单片机外文翻译

合集下载

单片机英文文献资料及翻译

单片机英文文献资料及翻译

单片机英文文献资料及翻译单片机(英文:Microcontroller)Microcontroller is a small computer on a single integrated circuit that contains a processor core, memory, and programmable input/output peripherals. Microcontrollers are designed for embedded applications, in contrast to the microprocessors used in personal computers or other general purpose applications.A microcontroller's processor core is typically a small, low-power computer dedicated to controlling the operation of the device in which it is embedded. It is often designed to provide efficient and reliable control of simple and repetitive tasks, such as switching on and off lights, or monitoring temperature or pressure sensors.MEMORYMicrocontrollers typically have a limited amount of memory, divided into program memory and data memory. The program memory is where the software that controls the device is stored, and is often a type of Read-Only Memory (ROM). The data memory, on the other hand, is used to store data that is used by the program, and is often volatile, meaning that it loses its contents when power is removed.INPUT/OUTPUTMicrocontrollers typically have a number of programmable input/output (I/O) pins that can be used to interface with external sensors, switches, actuators, and other devices. These pins can be programmed to perform specific functions,such as reading a sensor value, controlling a motor, or generating a signal. Many microcontrollers also support communication protocols like serial, parallel, and USB, allowing them to interface with other devices, including other microcontrollers, computers, and smartphones.APPLICATIONSMicrocontrollers are widely used in a variety of applications, including:- Home automation systems- Automotive electronics- Medical devices- Industrial control systems- Consumer electronics- RoboticsCONCLUSIONIn conclusion, microcontrollers are powerful and versatile devices that have become an essential component in many embedded systems. With their small size, low power consumption, and high level of integration, microcontrollers offer an effective and cost-efficient solution for controlling a wide range of devices and applications.。

单片机缩写的英文全称及中文名称

单片机缩写的英文全称及中文名称

单片机缩写的英文全称及中文名称单片机缩写的英文全称是Microcontroller,中文名称是微控制器。

一、引言单片机(Microcontroller)是一种集成电路芯片,能够实现计算、处理和控制功能。

它由微处理器核心、存储器、输入输出接口等多种电子元件组成,广泛应用于各种电子产品中。

在单片机的缩写中,“Micro”表示微型或微小,“controller”表示控制器。

本文将介绍单片机的英文全称及中文名称,并解释其在电子领域中的重要性。

二、单片机的英文全称及简介单片机的英文全称是Microcontroller,简称MCU。

它是一种在单个芯片上集成了微处理器核心和各种外围设备,如存储器、定时器、模拟输入输出接口等的集成电路。

单片机主要用于控制和处理各种电子设备,包括个人电脑、手机、汽车电子、家用电器等。

三、单片机的中文名称及优势单片机的中文名称是微控制器。

与传统的微处理器相比,单片机具有体积小、功耗低、成本低等优势。

由于其整合了多种外围设备,单片机可以实现复杂的控制和计算功能,极大地简化了电子产品的设计和制造过程。

单片机还具备易于编程与编译、易于调试的特点,使得开发人员可以更快速、更高效地完成各种应用。

四、单片机的应用领域单片机广泛应用于各种电子产品中,以下是几个主要的应用领域:1. 汽车电子:单片机在汽车电子中扮演着重要的角色,可以实现引擎控制、车身控制、安全控制等功能,提高了汽车的性能和安全性。

2. 家用电器:单片机被应用于各种家电产品,如空调、洗衣机、电视等。

它能够实现多种功能,提供更高的智能化和人性化体验。

3. 工业控制:单片机在工业自动化领域中得到广泛应用。

它可以实现对机械设备、生产线等的监控和控制,提高了生产效率和质量。

4. 通信设备:单片机在通信领域中扮演重要角色,如手机、电子支付终端等。

它可以实现数据处理、通信协议支持等功能,保证了通信设备的正常运行。

五、单片机的发展趋势随着科技的不断发展,单片机在未来将继续迎来更大的发展空间。

单片机外文文献翻译

单片机外文文献翻译

外文文献一单片机简介单片机是一种集成在电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计时器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的计算机系统。

单片机也被称为微控制器(Microcontroller),是因为它最早被用在工业控制领域。

单片机由芯片内仅有CPU的专用处理器发展而来。

最早的设计理念是通过将大量外围设备和CPU集成在一个芯片中,使计算机系统更小,更容易集成进复杂的而对体积要求严格的控制设备当中。

INTEL的Z80是最早按照这种思想设计出的处理器,从此以后,单片机和专用处理器的发展便分道扬镳。

二、单片机的发展趋势现在可以说单片机是百花齐放,百家争鸣的时期,世界上各大芯片制造公司都推出了自己的单片机,从8位、16位到32位,数不胜数,应有尽有,有与主流C51系列兼容的,也有不兼容的,但它们各具特色,互成互补,为单片机的应用提供广阔的天地。

纵观单片机的发展过程,可以预示单片机的发展趋势,大致有:1.低功耗CMOSMCS-51系列的8031推出时的功耗达630mW,而现在的单片机普遍都在100mW左右,随着对单片机功耗要求越来越低,现在的各个单片机制造商基本都采用了CMOS(互补金属氧化物半导体工艺)。

象80C51就采用了HMOS(即高密度金属氧化物半导体工艺)和CHMOS(互补高密度金属氧化物半导体工艺)。

CMOS虽然功耗较低,但由于其物理特征决定其工作速度不够高,而CHMOS则具备了高速和低功耗的特点,这些特征,更适合于在要求低功耗象电池供电的应用场合。

所以这种工艺将是今后一段时期单片机发展的主要途径。

2.微型单片化现在常规的单片机普遍都是将中央处理器(CPU)、随机存取数据存储(RAM)、只读程序存储器(ROM)、并行和串行通信接口,中断系统、定时电路、时钟电路集成在一块单一的芯片上,增强型的单片机集成了如A/D转换器、PMW(脉宽调制电路)、WDT(看门狗)、有些单片机将LCD(液晶)驱动电路都集成在单一的芯片上,这样单片机包含的单元电路就更多,功能就越强大。

