以乙丙两人恰好参加同一项活动的概率为13m p n ==,故选B. 【点睛】本题主要考查了排列组合的应用,以及古典概型及其概率的计算问题,其中解答中合理应用排列、组合的知识求得基本事件的总数和所求事件所包含的基本事件的个数,利用古典概型及其概率的计算公式求解是解答的关键,着重考查了运算与求解能力,属于基础题.3.B解析:B 【解析】 【分析】根据长方体的对角线长等于其外接球的直径,求得2252R =,再由球的表面积公式,即可求解. 【详解】设球的半径为R ,根据长方体的对角线长等于其外接球的直径,可得2R =2252R =,所以球的表面积为22544502S R πππ==⨯=球. 故选:B 【点睛】本题主要考查了长方体的外接球的性质,以及球的表面积的计算,其中解答中熟练应用长方体的对角线长等于其外接球的直径,求得球的半径是解答的关键,着重考查了运算与求解能力,属于基础题.4.B解析:B 【解析】 【分析】先分别对分子和分母用乘法公式化简,再分子分母同时乘以分母的共轭复数,化简即得最后结果. 【详解】 由题意得,复数()()()31i 2i 13i i 13i 3i i ii i--+-+⋅-+===----⋅.故应选B【点睛】本小题主要考查复数的乘法和除法的运算,乘法的运算和实数的运算类似,只需要记住2i 1=-.除法的运算记住的是分子分母同时乘以分母的共轭复数,这一个步骤称为分母实数化,分母实数化的主要目的是将分母变为实数,然后将复数的实部和虚部求出来.属于基础题.5.C解析:C 【解析】 【分析】根据流程图可知该算法表示统计14次考试成绩中大于等于90的人数,结合茎叶图可得答案. 【详解】根据流程图所示的顺序,可知该程序的作用是累计14次考试成绩超过90分的次数.根据茎叶图可得超过90分的次数为9. 故选:C . 【点睛】本题主要考查了循环结构,以及茎叶图的认识,解题的关键是弄清算法流程图的含义,属于基础题.6.B解析:B 【解析】 【分析】本题主要考查利用平面向量数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由()a b b -⊥得出向量,a b 的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角. 【详解】因为()a b b -⊥,所以2()a b b a b b -⋅=⋅-=0,所以2a b b ⋅=,所以cos θ=22||122||a bb b a b ⋅==⋅,所以a 与b 的夹角为3π,故选B . 【点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,]π.7.B解析:B 【解析】 【分析】设()(),0b x y y =≠,根据题意列出关于x 、y 的方程组,求出这两个未知数的值,即可得出向量b 的坐标.【详解】设(),b x y =,其中0y ≠,则3a x y b ⋅=+=由题意得2210x y y y ⎧+=+=≠⎪⎩,解得122x y ⎧=⎪⎪⎨⎪=⎪⎩,即13,2b ⎛= ⎝⎭. 故选:B. 【点睛】本题考查向量坐标的求解,根据向量数量积和模建立方程组是解题的关键,考查方程思想的应用以及运算求解能力,属于基础题.8.C解析:C 【解析】 【分析】求函数的定义域,判断函数的奇偶性即可. 【详解】 解:()f x x=0x ∴≠解得0x ≠()f x ∴的定义域为()(),00,D =-∞+∞,D 关于原点对称.任取x D ∈,都有()()f x f x x-===,()f x ∴是偶函数,其图象关于y 轴对称,故选:C .【点睛】本题主要考查函数图象的判断,根据函数的奇偶性的定义判断函数的奇偶性是解决本题的关键.9.B解析:B【解析】记两个零件中恰好有一个一等品的事件为A,即仅第一个实习生加工一等品(A1)与仅第二个实习生加工一等品(A2)两种情况,则P(A)=P(A1)+P(A2)=23×14+13×34=512故选B.10.B解析:B【解析】【分析】【详解】试题分析:利用辅助角公式化简函数为()3sin2cos2f x x x m=+-,令,则,所以此时函数即为.令有,根据题意可知在上有两个解,根据在函数图像可知,.考点:辅助角公式;;零点的判断;函数图像.11.B解析:B【解析】试题分析:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角).据此即可得出体积.解:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角).∴该几何体的体积V=6×6×3﹣=100.故选B.考点:由三视图求面积、体积.12.A解析:A【解析】试题分析:据已知求出频率分布直方图的总面积;求出中间一组的频率;利用频率公式求出中间一组的频数.解:设间一个长方形的面积S则其他十个小长方形面积的和为4S,所以频率分布直方图的总面积为5S所以中间一组的频率为所以中间一组的频数为160×0.2=32故选A点评:本题考查频率分布直方图中各组的面积除以总面积等于各组的频率.注意频率分布直方图的纵坐标是.二、填空题13.3【解析】【分析】【详解】如图区间长度是6区间﹣24上随机地取一个数x若x满足|x|≤m的概率为若m对于3概率大于若m小于3概率小于所以m=3故答案为3解析:3【解析】【分析】【详解】如图区间长度是6,区间[﹣2,4]上随机地取一个数x,若x满足|x|≤m的概率为,若m对于3概率大于,若m 小于3,概率小于,所以m=3. 故答案为3.14.2【解析】【分析】根据条件利用余弦定理可建立关于c 的方程即可解出c 【详解】由余弦定理得即解得或(舍去)故填2【点睛】本题主要考查了利用余弦定理求三角形的边属于中档题解析:2 【解析】 【分析】根据条件,利用余弦定理可建立关于c 的方程,即可解出c. 【详解】由余弦定理2222cos a b c bc A =+-得231c c =+-,即220c c --=,解得2c =或1c =-(舍去).故填2. 【点睛】本题主要考查了利用余弦定理求三角形的边,属于中档题.15.