单片机外文翻译

单片机外文翻译

Electric boiler temperature system1.MCUA microcontroller (or MCU) is a computer-on-a-chip. It is a type of microprocessor emphasizing self-sufficiency and cost-effectiveness, in contrast to a general-purpose microprocessor (the kind used in a PC).The majority of computer systems in use today are embedded in other machinery, such as telephones, clocks, appliances, vehicles, and infrastructure. An embedded system usually has minimal requirements for memory and program length and may require simple but unusual input/output systems. For example, most embedded systems lack keyboards, screens, disks, printers, or other recognizable I/O devices of a personal computer. They may control electric motors, relays or voltages, and read switches, variable resistors or other electronic devices. Often, the only I/O device readable by a human is a single light-emitting diode, and severe cost or power constraints can even eliminate that.In contrast to general-purpose CPUs, microcontrollers do not have an address bus or a data bus, because they integrate all the RAM and non-volatile memory on the same chip as the CPU. Because they need fewer pins, the chip can be placed in a much smaller, cheaper package.Integrating the memory and other peripherals on a single chip and testing them as a unit increases the cost of that chip, but often results in decreased net cost of the embedded system as a whole. (Even if the cost of a CPU that has integrated peripherals is slightly more than the cost of a CPU + external peripherals, having fewer chips typically allows a smaller and cheaper circuit board, and reduces the labor required to assemble and test the circuit board). This trend leads to design.A microcontroller is a single integrated circuit, commonly with the following features:central processing unit - ranging from small and simple 4-bit processors to sophisticated 32- or 64-bit processorsinput/output interfaces such as serial ports (UARTs)other serial communications interfaces like I²C, Serial Peripheral Interface and Controller Area Network for system interconnect peripherals such as timers and watchdog RAM for data storage ROM, EPROM,EEPROM or Flash memory for program storage clock generator - often an oscillator for a quartz timing crystal, resonator or RC circuit many include analog-to-digital converters .This integration drastically reduces the number of chips and the amount of wiring and PCB space that would be needed to produce equivalent systems using separate chips and have proved to be highly popular in embedded systems since their introduction in the 1970s.Some microcontrollers can afford to use a Harvard architecture: separate memory buses for instructions and data, allowing accesses to take place concurrently.The decision of which peripheral to integrate is often difficult. The Microcontroller vendors often trade operating frequencies and system design flexibility against time-to-market requirements from their customers and overall lower system cost. Manufacturers have to balance the need to minimize the chip size against additional functionality.Microcontroller architectures are available from many different vendors in so many varieties that each instruction set architecture could rightly belong to a category of their own. Chief among these are the 8051, Z80 and ARM derivatives.[citation needed]A microcontroller (also MCU or µC) is a functio nal computer system-on-a-chip. It contains a processor core, memory, and programmable input/output peripherals.Microcontrollers include an integrated CPU, memory (a small amount of RAM, program memory, or both) and peripherals capable of input and output.It emphasizes high integration, in contrast to a microprocessor which only contains a CPU (the kind used in a PC). In addition to the usual arithmetic and logic elements of a general purpose microprocessor, the microcontroller integrates additional elements such as read-write memory for data storage, read-only memory for program storage, Flash memory for permanent data storage, peripherals, and input/output interfaces. At clock speeds of as little as 32KHz, microcontrollers often operate at very low speed compared to microprocessors, but this is adequate for typical applications. They consume relatively little power (milliwatts or even microwatts), and will generally have the ability to retain functionality while waiting for an event such as a button press or interrupt. Power consumption while sleeping (CPU clock and peripherals disabled) may be just nanowatts, making them ideal for low power and long lasting battery applications.Microcontrollers are used in automatically controlled products and devices, such as automobile engine control systems, remote controls,office machines, appliances, power tools, and toys. By reducing the size, cost, and power consumption compared to a design using a separate microprocessor, memory, and input/output devices, microcontrollers make it economical to electronically control many more processes.The majority of computer systems in use today are embedded in other machinery, such as automobiles, telephones, appliances, and peripherals for computer systems. These are called embedded systems. While some embedded systems are very sophisticated, many have minimal requirements for memory and program length, with no operating system, and low software complexity. Typical input and output devices include switches, relays, solenoids, LEDs, small or custom LCD displays, radio frequency devices, and sensors for data such as temperature, humidity, light level etc. Embedded systems usually have no keyboard, screen, disks, printers, or other recognizable I/O devices of a personal computer, and may lack human interaction devices of any kind.It is mandatory that microcontrollers provide real time response to events in the embedded system they are controlling. When certain events occur, an interrupt system can signal the processor to suspend processing the current instruction sequence and to begin an interrupt service routine (ISR). The ISR will perform any processing required based on the source of the interrupt before returning to the original instruction sequence. Possible interrupt sources are device dependent, and often include events such as an internal timer overflow, completing an analog to digital conversion, a logic level change on an input such as from a button being pressed, and data received on a communication link. Where power consumption is important as in battery operated devices, interrupts may also wake a microcontroller from a low power sleep state where the processor is halted until required to do something by a peripheral event.Microcontroller programs must fit in the available on-chip program memory, since it would be costly to provide a system with external, expandable, memory. Compilers and assembly language are used to turn high-level language programs into a compact machine code for storage in the microcontroller's memory. Depending on the device, the program memory may be permanent, read-only memory that can only be programmed at the factory, or program memory may be field-alterable flash or erasable read-only memory.Since embedded processors are usually used to control devices, they sometimes need to accept input from the device they are controlling. This is the purpose of the analog to digital converter. Since processors are built to interpret and process digital data, i.e. 1s and 0s, they won'tbe able to do anything with the analog signals that may be being sent to it by a device. So the analog to digital converter is used to convert the incoming data into a form that the processor can recognize. There is also a digital to analog converter that allows the processor to send data to the device it is controlling.In addition to the converters, many embedded microprocessors include a variety of timers as well. One of the most common types of timers is the Programmable Interval Timer, or PIT for short. A PIT just counts down from some value to zero. Once it reaches zero, it sends an interrupt to the processor indicating that it has finished counting. This is useful for devices such as thermostats, which periodically test the temperature around them to see if they need to turn the air conditioner on, the heater on, etc.Time Processing Unit or TPU for short. Is essentially just another timer, but more sophisticated. In addition to counting down, the TPU can detect input events, generate output events, and other useful operations.Dedicated Pulse Width Modulation (PWM) block makes it possible for the CPU to control power converters, resistive loads, motors, etc., without using lots of CPU resources in tight timer loops.Universal Asynchronous Receiver/Transmitter (UART) block makes it possible to receive and transmit data over a serial line with very little load on the CPU.For those wanting ethernet one can use an external chip like Crystal Semiconductor CS8900A, Realtek RTL8019, or Microchip ENC 28J60. All of them allow easy interfacing with low pin count.DescriptionThe AT89C51 is a low-power, high-performance CMOS 8-bit microcomputer with 4K bytes of Flash programmable and erasable read only memory (PEROM). The device is manufactured using Atmel’s high-density nonvolatile memory technology and is compatible with the industry-standard MCS-51 instruction set and pinout. The on-chip Flash allows the program memory to be reprogrammed in-system or by a conventional nonvolatile memory programmer. By combining a versatile 8-bit CPU with Flash on a monolithic chip, the Atmel AT89C51 is a powerful microcomputer which provides a highly-flexible and cost-effective solution to many embedded control applications.Function characteristicThe AT89C51 provides the following standard features: 4K bytes of Flash, 128 bytes of RAM, 32 I/O lines, two 16-bit timer/counters, a five vector two-level interrupt architecture, a full duplex serial port, on-chip oscillator and clock circuitry. In addition, the AT89C51 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port and interrupt system to continue functioning. The Power-down Mode saves the RAM contents but freezes the oscillator disabling all other chip functions until the next hardware reset.Pin DescriptionVCC:Supply voltage.GND:Ground.Port 0Port 0 is an 8-bit open-drain bi-directional I/O port. As an output port, each pin can sink eight TTL inputs. When 1s are written to port 0 pins, the pins can be used as highimpedance inputs.Port 0 may also be configured to be the multiplexed loworder address/data bus during accesses to external program and data memory. In this mode P0 has internal pullups.Port 0 also receives the code bytes during Flash programming,and outputs the code bytes during programverification. External pullups are required during programverification.Port 1Port 1 is an 8-bit bi-directional I/O port with internal pullups.The Port 1 output buffers can sink/source four TTL inputs.When 1s are written to Port 1 pins they are pulled high by the internal pullups and can be used as inputs. As inputs,Port 1 pins that are externally being pulled low will source current (IIL) because of the internal pullups.Port 1 also receives the low-order address bytes during Flash programming and verification.Port 2Port 2 is an 8-bit bi-directional I/O port with internal pullups.The Port 2 output buffers can sink/source four TTL inputs.When 1s are written to Port 2 pins they are pulled high by the internal pullups and can beused as inputs. As inputs,Port 2 pins that are externally being pulled low will source current, because of the internal pullups.Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses. In this application, it uses strong internal pullupswhen emitting 1s. During accesses to external data memory that use 8-bit addresses, Port 2 emits the contents of the P2 Special Function Register.Port 2 also receives the high-order address bits and some control signals during Flash programming and verification.Port 3Port 3 is an 8-bit bi-directional I/O port with internal pullups.The Port 3 output buffers can sink/source four TTL inputs.When 1s are written to Port 3 pins they are pulled high by the internal pullups and can be used as inputs. As inputs,Port 3 pins that are externally being pulled low will source current (IIL) because of the pullups.Port 3 also serves the functions of various special features of the AT89C51 as listed below:Port 3 also receives some control signals for Flash programming and verification.RSTReset input. A high on this pin for two machine cycles while the oscillator is running resets the device.ALE/PROGAddress Latch Enable output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during Flash programming.In normal operation ALE isemitted at a constant rate of 1/6 the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.PSENProgram Store Enable is the read strobe to external program memory.When the AT89C51 is executing code from external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory.EA/VPPExternal Access Enable. EA must be strapped to GND in order to enable the device to fetch code from external program memory locations starting at 0000H up to FFFFH. Note, however, that if lock bit 1 is programmed, EA will be internally latched on reset.EA should be strapped to VCC for internal program executions.This pin also receives the 12-volt programming enable voltage(VPP) during Flash programming, for parts that require12-volt VPP.XTAL1Input to the inverting oscillator amplifier and input to the internal clock operating circuit.XTAL2Output from the inverting oscillator amplifier.Oscillator CharacteristicsXTAL1 and XTAL2 are the input and output, respectively,of an inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 1.Either a quartz crystal or ceramic resonator may be used. To drive the device from an external clock source, XTAL2 should be left unconnected while XTAL1 is driven as shown in Figure 2.There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum voltage high and low timespecifications must be observed.Figure 1. Oscillator Connections Figure 2. External Clock Drive ConfigurationIdle ModeIn idle mode, the CPU puts itself to sleep while all the onchip peripherals remain active. The mode is invoked by software. The content of the on-chip RAM and all the special functions registers remain unchanged during this mode. The idle mode can be terminated by any enabled interrupt or by a hardware reset.It should be noted that when idle is terminated by a hard ware reset, the device normally resumes program execution,from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write to a port pin when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.Power-down ModeIn the power-down mode, the oscillator is stopped, and the instruction that invokes power-down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the power-down mode is terminated. The only exit from power-down is a hardware reset. Reset redefines the SFRs but does not change the on-chip RAM. The reset should not be activated before VCC is restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize.Program Memory Lock BitsOn the chip are three lock bits which can be left unprogrammed (U) or can be programmed (P) to obtain the additional features listed in the table below.When lock bit 1 is programmed, the logic level at the EA pin is sampled and latched during reset. If the device is powered up without a reset, the latch initializes to a random value, and holds that value until reset is activated. It is necessary that the latched value of EA be in agreement with the current logic level at that pin in order for the device to function properly.中文翻译:1.单片机单片机即单片微型计算机,是把中央处理器、存储器、定时/计数器、输入输出接口都集成在一块集成电路芯片上的微型计算机。