【解析】【分析】【详解】复数z=1+2i (i 是虚数单位)则|z|==故答案为 解析:【解析】 【分析】 【详解】复数z=1+2i (i 是虚数单位),则|z|==.故答案为.16.【解析】由题意二项式展开的通项令得则的系数是考点:1二项式定理的展开式应用 解析:35【解析】由题意,二项式371()x x+展开的通项372141771()()r rr r r r T C x C x x--+==,令2145r -=,得4r =,则5x 的系数是4735C =.考点:1.二项式定理的展开式应用.17.【解析】【分析】根据将直线与圆极坐标方程化为直角坐标方程再根据圆心到直线距离等于半径解出【详解】因为由得由得即即因为直线与圆相切所以【点睛】(1)直角坐标方程化为极坐标方程只要运用公式及直接代入并化 解析:12【解析】【分析】根据222,cos ,sin x y x y ρρθρθ=+==将直线与圆极坐标方程化为直角坐标方程,再根据圆心到直线距离等于半径解出a .【详解】因为222,cos ,sin x y x y ρρθρθ=+==,由cos sin (0)a a ρθρθ+=>,得(0)x y a a +=>,由2cos ρθ=,得2=2cos ρρθ,即22=2x y x +,即22(1)1x y -+=,1101a a a =∴=±>∴=+,,【点睛】 (1)直角坐标方程化为极坐标方程,只要运用公式cos x ρθ=及sin y ρθ=直接代入并化简即可;(2)极坐标方程化为直角坐标方程时常通过变形,构造形如2cos ,sin ,ρθρθρ的形式,进行整体代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验.18.【解析】【分析】根据所给的指数式化为对数式根据对数的换地公式写出倒数的值再根据对数式的性质得到结果【详解】则故答案为【点睛】本题是一道有关代数式求值的问题解答本题的关键是熟练应用对数的运算性质属于基 解析:2【解析】【分析】根据所给的指数式,化为对数式,根据对数的换地公式写出倒数的值,再根据对数式的性质,得到结果.【详解】45100a b ==,4log 100a ∴=,5log 100b =,10010010012log 42log 5log 1001a b∴+=+==, 则1222a b ⎛⎫+= ⎪⎝⎭故答案为2【点睛】本题是一道有关代数式求值的问题,解答本题的关键是熟练应用对数的运算性质,属于基础题.19.或【解析】【分析】做出简图找到球心根据勾股定理列式求解棱锥的高得到两种情况【详解】正三棱锥的外接球的表面积为根据公式得到根据题意画出图像设三棱锥的高为hP 点在底面的投影为H 点则底面三角形的外接圆半径 解析:33或93 【解析】【分析】做出简图,找到球心,根据勾股定理列式求解棱锥的高,得到两种情况.【详解】正三棱锥P ABC -的外接球的表面积为16π,根据公式得到21642,r r ππ=⇒= 根据题意画出图像,设三棱锥的高为h,P 点在底面的投影为H 点,则2,2,2OP r OA r OH h =====-,底面三角形的外接圆半径为AH ,根据正弦定理得到0323sin 60= 3. 在三角形OAH 中根据勾股定理得到()223413h h -+=⇒=或三棱锥的体积为:13ABC h S⨯⨯ 代入数据得到1313313332⨯⨯⨯=或者1319333 3.324⨯⨯⨯= 3393 【点睛】这个题目考查了已知棱锥的外接球的半径,求解其中的一些量;涉及棱锥的外接球的球心的求法,一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球. 20.8【解析】【详解】由题意知a ∈Pb ∈Q 则a+b 的取值分别为123467811故集合P+Q 中的元素有8个点睛:求元素(个数)的方法根据题目一一列举可能取值(应用列举法和分类讨论思想)然后根据集合元素的解析:8【解析】【详解】由题意知a∈P,b∈Q,则a+b的取值分别为1,2,3,4,6,7,8,11.故集合P+Q中的元素有8个.点睛:求元素(个数)的方法,根据题目一一列举可能取值(应用列举法和分类讨论思想),然后根据集合元素的互异性进行检验,相同元素重复出现只算作一个元素,判断出该集合的所有元素,即得该集合元素的个数.三、解答题21.(1) ; (2)36000;(3).【解析】【分析】本题主要考查频率分布直方图、频率、频数的计算等基础知识,考查学生的分析问题、解决问题的能力. 第(Ⅰ)问,由高×组距=频率,计算每组的频率,根据所有频率之和为1,计算出a的值;第(Ⅱ)问,利用高×组距=频率,先计算出每人月均用水量不低于3吨的频率,再利用频率×样本容量=频数,计算所求人数;第(Ⅲ)问,将前5组的频率之和与前4组的频率之和进行比较,得出2≤x<2.5,再估计月均用水量的中位数.【详解】(Ⅰ)由频率分布直方图,可知:月均用水量在[0,0.5)的频率为0.08×0.5=0.04.同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5)等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1–(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=0.5×a+0.5×a,解得a=0.30.(Ⅱ)由(Ⅰ)100位居民月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300000×0.12=36000.(Ⅲ)设中位数为x吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5,而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5所以2≤x<2.5.由0.50×(x–2)=0.5–0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.