单片机的外文文献及中文翻译

单片机的外文文献及中文翻译

SCM is an integrated circuit chip,is the use of large scale integrated circuit technology to a data processing capability of CPU CPU random access memory RAM,read-only memory ROM,a variety of I / O port and interrupt system, timers / timer functions (which may also include display driver circuitry,pulse width modulation circuit,analog multiplexer,A / D converter circuit)integrated into a silicon constitute a small and complete computer systems.SCM is also known as micro—controller (Microcontroller), because it is the first to be used in industrial control。

Only a single chip by the CPU chip developed from a dedicated processor。

The first design is by a large number of peripherals and CPU on a chip in the computer system, smaller, more easily integrated into a complex and demanding on the volume control device which。

单片机外文文献翻译(2024)

单片机外文文献翻译(2024)

引言:单片机(Microcontroller)是一种广泛应用于嵌入式系统中的小型计算机芯片。

它集成了处理器核心、存储器、外设接口和时钟电路等核心部件,可以独立运行。

随着全球化的发展,外文文献对于学习和研究单片机领域来说至关重要。

本文翻译的外文文献《MicrocontrollerbasedTrafficLightControlSystem》详细介绍了基于单片机的交通信号灯控制系统。

概述:交通信号灯控制是现代都市交通系统中至关重要的一环。

传统的交通信号灯控制系统通常由定时器控制,不能根据实际交通情况动态调整信号灯的时间。

而基于单片机的交通信号灯控制系统可以实现根据实时交通流量来动态调整信号灯的时间,优化交通效率。

本文将详细介绍该系统的设计和实现。

正文:一、单片机选型1.1.CPU性能:本文选择了一款高性能的32位单片机作为控制核心,它具有较高的处理能力和较大的存储器容量,可以同时处理多条交通路口的信号控制。

1.2.外设接口:该单片机具有丰富的外设接口,可以与交通信号灯、传感器和通信设备等进行连接,实现信号控制和数据交互。

1.3.低功耗设计:为了节约能源和延长系统寿命,在单片机选型时考虑了低功耗设计,降低系统运行的能耗。

二、硬件设计2.1.交通信号灯:在设计交通信号灯时,考虑了日夜可见性和能耗。

采用了高亮度LED作为信号灯光源,同时添加了光敏传感器控制信号灯的亮度,以满足不同时间段的亮度需求。

2.2.传感器:通过安装车辆感应器和行人感应器等传感器,可以在实时监测交通流量的基础上,智能调整信号灯时间,提高路口的交通效率。

2.3.通信设备:在交通信号灯控制系统中引入了通信设备,可以实现各交通路口之间的信息交互和协调控制,提高整体交通系统的效率。

三、软件设计3.1.程序架构:采用了多任务的实时操作系统,将交通信号灯控制、传感器数据处理和通信设备控制等功能分别封装成不同的任务,实现了系统的高效运行和任务调度。