【考点】频率分布直方图【名师点睛】本题主要考查频率分布直方图、频率、频数的计算公式等基础知识,考查学生的分析问题、解决问题的能力.在频率分布直方图中,第n个小矩形的面积就是相应组的频率,所有小矩形的面积之和为1,这是解题的关键,也是识图的基础.22.(1)22:1,(1,1]4y C x x +=∈-;:2110l x ++=;(2【解析】【分析】 (1)利用代入消元法,可求得C 的直角坐标方程;根据极坐标与直角坐标互化原则可得l 的直角坐标方程;(2)利用参数方程表示出C 上点的坐标,根据点到直线距离公式可将所求距离表示为三角函数的形式,从而根据三角函数的范围可求得最值.【详解】(1)由2211t x t -=+得:210,(1,1]1x t x x -=≥∈-+,又()2222161t y t =+ ()()222116141144111xx y x x x x x -⨯+∴==+-=--⎛⎫+ ⎪+⎝⎭ 整理可得C 的直角坐标方程为:221,(1,1]4y x x +=∈- 又cos x ρθ=,sin y ρθ=l ∴的直角坐标方程为:2110x ++=(2)设C 上点的坐标为:()cos ,2sin θθ则C 上的点到直线l的距离d ==当sin 16πθ⎛⎫+=- ⎪⎝⎭时,d 取最小值则min d =【点睛】本题考查参数方程、极坐标方程与直角坐标方程的互化、求解椭圆上的点到直线距离的最值问题.求解本题中的最值问题通常采用参数方程来表示椭圆上的点,将问题转化为三角函数的最值求解问题.23.(1)(1)0f =,(1)0f -=;(2)偶函数,证明见解析;(3)1{|}2x x ≤【解析】试题分析:(1)利用赋值法:令1x y ==得()10f =,令1x y ==-,得()10f -=;(2)令1y =-,结合(1)的结论可得函数()f x 是偶函数;(3)结合函数的奇偶性和函数的单调性脱去f 符号,求解绝对值不等式12x x +≤-可得x的取值范围是1{|}2x x ≤. 试题解析: (1)令1x y ==得()10f =,令1x y ==-,得()10f -=;(2)令1y =-,对x R ∈得()()()1f x f f x -=-+即()()f x f x -=,而()f x 不恒为0, ()f x ∴是偶函数;(3)又()f x 是偶函数,()()f x f x ∴=,当0x >时,()f x 递增,由()()12f x f x +≤-,得()()12,12,f x f x x x x +≤-∴+≤-∴的取值范围是1{|}2x x ≤. 24.(1)详见解析;(2)43131. 【解析】【分析】(1)连接1AC ,1A C 交于M 点,连接MQ ,则四边形11A ACC 是正方形,点M 是1AC 的中点,推导出四边形11B C MQ 是平行四边形,从而11B Q C M ,由此能证明1B Q 平面11A ACC .(2)以C 为原点,CB ,1CC 分别为y 轴和z 轴建立空间直角坐标系,利用向量法能求出二面角11A BB C --的平面角的余弦值.【详解】证明:(1)如图所示,连接1AC ,1A C 交于M 点,连接MQ .因为四边形11A ACC 是正方形,所以点M 是1AC 的中点,又已知点Q 是1A B 的中点,所以MQ BC ,且12MQ BC =, 又因为11B C BC ∥,且112BC B C =,所以11MQ B C ,且11MQ B C =,所以四边形11B C MQ 是平行四边形,故11B Q C M ,因1B Q ⊄平面11A ACC ,1C M ⊂平面11A ACC ,故1B Q 平面11A ACC .(2)如图所示,以C 为原点,1,CB CC 分别为y 轴和z 轴建立空间直角坐标系, 不妨设1122AC BC B C ===, 则()3,1,0A -,()13,1,2A -,()0,2,0B ,()10,1,2B , 所以()113,2,0B A =-,()10,1,2B B =-.设平面11A BB 的法向量为(),,m x y z =,则111·0·0m B A m B B ⎧=⎪⎨=⎪⎩ 即32020x y y z ⎧-=⎪⎨-=⎪⎩,取4x =,则()4,23,3m = 平面1CBB 的一个法向量()1,0,0n =,所以4431cos ,3131m nm n m n ===. 故二面角11A BB C --的平面角的余弦值为43131.【点睛】线面平行的证明的关键是在面中找到一条与已知直线平行的直线,找线的方法是平行投影或中心投影,我们也可以通过面面平行证线面平行,这个方法的关键是构造过已知直线的平面,证明该平面与已知平面平行. 空间中的角的计算,可以建立空间直角坐标系把角的计算归结为向量的夹角的计算,也可以构建空间角,把角的计算归结平面图形中的角的计算.25.(1)()2239x y -+=(2)27【解析】分析:(1)将6cos ρθ=两边同乘ρ,根据直角坐标与极坐标的对应关系得出直角坐标方程;(2)将直线的参数方程代入圆的普通方程,根据参数的几何意义与根与系数的关系得出PA PB +.详解:(1)由26cos ,6cos ρθρρθ==得,化为直角坐标方程为226x y x +=,即()2239x y -+=(2)将l 的参数方程带入圆C 的直角坐标方程,得()22cos sin 70t t αα+--=因为0>,可设12,t t 是上述方程的两根,()12122cos sin 7t t t t αα⎧+=--⎨⋅=-⎩所以又因为(2,1)为直线所过定点, ()1212212124324sin232427PA PB t t t t t t t t α∴+=+=-=+-⋅=-≥-=所以27PA PB 的最小值为∴+点睛:本题考查了极坐标方程与直角坐标方程的转化,参数方程的几何意义与应用,属于基础题.26.(1)见解析;(2)13 【解析】【分析】(1)在正方形ABCD 中,有AB AD ⊥,CD BC ⊥,在三棱锥M DEF -中,可得MD MF ⊥,MD ME ⊥,由线面垂直的判定可得MD ⊥面MEF ,则MD EF ⊥; (2)由E 、F 分别是AB 、BC 边的中点,可得1BE BF ==,求出三角形MEF 的面积,结合()1及棱锥体积公式求解.【详解】(1)证明:在正方形ABCD 中,AB AD ⊥,CD BC ⊥,∴在三棱锥M DEF -中,有MD MF ⊥,MD ME ⊥,且ME MF M ⋂=, MD ∴⊥面MEF ,则MD EF ⊥;(2)解:E 、F 分别是边长为2的正方形ABCD 中AB 、BC 边的中点,1BE BF ∴==,111122MEF BEF S S ∴==⨯⨯=, 由(1)知,111123323M DEF MEF V S MD -=⋅=⨯⨯=.【点睛】本题考查线面垂直的判定定理及性质定理的应用,考查棱锥体积的求法,是中档题.。