单片机STM32外文文献翻译、中英文翻译

外文译英文原文:STM32 MicrocontrollerIntroductionRequirements based STM32 family is designed for high-performance, low-cost, low-power embedded applications designed specifically for ARM Cortex-M3 core. According to the performance into two different series: STM32F103 "Enhanced〞 series and STM32F101 "Basic" series. Enhanced Series clock frequency of 72MHz, the highest performance of similar products product; basic clock frequency of 36MHz, 16-bit product prices get more than 16 products significantly enhance the performance and is 16 product users the best choice. Both series have built-in 32K to 128K of flash memory, the difference is the maximum capacity of the SRAM and peripheral combinations. At 72MHz, executing from Flash, STM32 power consumption 36mA, are 32 products on the market s lowest power, the equivalent of 0.5niA/MHz.STM32F103 Performance Characteristics1)Kernel. ARM32 bit CPU, the maximum operating frequency of 72MHz,1.25DMIPS/MHz. Single-cycle multiply and hardware divide.2)Memory. Integrated on-chip 32-512KB of Flash memory. 6-64KB SRAM memory.3)Clock, reset, and power management. 2.0-3.6V power supply and I/O interface, the drive voltage. POR, PDR and programmable voltage detector. 4-16MHz crystal. Embedded factory tuned 8MHz RC oscillator circuit. 40 kHz internal RC oscillator circuit. CPU clock for the PLL. With calibration for the RTC 32kHz crystal.4)Low power consumption. Three kinds of low-power mode. Sleep, stop, standby mode. For RTC and backup registers supply VBAT.5)Debug mode. Serial debugging and JTAG interface.6)Direct data storage. 12-channel direct data storage controller. Supported peripherals: timers, ADC, DAC, SPI, IIC and USART.7)Up to a maximum of 112 fast I / O ports. Depending on the modeL there are 26,37,51,80, and 112 I/O ports, all ports can be mapped to 16 external interrupt vectors. In addition to the analog input, all of them can accept the input of 5V or less.8)Up to a maximum of 11 timers. Four 16-bit timers, each with 4 IC / OC / PWM orpulse counter. 2 16 6-channel advanced control timer: up to 6 channels can be used for PWM output. 2 watchdog timer. Systick tinier: 24 down counter. Two 16-bit basic timer for driving DAC.9)Up to a maximum of 13 communication interfaces. 2 IIC interface. 5 USART interfaces. 3 SPI interface, two and IIS reuse. CAN interface. USB 2.0 full-speed interface. SDIO interface.System Function1)Integration of embedded Flash and SRAM memory ARM Cortex-M3 core. And 8/16 equipment compared, ARM Cortex-M3 32-bit RISC processor provides a higher code efficiency. STM32F103xx microcontrollers with an embedded ARM core, so it can be compatible with all ARM tools and software.2)Embedded Flash memory and RAM memory. Built up to 512KB embedded Flash, can be used to store programs and data. Up to 64KB of embedded SRAM clock speed of the CPU can read and write.3)Variable static memory. Variable static memory with 4 chip selects, supports four modes: Flash, RAM, PSRAM, NOR and NAND. After three FSMC interrupt lines connected to the OR after the nested vector interrupt controller. No read / write FIFO, except PCCARD, the code is executed from external memory is not supported Boot, the target frequency is equal to SYSCLK / 2, so the time when the system clock is 72MHz, 36MHz conducted in accordance with external access.4)Nested Vectored Internipt Controller. Can handle 43 maskable interrupt channels, providing 16 interrupt priority levels. Tightly coupled nested vectored intenupt controller to achieve lower latency interrupt handling directly passed to the kernel interrupt vector table entry address, tightly coupled nested vectored interrupt controller kernel interface, allowing early treatment interruption, the latter to be more high-priority interrupt processing, support tail chain, auto-save processor state terrupts automatically restored on interrupt exit, no instructions intervention.5)External internipt / event controller. External interrupt / event controller consists for 19 to generate interrupt / event requests edge detector lines. Each line can be individually configured to select the trigger event, it can be individually masked. There is a pending interrupt request registers to maintain state. When an external line appear longer than the internal APB2 clock-cycle pulse, the external interrupt / event controller is able to detect. Up to 112 GPIO connected to the 16 external internipt lines.6)Clocks and startup. At boot time or to the system clock selection, but the reset whenthe internal 8MHz crystal oscillator is selected as the CPU clock. Can choose a 4-16MHz external clock, and will be monitored to determine the success. During this time, the interrupt controller is disabled and the software management is subsequently disabled. Also, if there is a need, PLL clock internipt management fully available. Comparator can be used more pre-configuration of the AHB frequency, including high-speed and low-speed APB APB, APB highest frequency of high-speed 72MHz, low-speed APB highest frequency of 36MHz.Architectural AdvantagesIn addition to the new features Enhanced peripheral interfaces, STM32 series also interconnect with other STM32 microcontrollers offer the same standard interface, such sharing of peripherals to enhance the entire product family, application flexibility, so that developers can a plurality of design reuse the same software. New STM32 standard peripherals include 10 timers, two 12-bit ADC, two 12-bit DAC, two I2C interfaces, five USART interfaces and three SPI ports. There are 12 new products peripherals direct data storage channel, there is a CRC calculation unit, like other STM32 microcontrollers, the supports 96 unique identifier.New series also has followed the STM32 microcontroller family of products low voltage and energy saving are two advantages. 2.0V to 3.6V operating voltage range compatible with the mainstream of battery technologies such as lithium batteries and nickel-metal hydride batteries, the package also features a battery operation mode dedicated pin Vbat. 72MHz frequency to execute code from flash consumes only 27mA current. There are four low-power mode, the current consumption can be reduced to two microamps. Quick Start from low power mode to save energy too; starting circuit using STM32 internally generated 8MHz signal, the microcontroller from stop mode when you wake up with less than 6 microseconds.中文译:单片机STM321STM32的介绍STM32系列基于专为要求高性能、低本钱、低功耗的嵌入式应用专门设计的ARMCortex-M3内核.按性能分成两个不同的系列:STM32F103 “增强型〞系列和STM32F101 “根本型〞系列.增强型系列时钟频率到达72MHz,是同类产品中性能最高的产品;根本型时钟频率为36MHz,以16位产品的价格得到比16位产品大幅提升的性能,是16位产品用户的最正确选择.两个系列都内置32K 到128K 的闪存,不同的是SRAM的最大容量和外设接口的组合.时钟频率72MHz时,从闪存执行代码,STM32功耗36mA,是32位市场上功耗最低的产品,相当于0.5mA/MHz.2STM32F103性能特点1〕内核.ARM32位CPU,最高工作频率72MHz, 1.25DMIPS/MHzo单周期乘法和硬件除法.2〕存储器.片上集成32-512KB的Flash存储器.6-64KB的SRAM存储器.3〕时钟、复位和电源治理.2.0-3.6V的电源供电和I/O接口的驱动电压. POR、PDR和可编程的电压探测器.4-16MHZ的晶振.内嵌出厂前调校的8MHz RC振荡电路.内部40 kHz的RC振荡电路.用于CPU时钟的PLL.带校准用于RTC的32kHz的晶振.4〕低功耗.3种低功耗模式:休眠,停止,待机模式.为RTC和备份存放器供电的VBAT.5〕调试模式.串行调试和JTAG接口.6〕直接数据存储.12通道直接数据存储限制器.支持的外设:定时器,ADC, DAC, SPI, IIC 和USART.7〕最多高达112个的快速I/O端口.根据型号的不同,有26, 37, 51, 80, 和112的I/O端口,所有的端口都可以映射到16个外部中断向量.除了模拟输入,所有的都可以接受5V以内的输入.8〕最多多达11个定时器.4个16位定时器,每个定时器有4个IC/OC/PWM 或者脉冲计数器.2个16位的6通道高级限制定时器:最多6个通道可用于PWM 输出.2个看门狗定时器.Systick定时器:24位倒计数器.2个16位根本定时器用于驱动DACo9〕最多多达13个通信接口.2个HC接口.5个USART接口.3个SPI接口,两个和IIS复用.CAN接口.USB 2.0全速接口.SDIO接口.3系统作用1〕集成嵌入式Hash和SRAM存储器的ARM Cortex-M3内核.和8/16位设备相比,ARM Cortex-M3 32位RISC处理器提供了更高的代码效率. STM32F103xx微限制器带有一个嵌入式的ARM核,所以可以兼容所有的ARM 工具和软件.2〕嵌入式Flash存储器和RAM存储器.内置多达512KB的嵌入式Flash, 可用于存储程序和数据.多达64KB的嵌入式SRAM可以以CPU的时钟速度进行读写.3〕可变静态存储器.可变静态存储器带有4个片选,支持四种模式:Flash, RAM, PSRAM, NOR和NANDo 3个FSMC中断线经过OR后连接到嵌套矢量中断限制器.没有读/写FIFO,除PCCARD之外,代码都是从外部存储器执行, 不支持Boot,目标频率等于SYSCLK/2,所以当系统时钟是72MHz时' 外部访问根据36MHz进行.4〕嵌套矢量中断限制器.可以处理43个可屏蔽中断通道,提供16个中断优先级.紧密耦合的嵌套矢量中断限制器实现了更低的中断处理延迟,直接向内核传递中断入口向量表地址,紧密耦合的嵌套矢量中断限制器内核接口,允许中断提前处理,对后到的更高优先级的中断进行处理,支持尾链,自动保存处理器状态,中断入口在中断退出时自动恢复,不需要指令干预.5〕外部中断/事件限制器.外部中断/事件限制器由用于19条产生中断/事件请求的边沿探测器线组成.每条线可以被单独配置用于选择触发事件,也可以被单独屏蔽.有一个挂起存放器来维护中断请求的状态.当外部线上出现长度超过内部APB2时钟周期的脉冲时,外部中断/事件限制器能够探测到.多达112个GPIO连接到16个外部中断线.6〕时钟和启动.在启动的时候还是要进行系统时钟选择,但复位的时候内部8MHz的晶振被选用作CPU时钟.可以选择一个外部的4-16MHZ的时钟,并且会被监视来判定是否成功.在这期间,限制器被禁止并且软件中断治理也随后被禁止.同时,如果有需要,PLL时钟的中断治理完全可用.多个预比拟器可以用于配置AHB频率,包括高速APB和低速APB,高速APB最高的频率为72MHz, 低速APB最高的频率为36MHzo4架构优势除新增的功能强化型外设接口外,STM32互连系列还提供与其它STM32微限制器相同的标准接口,这种外设共用性提升了整个产品家族的应用灵活性,使开发人员可以在多个设计中重复使用同一个软件.新STM32的标准外设包括10 个定时器、两个12位模数转换器、两个12位数模转换器、两个12c接口、五个USART接口和三个SPI端口.新产品外设共有12条直接数据存储通道,还有一个CRC计算单元,像其它STM32微限制器一样,支持96位唯一标识码.新系列微限制器还沿续了STM32产品家族的低电压和节能两大优点.2.0V 到3.6V的工作电压范围兼容主流的电池技术,如锂电池和银氢电池,封装还设有一个电池工作模式专用引脚Vbato以72MHz频率从闪存执行代码,仅消耗27mA 电流.低功耗模式共有四种,可将电流消耗降至两微安.从低功耗模式快速启动也同样节省电能;启动电路使用STM32内部生成的8MHz信号,将微控制器从停止模式唤醒用时小于6微秒.。