高中数学复习典型题专题训练118---频率直方图

高中数学复习典型题专题训练118频率直方图列出样本数据的频率分布表和频率分布直方图的步骤: ①计算极差:找出数据的最大值与最小值,计算它们的差;②决定组距与组数:取组距,用极差组距决定组数;③决定分点:决定起点,进行分组;④列频率分布直方图:对落入各小组的数据累计,算出各小数的频数,除以样本容量,得到各小组的频率.⑤绘制频率分布直方图:以数据的值为横坐标,以频率组距的值为纵坐标绘制直方图,知小长方形的面积=组距×频率组距=频率.频率分布折线图:将频率分布直方图各个长方形上边的中点用线段连接起来,就得到频率分布折线图,一般把折线图画成与横轴相连,所以横轴左右两端点没有实际意义.总体密度曲线:样本容量不断增大时,所分组数不断增加,分组的组距不断缩小,频率分布直方图可以用一条光滑曲线()y f x 来描绘,这条光滑曲线就叫做总体密度曲线.总体密度曲线精确地反映了一个总体在各个区域内取值的规律.题型一 频率分布直方图【例1】 (2010西城二模)某区高二年级的一次数学统考中,随机抽取200名同学的成绩,成绩全部在50分至100分之间,将成绩按如下方式分成5组:第一组,成绩大于等于50分且小于60分;第二组,成绩大于等于60分且小于70分;……第五组,成绩大于等于90分且小于等于100分,据此绘制了如图所示的频率分布直方图.知识内容典例分析板块二.频率直方图则这200名同学中成绩大于等于80分且小于90分的学生有______名.【例2】 (2010东城二模)已知一个样本容量为100的样本数据的频率分布直方图如图所示,样本数据落在[6,10)内的样本频数为 ,样本数据落在[2,10)内的频率为 .【例3】 (2010北京)从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a = .若要从身高在[)120,130,[)130,140,[]140,150三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[]140,150内的学生中选取的人数应为 .【例4】 (2010江苏高考)某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[]540,中,其频率分布直方图如图所示,则其抽样的100根中,有____根在棉花纤维的长度小于20mm .(mm)频率组距【例5】 (2009湖北15)下图是样本容量为200的频率分布直方图.根据样本的频率分布直方图估计,样本数据落在[)610,内的频数为 ,数据落在[)210,内的概率约为 .【例6】 (2009福建3)A .0.13B .0.39C .0.52D .0.64【例7】 某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示,根据条形图可得这50名学生这一天平均每人的课外阅读时间为( )时间(h)A .0.6hB .0.9hC .1.0hD .1.5h【例8】 为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为[)4555,,[)5565,,[)6575,,[)7585,,[)8595,由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在[)5575,的人数是 .产品数量0.0200.0150.0100.005【例9】 (2009山东8)某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96106],,样本数据分组为[)9698,,[)98100,,[)100102,,[)102104,,[104106],.已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( )A .90B .75C .60D .45【例10】 某路段检查站监控录象显示,在某时段内,有1000辆汽车通过该站,现在随机抽取其中的200辆汽车进行车速分析,分析的结果表示为右图的频率分布直方图,则估计在这一时段内通过该站的汽车中速度不小于90km/h 的车辆数为( )A .200B .600C .500D .300【例11】 (2006年全国II )一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本频率分布直方图,为了分析居民的收入与年龄、学历、职业等方面的联系,要从这10000人中用分层抽样的方法抽出100人做进一步调查,则在[25003000],(元)月收入段应抽出_____人.0.00050.00040.00030.00020.0001频率组距月收入(元)【例12】 如图为某样本数据的频率分布直方图,则下列说法不正确的是( )频率A .[610),的频率为0.32 B .若样本容量为100,则[1014),的频数为40 C .若样本容量为100,则(10] ,的频数为40 D .由频率分布布直方图可得出结论:估计总体大约有10%分布在[1014),【例13】 (2006北京模拟)下面是某学校学生日睡眠时间的抽样频率分布表:【例14】 (2010崇文一模)为了调查某厂2000名工人生产某种产品的能力,随机抽查了m 位工人某天生产该产品的数量,产品数量的分组区间为[)10,15,[)15,20,[)20,25,[)25,30,[30,35],频率分布直方图如图所示.已知生产的产品数量在[)20,25之间的工人有6位. ⑴求m ; 10 15 20 25 30 35产品数量⑵工厂规定从各组中任选1人进行再培训,则选取5人不在同一组的概率是多少?【例15】 考查某校高三年级男生的身高,随机抽取40名高三男生,实测身高数据(单位:cm )如下:⑴ 作出频率分布表; ⑵ 画出频率分布直方图.【例16】(2010陕西卷高考)为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行出样检查,测得身高情况的统计图如下:/cm/cm⑴估计该小男生的人数;⑵估计该校学生身高在170~185cm之间的概率;⑶从样本中身高在165~180cm之间的女生..中任选2人,求至少有1人身高在170~180cm 之间的概率.【例17】从某校高一年级的1002名新生中用系统抽样的方法抽取一个容量为100的身高样本,如下(单位:cm).作出该样本的频率分布表,画出频率分布直方图及折线图,并根据作出的频率分布直方图估计身高不小于170的同学的人数.【例18】为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得的数据整理后画出频率分布直方图(如下图),已知图中从左到右的前三个小组的频率分别是0.10.30.4,,.第一小组的频数是5.⑴求第四小组的频率和参加这次测试的学生人数;⑵在这次测试中,学生跳绳次数的中位数落在第几小组内?⑶参加这次测试跳绳次数在100次以上为优秀,试估计该校此年级跳绳成绩优秀率是多少?O频率组距次数149.5124.599.574.549.5【例19】 为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛. 为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计. 请你根据尚未完成并有局部污损的频率分布表和频数分布直方图,解答下列问题:⑴ 填充频率分布表的空格(将答案直接填在表格内); ⑵ 补全频数条形图;⑶ 若成绩在75.5~85.5分的学生为二等奖,问获得二等奖的学生约为多少人?【例20】 (2010丰台一模)某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题.85987654322198653328698765叶茎1009080706050分数频率组距0.040.0280.0160.008⑴求全班人数及分数在[)80,90之间的频数;⑵估计该班的平均分数,并计算频率分布直方图中[)80,90间的矩形的高;⑶若要从分数在[]80,100之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[]90,100之间的概率.【例21】某地区为了了解70~80岁老人的日平均睡眠时间(单位:h).随机选择了50位老人的进行调查.下表是这50位老人日睡眠时间的频率分布表.在上述统计数据中,一部分计算见算法流程图(其中←可用=代替),则输出的S的值是.。
频率分布直方图与茎叶图.ppt

频数 2 11 13 4
茎叶 10 7, 8 11 2, 7, 6, 3, 6, 8, 6, 7, 2, 2,0 12 6, 8, 4, 2, 7, 8, 6, 1, 0, 4, 3, 2, 0 13 4, 2, 3, 0
思考:从频率分布直方图中,你能得到任意 区间(a,b)的频率?有什么困难?
一、频率分布折线图与概率密度曲线
频率/组距 (取组距中点, 并连线 )
0.6
0.5
0.5
0.44
0.4
0.3
0.3
0.3
0.2
0.16
0.1 0.08
0.1 0.08 0.04
0
0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.3
分
布 0.2
0.16
小月长均方用形水的量面最 多积的积总在=和哪?=个? 区
间?
直 0.1 0.08
0.1 0.08
方 图.
0
0.04
0.5 1 1.5 2 2.5 3 3.5 4 4.5
月均用水量/t
频率分布直方图的特征: 从频率分布直方图可以清楚的看出数据分布 的总体趋势。 从频率分布直方图得不出原始的数据内容, 把数据表示成直方图后,原有的具体数据信 息就被抹掉了。
第四步: 列频率分布表.
(包括分组、频数、频率、频率/组距)
分组
[0-0.5) [0.5-1) [1-1.5) [1.5-2) [2-2.5) [2.5-3) [3-3.5) [3.5-4) [4-4.5)
高考(理)总复习资料:第9章 第2讲 用样本估计总体

• ①甲同学成绩的中位数大于乙同学成绩的中 位数;
• ②甲同学的平均分比乙同学高; • ③甲同学的平均分比乙同学低; • ④甲同学成绩的方差小于乙同学成绩的方
差. • 上解析面:说甲法的中正位确数的81,是乙_的__中_位__数_8_7..5,故①错, x 甲= 81•,答x 案乙=:85③,故④②错,③对,由茎叶图知甲成绩比较稳定,
D. x 甲> x 乙,m甲<m乙
• [审题视点] 仔细观察茎叶图.中位数为一列
数中最中间的那个,当数有偶数个时,中位
数[解为析]中甲间数两据个集中数于的前平半段均,数而.乙数es据集中于后半段,
所以
x
甲<
x
乙;m甲=
18+22 2
=20,m乙=
27+31 2
=29,所以m甲
<m乙,所以选B.
• [答案] B
• [答案] C
32
1.平均数和方差都是重要的数字特征,是对总体一种简 明的阐述.平均数、中位数、众数描述总体的集中趋势,方 差和标准差描述波动大小.
2. 平均数、方差公式的推广 若数据x1,x2,…,xn的平均数为 x ,方差为s2,则数据 mx1+a,mx2+a,…,mxn+a的平均数为m x +a,方差为 m2s2.