单片机中英文翻译

外文资料Outline, Application and Development of the singlechipThe singlechip is one kind of integrated circuit chip, which uses the ultra large-scale technology and has the data-handling capacity (for example arithmetic operation, logic operation, data transfer, interrupt processing) the microprocessor (CPU), random access data-carrier storage (RAM), read-only program memory (ROM), input output circuit (I/O), possibly also includes fixed time the counter, serial passes unguardedly (SCI), demonstration actuation electric circuit (LCD or LED actuation electric circuit), pulse-duration modulation electric circuit (PWM), simulation multichannel switch and A/Electric circuit and so on D switch integrates to together the monolith chip on, constitutes to be smallest the computer system which however consummates. These electric circuits can under the software control accurate, be rapid, highly effective complete the procedure designer preset the duty.From this looked that, singlechip has the function which the microprocessor does not have, it may alone complete the intellectualization control function which the modern industry control requests, this is singlechip biggest characteristic.However singlechip also is different with the single trigger, the chip before the development, it only has the function greatly strengthened ultra large scale integrated circuit, if entrusts with it the specific procedure, it then is youngest, the integrity microcomputer control system, it (PC machine) has the essential difference with the single trigger or the personal computing, singlechip application belongs to the chip level application, needs the user to understand singlechip chip the structure and the command system as well as other integrated circuit application technologies and the system design need theory and technology, with such specific chip design application procedure, thus causes this chip to have the specific function.The different singlechip has the different hardware characteristic and the software characteristic, namely their technical characteristic is different, the hardware characteristic is decided by singlechip chip internal structure, the user must use some kind of singlechip, must understand whether this product does satisfy the characteristic target which the need the function and the application system requests. Here technical characteristic including function characteristic, control characteristic and electrical specification and so on, these information needs to obtain from in theproduction merchant technical manual. The software characteristic is refers to the command system characteristic and the development support environment, the instruction characteristic is singlechip addressing way which we is familiar with, the data processing and the logical processing way, input-output characteristic and to power source request and so on. The development support environment is compatible and the probability including the instruction, supports the software (to contain may support development application procedure software resources) and the hardware resources. Must use some model singlechip to develop own application system, master its structure characteristic and the technical characteristic is that we need..Singlechip control system could substitute for before uses control system which the complex electronic circuit or the digital circuit constituted, might the software control realizes, and could realize the intellectualization, now singlechip control category omnipresent, for example correspondence product, domestic electric appliances, intelligent instrument measuring appliance, process control and special-purpose control device and so on, singlechip application domain was more and more widespread.Indeed, singlechip application significance is far is not restricted in its application category or from this the economic efficiency which brings, it fundamentally changed the traditional control method and the design thought more importantly. Is controls technical a revolution, is an important milestone.2.The MCU’s development outlineIn 1946 first electronic accounting machine birth until now, only then 50 years, depends upon microelectronic technology and the semiconductor technology progress, from the electron tube - transistor- integrated circuit - large scale integrated circuit, now together on the chip definitely may integrate several million even more than ten million transistor, causes the computer volume slightly, the function is stronger. Specially in the nearly 20 years time, computer technology obtained the rapid development, the computer in the industry and agriculture, the scientific research, the education, the national defense and the aerospace domain has obtained the widespread application, computer technology already was a national modern science and technology level important symbol.Singlechip is born in the 20th century 70's, looks like F8 monolithic microcomputer which Fairchid Corporation develops. The so-called singlechip is uses the large scale integrated circuit technology the central processing element (Center Processing Unit, Also is Chang Cheng CPU) and the data-carrier storage (RAM), theprogram memory (ROM) and other I/O passes integrates unguardedly on together the chip, constitutes a smallest computer system, but modern singlechip then has added on the severance unit, fixed time unit and A/D transformation and so on more complex, more perfect electric circuit, causes singlechip the function more and more formidable, the application is more widespread.The 20th century 70's, microelectronic technology is being at the development phase, the integrated circuit belongs to the scale development time, each kind of new material new craft not yet mature, singlechip still occupied the primary development phase, the part integration scale also quite small, the function quite was simple, CPU, RAM had generally has also included some simple I/O integrates to the chip on, looks like Farichild Corporation to belong to this type, it also must be joined to the periphery other processing electric circuits just now to constitute the integrity the computing system. The similar singlechip also has Zilog Corporation the Z80 microprocessor.In 1976 INTEL Corporation has promoted the MCS-48 singlechip, this time singlechip is the genuine 8 monolithic microcomputers, and pushes to the market. It is young by the volume, function entire, the price has lowly won the widespread application, has laid the foundation for singlechip development, becomes in singlechip history the important milestone.Under the MCS-48 leadership, after that, each big semiconductor company developed and has developed own singlechip one after another, looked like Zilog Corporation the Z8 series. To the beginning of the 80's, singlechip has developed to the high performance stage, looks like INTEL Corporation the MCS-51 series, Motorola Corporation 6,801 and 6,802 series, Rokwell Corporation 6,501 and 6,502 series and so on, In addition,Japan's famous electrical company NEC and HITACHI all one after another developed had oneself characteristic the special-purpose singlechip.The 80's, world each big company competes to develop the variety multi-purpose strong singlechip, some severaldozens series, more than 300 varieties, this time singlechip belongs approximately truely monolithic, mostly integrated CPU, RAM, ROM, number many I/O connection, many kinds of interruption system, even also has some to bring A/D switch singlechip, function more and more formidable, RAM and ROM capacity also more and more big, the addressing space even may reach 64kB, may say, singlechip developed to a brand-new stage, the applicationdomain has been more widespread, many domestic electric appliances moved towards the intellectualized development path which controlled using singlechip.After 1982, 16 singlechips are published, represent the product are INTEL Corporation's MCS-96 series, 16 singlechips compare 8 machine, the data width increased a time, real-time processing ability stronger, the basic frequency is higher, the integration rate had achieved 120,000 transistors, RAM increased to 232 bytes, ROM then has achieved 8kB, and had 8 interrupt sources, at the same time has disposed multichannel A/D transformation channel, high speed I/The O processing unit, is suitable for the more complex control system.After 90's, singlechip obtained the rapid development, the world each big semiconductor company has developed a function more formidable singlechip one after another. American Microchip Corporation had issued one kind of incompatible MCS-51 new generation of PIC series singlechip, has aroused the field widespread interest completely, its product only then 33 simplified the set of instructions to attract many users specially, caused the people to concentrate from the INTEL 111 complex instructions. The PIC singlechip has obtained the fast development, holds the small space in the field.The afterwards matter, the familiar singlechip public figures quite have been all clear, more monolithic aircraft types pour out, MOTOROLA Corporation had issued one after another the MC68HC series