33
• [变式探究] [2013·西安质检]某校甲、乙两 个班级各有5名编号为1,2,3,4,5的学生进行投 篮练习,每人投10次,投中的次数如下表:
学生 1号 2号 3号 4号 5号
甲班 6
7
7
8
7
乙班 6
7
6
7
9
34
则以上两组数据的方差中较小的一个为s2,则s2=( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年高考数学总复习:样本频率分布直方图、茎叶图1.(2018·云川贵百校联考)从某项综合能力测试中抽取100人的成绩,统计如下,则这100个成绩的平均数为( )A.3 C .3.5 D .2.75答案 A解析 x =1100×(1×20+2×10+3×40+4×10+5×20)=3.2.在样本频率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等于其他8个长方形的面积和的25,且样本容量为140,则中间一组的频数为( )A .28B .40C .56D .60答案 B解析 设中间一个小长方形面积为x ,其他8个长方形面积为52x ,因此x +52x =1,∴x =27.所以中间一组的频数为140×27=40.故选B.3.(2017·山东)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为( )A .3,5B .5,5C .3,7D .5,7答案 A解析 根据两组数据的中位数相等可得65=60+y ,解得y =5,又它们的平均值相等,所以 56+62+65+74+(70+x )5=59+61+67+65+785,解得x =3.故选A.4.(2018·山西长治四校联考)某学校组织学生参加数学测试,有一个班成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100),若低于60分的人数是15,则该班的学生人数是( )A .45B .50C .55D .60答案 B解析 ∵[20,40),[40,60)的频率为(0.005+0.01)×20=0.3,∴该班的学生人数是150.3=50. 5.(2017·陕西西安八校联考)如图所示的茎叶图是甲、乙两位同学在期末考试中的六科成绩,已知甲同学的平均成绩为85,乙同学的六科成绩的众数为84,则x ,y 的值为( )A .2,4B .4,4C .5,6D .6,4答案 D解析 x -甲=75+82+84+(80+x )+90+936=85,解得x =6,由图可知y =4,故选D.6.(2018·河北邢台摸底)样本中共有五个个体,其值分别为0,1,2,3,m.若该样本的平均值为1,则其方差为( ) A.105B.305 C. 2 D .2答案 D解析 依题意得m =5×1-(0+1+2+3)=-1,样本方差s 2=15(12+02+12+22+22)=2,即所求的样本方差为2.7.将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示:则7个剩余分数的方差为(A.1169B.367 C .36 D.677答案 B解析 由图可知去掉的两个数是87,99,所以87+90×2+91×2+94+90+x =91×7,x =4.s 2=17[(87-91)2+(90-91)2×2+(91-91)2×2+(94-91)2×2]=367.8.(2018·浙江温州八校联考)如图所示的是一容量为100的样本的频率分布直方图,则由图形中的数据,可知其中位数为( )A .12.5B .13C .13.5D .14答案 B解析 中位数是把频率分布直方图分成两个面积相等部分的平行于纵轴的直线的横坐标,第一个矩形的面积是0.2,第二个矩形的面积是0.5,第三个矩形的面积是0.3,故将第二个矩形分成3∶2即可,∴中位数是13.故选B.9.如图所示,样本A 和B 分别取自两个不同的总体,它们的样本平均数分别为x A 和x B ,样本标准差分别为S A 和S B ,则( )A .x A >xB ,S A >S B B .x A <x B ,S A >S BC .x A >x B ,S A <S BD .x A <x B ,S A <S B答案 B解析 由图可知A 组的6个数为2.5,10,5,7.5,2.5,10,B 组的6个数为15,10,12.5,10,12.5,10,所以x A =2.5+10+5+7.5+2.5+106=37.56,x B =15+10+12.5+10+12.5+106=706.显然x A <x B ,又由图形可知,B 组的数据分布比A 均匀,变化幅度不大,故B 组数据比较稳定,方差较小,从而标准差较小,所以S A >S B ,故选B.10.(2017·郑州第一次质量预测)PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.如图所示是据某地某日早7点至晚8点甲、乙两个PM2.5监测点统计的数据(单位:毫克/立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是( )A .甲B .乙C .甲、乙相等D .无法确定答案 A解析 从茎叶图上可以观察到:甲监测点的样本数据比乙监测点的样本数据更加集中,因此甲地浓度的方差较小.11.(2018·湖南长沙一模)下面的茎叶图是某班学生在一次数学测试时的成绩:根据茎叶图,得出该班男、女生数学成绩的四个统计结论,其中错误的一项是( ) A .15名女生成绩的平均分为78 B .17名男生成绩的平均分为77C .女生成绩和男生成绩的中位数分别为82,80D .男生中的高分段和低分段均比女生多,相比较男生两极分化比较严重 答案 C解析 对于A ,15名女生成绩的平均分为115×(90+93+80+80+82+82+83+83+85+70+71+73+75+66+57)=78,A 正确;对于B ,17名男生成绩的平均分为117×(93+93+96+80+82+83+86+86+88+71+74+75+62+62+68+53+57)=77,故B 正确;对于D ,观察茎叶图,对男生、女生成绩进行比较,可知男生两极分化比较严重,D 正确;对于C ,根据女生和男生成绩数据分析可得,两组数据的中位数为80.C 错误.12.(2018·四川广元二诊)在“2017年双十一”促销活动中,某商场对11月11日9时到14时的销售额进行统计,其频率分布直方图如图所示,已知12时到14时的销售额为14万元,则9时到11时的销售额为()A .3万元B .6万元C .8万元D .10万元答案 D解析 根据频率分布直方图知,12时到14时的频率为0.35,9时到11时的频率为0.25,∴9时到11时的销售额为0.25×140.35=10(万元).13.