singlechip, Japan's several famous companies all developed a performance stronger product, but Japan's singlechip used in generally the special-purpose systems control, but did not look like company and so on INTEL puts in to the market forms the general singlechip. For example NEC Corporation produces the uCOM87 series singlechip, its representative works uPC7811 is one kind of performance quite outstanding singlechip. MOTOROLA Corporation's characteristic and so on MC68HC05 series its high speed low price has won many users.Zilog Corporation's Z8 series product representative works are Z8671, contains BASIC the Debug interpreter, enormous place then user. But American country half COP800 series singlechip then uses the advanced Harvard structure. ATMEL Corporation then perfectly unifies singlechip technology and the advanced Flash memory technology, has issued the performance quite outstanding AT89 series singlechip. Including company and so on China's Taiwan HOLTEK and WINBOND in abundance has also joined singlechip development ranks, by reason of their inexpensive superiority, shares cup of beautiful thick soup.In 1990 American INTEL Corporation promoted 80,960 super 32 singlechips to cause the computer stir, the product has put in the market one after another, became in singlechip history an important milestone.This period, in singlechip field, singlechip variety extraordinary splendour, competes to be the most unusual. Some 8, 16 even 32 machine, but 8 singlechips by its price inexpensive, the variety complete, the application software rich, the support environment were still full, characteristic and so on development convenience but are occupying the dominant position. But INTEL Corporation by reason of their abundant technology, the performance outstanding type and the good foundation, at present was still singlechip mainstream product. Only is the 90's intermediate stages, INTEL Corporation is busy is developing their personal computing microprocessor, not the enough energy continued singlechip technology which develops oneself creates leads, but by company and so on PHILIPS continues to develop the C51 series singlechip.3.Singlechip application domainSinglechip widely applies in the instrument measuring appliance, the domestic electric appliances, the medical equipment, domain and so on aerospace, special purpose equipment intellectualized management and process control, may divide the following several categories approximately:1. On intelligent instrument measuring appliance applicationSinglechip has the volume small, the power loss low, the control function strong, the expansion is nimble, merit and so on microminiaturization and easy to operate, widely applies in the instrument measuring appliance, the union different type sensor, may realize such as physical quantity the and so on voltage, power, frequency, humidity, temperature, current capacity, speed, thickness, angle, length, degree of hardness, element, pressure survey. Uses singlechip control to cause the instrument measuring appliance digitization, the intellectualization, the microminiaturization, also the function compares uses the electron or the digital circuit is more formidable. For example precise measurement equipment (dynamometer, oscilloscope, each kind of analyzer).2. In industry control applicationMay constitute the various formats control system, the data acquisition system with singlechip. For example the factory assembly line intellectualized management, the elevator intellectualization control, each kind of alarm system, constitutes two cascade control systems with the computer networking and so on.3.In domestic electric appliances applicationMay say like this that, the present domestic electric appliances basically have all used singlechip control, praised, the washer, the electric refrigerator, the air conditioner, the color television, other acoustic video frequency equipments from the electricity food, again to the electronic weighting equipment, all kinds of, omnipresent.4.In computer network and correspondence domain applicationOf the modern singlechip has the correspondence connection generally, may very conveniently and the computer carries on the data communication, for provided the extremely good physical conditions application in between the computer network and the communication facility, the present communication facility basically has all realized singlechip intelligence control, from the handset, the telephone, the small program controlled switch, the building automatic correspondence ringing system, the train wireless correspondence, again the mobile phone which everywhere to the routine work in, the colony mobile communication, radio intercom and so on.5.Singlechip in medical equipment domain applicationSinglechip quite is also widespread inmedical equipment use, for example medical life-support machine, each kind of analyzer, , ultrasound diagnosis equipment and hospital bed ringing system and so on.In addition, singlechip in the industry and commerce, the finance, the scientific research, the education, domain and so on national defense aerospace all has the extremely widespread use.4.Singlechip development tendencyNow may say singlechip was all flowers blooms together, the time which hundred school of thought contended, in the world each big chip manufacture company has all promoted own singlechip, from 8, 16 to 32, innumerable, had everything expected to find, has compatibly with the mainstream C51 series, also had not not compatibly, but they unique, became mutually supplementarily, provided the broad world for singlechip application.Looks over singlechip developing process, may indicate singlechip development tendency, has approximately:1. Low power loss CMOS2. The MCS-51 series 8,031 promotes when the power loss reaches 630mW, but the present singlechip all about 100mW, along with more and more is generally low to singlechip power loss request, the present each singlechip manufacturer basic has all used CMOS (complementary metal oxide semiconductor craft). Looked like80C51 to use HMOS (namely high density metal oxide compound semiconductor craft) and CHMOS (supplementary high density metal oxide compound semiconductor craft). CMOS although power loss low, but because its physical characteristic decides its working speed insufficiently high, but CHMOS then had has been high speed and the low power loss characteristic, these characteristics, suited in are requesting the low power loss likely battery power supply the application situation. Therefore this kind of craft will be the main way which the next section of times singlechip will develop.3. Miniature monolithic4. Now the conventional singlechip all is generally the central processor (CPU), the random access data storage (RAM), the read-only program memory (ROM), parallel and the serial communication connection, the interruption system, the timing circuit, the clock electric circuit integration on together the sole chip, the enlargement mode singlechip integrated like A/The D switch, PMW (pulse-duration modulation electric circuit), WDT (watch-dog), some singlechips (liquid crystal) actuate LCD the electric circuit all to integrate on the sole chip, such singlechip contains unit electric circuit more, the function is more formidable. Even singlechip merchant also may act according to the user requiremnetthe body custom make, makes has oneself characteristic singlechip chip.5. In addition, present product universal demand volume small, weight light, this requests singlechip strong and the power loss is low besides the function, but also requests its volume to have to be small. Present many singlechips all have the many kinds of seals form, SMD (superficial seal) more and more receives welcome, to enable the system which constitutes by singlechip towards the microminiaturized direction to develop.3.Mainstream and multi- varieties coexistenceNow although singlechip variety is many, unique, but still as the core singlechip occupies the mainstream take 80C51, the compatible its structure and the command system have PHILIPS Corporation the product, the ATMEL Corporation's product and the Chinese Taiwan's Winbond series singlechip. Therefore C8051 was the core singlechip occupied the half of the country. But Microchip Corporation's PIC simplified the set of instructions (RISC) also to have the strong development tendency, the Chinese Taiwan's HOLTEK Corporation recent years singlechip output grows day by day, if the low price nature superior superiority, occupied a certain market minute volume. In addition also has MOTOROLA Corporation the product, the Japaneseseveral big companies' special-purpose singlechips. In the certain time, this kind of situation will be able to continue, will not have the monopoly aspect which some singlechip unified, will walk will be depends on for existence supplementarily, will complement one another, the communal development path.中文译文单片机概述、应用及发展单片机是一种集成电路芯片,采用超大规模技术把具有数据处理能力(如算术运算,逻辑运算、数据传送、中断处理)的微处理器(CPU),随机存取数据存储器(RAM),只读程序存储器(ROM),输入输出电路(I/O口),可能还包括定时计数器,串行通信口(SCI),显示驱动电路(LCD或LED驱动电路),脉宽调制电路(PWM),模拟多路转换器及A/D转换器等电路集成到一块单块芯片上,构成一个最小然而完善的计算机系统。