(2018·山东泰安调研)某次比赛甲得分的茎叶图如图所示,若去掉一个最高分,去掉一个最低分,则剩下分数的方差为________.⎪⎪⎪⎪34542 4 62 8答案 14解析 由茎叶图可知,最高分为58,最低分为34,剩下的4个分数分别为42,44,46,52,其平均数x =14×(42+44+46+52)=46,∴剩下4个分数的方差s 2=14×[(42-46)2+(44-46)2+(46-46)2+(52-46)2]=14.14.为了解某校高三学生联考的数学成绩情况,从该校参加联考学生的数学成绩中抽取一个样本,并分成五组,绘成如图所示的频率分布直方图,已知第一组至第五组的频率之比为1∶2∶8∶6∶3,第五组的频数为6,则样本容量为________. 答案 40解析 因为第一组至第五组的频率之比为1∶2∶8∶6∶3,所以可设第一组至第五组的频率分别为k ,2k ,8k ,6k ,3k ,又频率之和为1,所以k +2k +8k +6k +3k =1,解得k =120=0.05,所以第五组的频率为3×0.05=0.15,又第五组的频率为6,所以样本容量为60.15=40.15.(2018·湖南长沙一模)空气质量指数(Air Quality Index ,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI 大小分为六级,0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;大于300为严重污染.一环保人士从当地某年的AQI 记录数据中,随机抽取10个,用茎叶图记录如图.根据该统计数据,估计当地该年AQI 大于100的天数为________.(该年为365天) 答案 146解析 该样本中AQI 大于100的频数为4,频率为25,以此估计此地全年AQI 大于100的频率为25,故此地该年AQI 大于100的天数约为365×25=146.16.(2018·河北邯郸一模)某校为指导学生合理选择文理科的学习,根据数理综合测评成绩,按6分为满分进行折算.若学生成绩低于m 分则建议选择文科,不低于m 分则建议选择理科(这部分学生称为候选理科生).现从该校高一随机抽取500名学生的数理综合测评成绩作为样本,整理得到分数的频率分布直方图(如图所示).(1)求直方图中t 的值;(2)根据此次测评,为使80%以上的学生选择理科,整数m 至多定为多少? (3)若m =4,试估计该校高一学生中候选理科生的平均成绩.(精确到0.01) 答案 (1)0.2 (2)2 (3)4.93解析 (1)0.15×1+t ×1+0.30×1+t ×1+0.15×1=1,解得t =0.2. (2)根据频率分布直方图可知,分数落在[1,2]组的频率为0.15, ∴为使80%以上的学生选择理科,整数m 至多定为2.(3)若m =4,则估计该校高一学生中候选理科学生的平均成绩为4.5×0.2×1×500+5.5×0.15×1×5000.2×1×500+0.15×1×500≈4.93.17.(2018·江西南昌一中、十中、南铁一中联考)某校高一某班的某次数学测试成绩(满分为100分)的茎叶图和频率分布直方图都受了不同程度的破坏,可见部分如图所示,据此解答下列问题:(1)求分数在[50,60]的频率及全班人数;(2)求分数在[80,90]的频数,并计算频率分布直方图中[80,90]的矩形的高.答案(1)0.08,25(2)0.016解析(1)分数在[50,60]的频率为0.008×10=0.08.由茎叶图知,分数在[50,60]的频数为2,=25.∴全班人数为20.08(2)分数在[80,90]的频数为25-2-7-10-2=4,∴频率分布直方图中[80,90]的矩形的高÷10=0.016.为4251.(2018·广东肇庆模拟)下边茎叶图记录了甲、乙两组各6名学生在一次数学测试中的成绩(单位:分).已知甲组数据的众数为124,乙组数据的平均数为甲组数据的中位数,则x,y的值分别为()A.4,5B.5,4C.4,4 D.5,5答案 A解析由已知,甲组数据的中位数是124,则x=4,∴16×(116+116+125+120+y+128+134)=124, 解得y=5.2.(2017·山东青岛检测)如图是一容量为100的样本的质量的频率分布直方图,样本质量均在[5,20]内,其分组为[5,10),[10,15),[15,20],则样本质量落在[15,20]内的频数为()A .10B .20C .30D .40答案 B解析 由题意得组距为5,故样本质量在[5,10),[10,15)内的频率分别为0.3和0.5,所以样本质量在[15,20]内的频率为1-0.3-0.5=0.2,频数为100×0.2=20,故选B. 3.(2017·广州十校第一次联考)学校为了解学生在课外读物方面的支出情况,抽取了n 位同学进行调查,结果显示这些同学的支出都在[10,50)(单位:元),其中支出在[30,50)(单位:元)的同学有67人,其频率分布直方图如图所示,则n 的值为( )A .100B .120C .130D .390答案 A解析 由图知[10,30)的频率为:(0.023+0.01)×10=0.33,[30,50)的频率为1-0.33=0.67,所以n =670.67=100,故选A.4.(2018·河北承德实验中学期中)已知甲、乙两组数据如图中茎叶图所示,若它们的中位数相同,平均数也相同,则mn=( )A.38B.13C.29 D .1答案 A解析 乙的中位数为23,∴m =3.则甲的平均数为17+23+293=23.∴n =4×23-(22+24+28)-10=8,∴m n =38.故选A.5.(2018·广东深圳外国语学校月考)将容量为n 的样本中的数据分成6组,绘制频率分布直方图,若第一组至第六组数据的频率之比为2∶3∶4∶6∶4∶1,且前三组数据的频数之和等于27,则n 的值为( ) A .60 B .55 C .50 D .45答案 A解析 设第一组至第六组数据的频率分别为2x ,3x ,4x ,6x ,4x ,x ,则2x +3x +4x +6x +4x +x =1,解得x =120,所以前三组数据的频率分别是220,320,420,故前三组数据的频数之和等于2n 20+3n 20+4n20=27,解得n =60.6.对于一组数据x i (i =1,2,3,…,n),如果将它们改变为x i +C(i =1,2,3,…,n),其中C ≠0,则下列结论正确的是( ) A .平均数与方差均不变 B .平均数变,方差保持不变 C .平均数不变,方差变 D .平均数与方差均发生变化 答案 B解析 依题意,记原数据的平均数为x ,方差为s 2,则新数据的平均数为(x 1+C )+(x 2+C )+…+(x n +C )n =x +C ,即新数据的平均数改变;新数据的方差为1n {[(x 1+C)-(x +C)]2+[(x 2+C)-(x +C)]2+…+[(x n +C)-(x +C)]2}=s 2,即新数据的方差不变.7.某高校在2016年的自主招生考试成绩中随机抽取50名学生的笔试成绩,绘制成频率分布直方图如图所示,由图中数据可知a =________;若要从成绩在[85,90),[90,95),[95,100]三组内的学生中,用分层抽样的方法抽取12名学生参加面试,则成绩在[95,100]内的学生中,学生甲被抽取的概率为________.答案 0.040 25解析 由频率分布直方图知,(0.016+0.064+0.060+a +0.020)×5=1,解得a =0.040.第3组的人数为0.060×5×50=15,第4组的人数为0.040×5×50=10,第5组的人数为0.020×5×50=5,则第3,4,5组共30名学生.利用分层抽样的方法在这30名学生中抽取12名学生,因为1530×12=6,1030×12=4,530×12=2,所以第3,4,5组分别抽取6名学生,4名学生,2名学生,则从成绩在[95,100]内的5名学生中抽取2名,学生甲被抽取的概率为25.8.图1是某县参加2016年高考的学生的身高条形统计图,从左到右的各条形图表示的学生人数依次为A 1,A 2,…,A n (如A 2表示身高(单位:cm)在[150,155)内的学生人数),图2是统计图1中身高在一定范围内的学生人数的程序框图.现要统计身高在160~180 cm(含160 cm 不含180 cm)的学生人数,那么空白的判断框内应填写的条件是________.答案 i ≤7?解析 由题意可知,本题是统计身高在160~180 cm(含160 cm ,不含180 cm)内的学生人数,即求A 4+A 5+A 6+A 7,故程序框图中的判断框内应填写的条件是“i ≤7?”.9.(2018·江苏南京调研)为了解某一段公路汽车通过时的车速情况,现随机抽测了通过这段公路的200辆汽车的时速,所得数据均在区间[40,80]中,其频率分布直方图如图所示,则在抽测的200辆汽车中,时速在区间[40,60)内的汽车有________辆.答案80解析时速在区间[40,60)内的汽车有200×(0.01+0.03)×10=80辆.10.(2017·郑州质检)随着移动互联网的发展,与餐饮美食相关的手机APP软件层出不穷.现从使用A和B两款订餐软件的商家中分别随机抽取50个商家,对它们的“平均送达时间”进行统计,得到频率分布直方图,如图所示.(1)试估计使用A款订餐软件的50个商家的“平均送达时间”的众数及平均数;(2)根据以上抽样调查数据,将频率视为概率,回答下列问题:①能否认为使用B款订餐软件“平均送达时间”不超过40分钟的商家达到75%?②如果你要从A和B两款订餐软件中选择一款订餐,你会选择哪款?说明理由.答案(1)5540(2)①可以②B款解析(1)依题意可得,使用A款订餐软件的50个商家的“平均送达时间”的众数为55分钟.使用A款订餐软件的50个商家的“平均送达时间”的平均数为:15×0.06+25×0.34+35×0.12+45×0.04+55×0.4+65×0.04=40(分钟).(2)①使用B款订餐软件“平均送达时间”不超过40分钟的商家的比例估计值为0.04+0.20+0.56=0.80=80%>75%.故可以认为使用B款订餐软件“平均送达时间”不超过40分钟的商家达到75%.②使用B 款订餐软件的50个商家的“平均送达时间”的平均数为15×0.04+25×0.2+35×0.56+45×0.14+55×0.04+65×0.02=35<40,所以选B 款订餐软件.11.对某校高一年级学生参加“社区志愿者”活动次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加“社区志愿者”活动的次数.据此作出频数和频率统计表及频率分布直方图如下:(1)求出表中M ,p 及图中a (2)若该校高一学生有720人,试估计他们参加“社区志愿者”活动的次数在[15,20)内的人数;(3)若参加“社区志愿者”活动的次数不少于20的学生可被评为“优秀志愿者”,试估计每位志愿者被评为“优秀志愿者”的概率.答案 (1)M =20,p =0.1,a =0.12 (2)432 (3)0.15解析 (1)根据频率分布表,得5M=0.25,∴样本容量M =20. ∴m =20-5-12-1=2,∴对应的频率为p =220=0.1,n =1220=0.6,∴a =0.620-15=0.12. (2)参加“社区志愿者”活动的次数在[15,20)内的频率为0.6,∴估计参加“社区志愿者”活动的次数在[15,20)内的人数为720×0.6=432.(3)参加“社区志愿者”活动的次数在20以上的频率为0.1+0.05=0.15.∴样本中每位志愿者可被评为“优秀志愿者”的频率为0.15,∴估计每位志愿者被评为“优秀志愿者”的概率为0.15.12.(2016·四川)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.答案(1)0.30(2)36 000(3)估计月用水量标准为2.9吨时,85%的居民每月的用水量不超过标准.解析(1)由频率分布直方图知,月均用水量在[0,0.5)中的频率为0.08×0.5=0.04.同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]中的频率分别为0.08,0.20,0.26,0.06,0.04,0.02.由0.04+0.08+0.5×a+0.20+0.26+0.5×a+0.06+0.04+0.02=1,解得a=0.30.(2)由(1)可知,100位居民每人月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率,可以估计全市30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000.(3)因为前6组的频率之和为0.04+0.08+0.15+0.20+0.26+0.15=0.88>0.85.而前5组的频率之和为0.04+0.08+0.15+0.20+0.26=0.73<0.85.所以2.5≤x<3.由0.3×(x-2.5)=0.85-0.73,解得x=2.9.所以,估计月用水量标准为2.9吨时,85%的居民每月的用水量不超过标准.。