单片机STM32外文文献翻译、中英文翻译

外文翻译英文原文:STM32 MicrocontrollerIntroductionRequirements based STM32 family is designed for high-performance, low-cost, low-power embedded applications designed specifically for ARM Cortex-M3 core. According to the performance into two different series: STM32F103 "Enhanced" series and STM32F101 "Basic" series. Enhanced Series clock frequency of 72MHz, the highest performance of similar products product; basic clock frequency of 36MHz, 16-bit product prices get more than 16 products significantly enhance the performance and is 16 product users the best choice. Both series have built-in 32K to 128K of flash memory, the difference is the maximum capacity of the SRAM and peripheral combinations. At 72MHz, executing from Flash, STM32 power consumption 36mA, are 32 products on the market's lowest power, the equivalent of 0.5mA/MHz.STM32F103 Performance Characteristics1)Kernel. ARM32 bit CPU, the maximum operating frequency of 72MHz,1.25DMIPS/MHz. Single-cycle multiply and hardware divide.2)Memory. Integrated on-chip 32-512KB of Flash memory. 6-64KB SRAM memory.3)Clock, reset, and power management. 2.0-3.6V power supply and I / O interface, the drive voltage. POR, PDR and programmable voltage detector. 4-16MHz crystal. Embedded factory tuned 8MHz RC oscillator circuit. 40 kHz internal RC oscillator circuit. CPU clock for the PLL. With calibration for the RTC 32kHz crystal.4)Low power consumption. Three kinds of low-power mode. Sleep, stop, standby mode. For RTC and backup registers supply VBAT.5)Debug mode. Serial debugging and JTAG interface.6)Direct data storage. 12-channel direct data storage controller. Supported peripherals: timers, ADC, DAC, SPI, IIC and USART.7)Up to a maximum of 112 fast I / O ports. Depending on the model, there are 26,37,51,80, and 112 I / O ports, all ports can be mapped to 16 external interruptvectors. In addition to the analog input, all of them can accept the input of 5V or less.8)Up to a maximum of 11 timers. Four 16-bit timers, each with 4 IC / OC / PWM or pulse counter. 2 16 6-channel advanced control timer: up to 6 channels can be used for PWM output. 2 watchdog timer. Systick timer: 24 down counter. Two 16-bit basic timer for driving DAC.9)Up to a maximum of 13 communication interfaces. 2 IIC interface. 5 USART interfaces. 3 SPI interface, two and IIS reuse. CAN interface. USB 2.0 full-speed interface. SDIO interface.System Function1)Integration of embedded Flash and SRAM memory ARM Cortex-M3 core. And 8/16 equipment compared, ARM Cortex-M3 32-bit RISC processor provides a higher code efficiency. STM32F103xx microcontrollers with an embedded ARM core, so it can be compatible with all ARM tools and software.2)Embedded Flash memory and RAM memory. Built up to 512KB embedded Flash, can be used to store programs and data. Up to 64KB of embedded SRAM clock speed of the CPU can read and write.3)Variable static memory. Variable static memory with 4 chip selects, supports four modes: Flash, RAM, PSRAM, NOR and NAND. After three FSMC interrupt lines connected to the OR after the nested vector interrupt controller. No read / write FIFO, except PCCARD, the code is executed from external memory is not supported Boot, the target frequency is equal to SYSCLK / 2, so the time when the system clock is 72MHz, 36MHz conducted in accordance with external access.4)Nested Vectored Interrupt Controller. Can handle 43 maskable interrupt channels, providing 16 interrupt priority levels. Tightly coupled nested vectored interrupt controller to achieve lower latency interrupt handling directly passed to the kernel interrupt vector table entry address, tightly coupled nested vectored interrupt controller kernel interface, allowing early treatment interruption, the latter to be more high-priority interrupt processing, support tail chain, auto-save processor state terrupts automatically restored on interrupt exit, no instructions intervention.5)External interrupt / event controller. External interrupt / event controller consists for 19 to generate interrupt / event requests edge detector lines. Each line can be individually configured to select the trigger event, it can be individually masked. There is a pending interrupt request registers to maintain state. When an external line appear longer than the internal APB2 clock-cycle pulse, the external interrupt / eventcontroller is able to detect. Up to 112 GPIO connected to the 16 external interrupt lines.6)Clocks and startup. At boot time or to the system clock selection, but the reset when the internal 8MHz crystal oscillator is selected as the CPU clock. Can choose a 4-16MHz external clock, and will be monitored to determine the success. During this time, the interrupt controller is disabled and the software management is subsequently disabled. Also, if there is a need, PLL clock interrupt management fully available. Comparator can be used more pre-configuration of the AHB frequency, including high-speed and low-speed APB APB, APB highest frequency of high-speed 72MHz, low-speed APB highest frequency of 36MHz.Architectural AdvantagesIn addition to the new features Enhanced peripheral interfaces, STM32 series also interconnect with other STM32 microcontrollers offer the same standard interface, such sharing of peripherals to enhance the entire product family, application flexibility, so that developers can a plurality of design reuse the same software. New STM32 standard peripherals include 10 timers, two 12-bit ADC, two 12-bit DAC, two I2C interfaces, five USART interfaces and three SPI ports. There are 12 new products peripherals direct data storage channel, there is a CRC calculation unit, like other STM32 microcontrollers, the supports 96 unique identifier.New series also has followed the STM32 microcontroller family of products low voltage and energy saving are two advantages. 2.0V to 3.6V operating voltage range compatible with the mainstream of battery technologies such as lithium batteries and nickel-metal hydride batteries, the package also features a battery operation mode dedicated pin Vbat. 72MHz frequency to execute code from flash consumes only 27mA current. There are four low-power mode, the current consumption can be reduced to two microamps. Quick Start from low power mode to save energy too; starting circuit using STM32 internally generated 8MHz signal, the microcontroller from stop mode when you wake up with less than 6 microseconds.中文翻译:单片机STM321 STM32的介绍STM32系列基于专为要求高性能、低成本、低功耗的嵌入式应用专门设计的ARM Cortex-M3内核。

单片机英文文献外文翻译

单片机英文文献Principle of MCUSingle-chip is an integrated on a single chip a complete computer system. Even though most of his features in a small chip, but it has a need to complete the majority of computer components: CPU, memory, internal and external bus system, most will have the Core. At the same time, such as integrated communication interfaces, timers, real-time clock and other peripheral equipment. And now the most powerful single-chip microcomputer system can even voice, image, networking, input and output complex system integration on a single chip.Also known as single-chip MCU (Microcontroller), because it was first used in the field of industrial control. Only by the single-chip CPU chip developed from the dedicated processor. The design concept is the first by a large number of peripherals and CPU in a single chip, the computer system so that smaller, more easily integrated into the complex and demanding on the volume control devices. INTEL the Z80 is one of the first design in accordance with the idea of the processor, From then on, the MCU and the development of a dedicated processor parted ways.Early single-chip 8-bit or all of the four. One of the most successful is INTEL's 8031, because the performance of a simple and reliable access to a lot of good praise. Since then in 8031 to develop a single-chip microcomputer system MCS51 series. Based on single-chip microcomputer system of the system is still widely used until now. As the field of industrial control requirements increase in the beginning of a 16-bit single-chip, but not ideal because the price has not been very widely used. After the 90's with the big consumer electronics product development, single-chip technology is a huge improvement. INTEL i960 Series with subsequent ARM in particular, a broad range of applications, quickly replaced by 32-bit single-chip 16-bit single-chip high-end status, and enter the mainstream market. Traditional 8-bit single-chip performance has been the rapid increase in processing power compared to the 80's to raise a few hundred times. At present, the high-end 32-bit single-chip frequency over 300MHz, the performance of the mid-90's close on the heels of a special processor, while the ordinary price of the model dropped to one U.S. dollars, the most high-end models, only 10 U.S. dollars. Contemporary single-chip microcomputer system is no longer only the bare-metal environment in the development and use of a large number of dedicated embedded operating system is widely used in the full range of single-chip microcomputer. In PDAs and cell phones as the core processing of high-end single-chip or even a dedicated direct access to Windows and Linux operating systems.More than a dedicated single-chip processor suitable for embedded systems, so it was up to the application. In fact the number of single-chip is the world's largest computer. Modern human life used in almost every piece of electronic and mechanical products will have a single-chip integration. Phone, telephone, calculator, home appliances, electronic toys, handheld computers and computer accessories such as a mouse in the Department are equipped with 1-2 single chip. And personal computers also have a large number of single-chip microcomputer in the workplace. Vehicles equipped with more than 40 Department of the general single-chip, complex industrial control systems and even single-chip may have hundreds of work at the same time! SCM is not only far exceeds the number of PC and other integrated computing, even more than the numberof human beings.Hardwave introductionThe 8051 family of micro controllers is based on an architecture which is highly optimized for embedded control systems. It is used in a wide variety of applications from military equipment to automobiles to the keyboard on your PC. Second only to the Motorola 68HC11 in eight bit processors sales, the 8051 family of microcontrollers is available in a wide array of variations from manufacturers such as Intel, Philips, and Siemens. These manufacturers have added numerous features and peripherals to the 8051 such as I2C interfaces, analog to digital converters, watchdog timers, and pulse width modulated outputs. Variations of the 8051 with clock speeds up to 40MHz and voltage requirements down to 1.5 volts are available. This wide range of parts based on one core makes the 8051 family an excellent choice as the base architecture for a company's entire line of products since it can perform many functions and developers will only have to learn this one platform.The basic architecture consists of the following features:·an eight bit ALU·32 descrete I/O pins (4 groups of 8) which can be individually accessed·two 16 bit timer/counters·full duplex UART· 6 interrupt sources with 2 priority levels·128 bytes of on board RAM·separate 64K byte address spaces for DA TA and CODE memoryOne 8051 processor cycle consists of twelve oscillator periods. Each of the twelve oscillator periods is used for a special function by the 8051 core such as op code fetches and samples of the interrupt daisy chain for pending interrupts. The time required for any 8051 instruction can be computed by dividing the clock frequency by 12, inverting that result and multiplying it by the number of processor cycles required by the instruction in question. Therefore, if you have a system which is using an 11.059MHz clock, you can compute the number of instructions per second by dividing this value by 12. This gives an instruction frequency of 921583 instructions per second. Inverting this will provide the amount of time taken by each instruction cycle (1.085 microseconds).单片机原理单片机是指一个集成在一块芯片上的完整计算机系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单片机外文翻译MICROCONTROLLER1.MCUA microcontroller (or MCU) is a computer-on-a-chip. It is a type of microprocessor emphasizing self-sufficiency and cost-effectiveness, in contrast to a general-purpose microprocessor (the kind used in a PC).The majority of computer systems in use today are embedded in other machinery, such as telephones, clocks, appliances, vehicles, and infrastructure. An embedded system usually has minimal requirements for memory and program length and may require simple but unusualinput/output systems. For example, most embedded systems lack keyboards, screens, disks, printers, or other recognizable I/O devices of apersonal computer. They may control electric motors, relays or voltages, and read switches, variable resistors or other electronic devices. Often, the only I/O device readable by a human is a single light-emitting diode, and severe cost or power constraints can even eliminate that.In contrast to general-purpose CPUs, microcontrollers do not have an address bus or a data bus, because they integrate all the RAM and non-volatile memory on the same chip as the CPU. Because they need fewer pins, the chip can be placed in a much smaller, cheaper package.Integrating the memory and other peripherals on a single chip and testing them as a unit increases the cost of that chip, but oftenresults in decreased net cost of the embedded system as a whole. (Evenif the cost of a CPU that has integrated peripherals is slightly more than the cost of a CPU + external peripherals, having fewer chips typically allows a smaller and cheaper circuit board, and reduces the labor required to assemble and test the circuit board). This trend leads to design.A microcontroller is a single integrated circuit, commonly with the following features: central processing unit - ranging from small and simple 4-bit processors to sophisticated 32- or 64-bit processors input/output interfaces such as serial ports (UARTs)other serial communications interfaces like I?C, Serial Peripheral Interface and Controller Area Network for system interconnect peripherals such as timers and watchdog RAM for data storage ROM, EPROM, EEPROM or Flash memory forprogram storage clock generator - often an oscillator for a quartz timing crystal, resonator or RC circuit many include analog-to-digital converters .This integration drastically reduces the number of chips and the amount of wiring and PCB space that would be needed to produce equivalent systems using separate chips and have proved to be highly popular in embedded systems since their introduction in the 1970s.Some microcontrollers can afford to use a Harvard architecture: separate memory buses for instructions and data, allowing accesses to take place concurrently.The decision of which peripheral to integrate is often difficult. The Microcontroller vendors often trade operatingfrequencies and system design flexibility against time-to-market requirements from their customers and overall lower system cost. Manufacturers have to balance the need to minimize the chip size against additional functionality.Microcontroller architectures are available from many different vendors in so many varieties that each instruction set architecture could rightly belong to a category of their own. Chief among these are the 8051, Z80 and ARM derivatives.[citation needed]A microcontroller (also MCU or µC) is a functional computer system-on-a-chip. It contains a processor core, memory, and programmableinput/output peripherals. Microcontrollers include an integrated CPU, memory (a small amount of RAM, program memory, or both) and peripherals capable of input and output.It emphasizes high integration, in contrast to a microprocessorwhich only contains a CPU (the kind used in a PC). In addition to the usual arithmetic and logic elements of a general purpose microprocessor, the microcontroller integrates additional elements such as read-write memory for data storage, read-only memory for program storage, Flash memory for permanent data storage, peripherals, and input/output interfaces. At clock speeds of as little as 32KHz, microcontrollers often operate at very low speed compared to microprocessors, but this is adequate for typical applications. They consume relatively little power (milliwatts or even microwatts), and will generally have the ability toretain functionality while waiting for an event such as a button pressor interrupt. Power consumption while sleeping(CPU clock and peripherals disabled) may be just nanowatts, making them ideal for low power and long lasting battery applications.Microcontrollers are used in automatically controlled products and devices, such as automobile engine control systems, remote controls, office machines, appliances, power tools, and toys. By reducing the size, cost, and power consumption compared to a design using a separate microprocessor, memory, and input/output devices, microcontrollers make it economical to electronically control many more processes.The majority of computer systems in use today are embedded in other machinery, such as automobiles, telephones, appliances, and peripherals for computer systems. These are called embedded systems. While some embedded systems are very sophisticated, many have minimal requirements for memory and program length, with no operating system, and lowsoftware complexity. Typical input and output devices include switches, relays, solenoids, LEDs, small or custom LCD displays, radio frequency devices, and sensors for data such as temperature, humidity, light level etc. Embedded systems usually have no keyboard, screen, disks, printers, or other recognizable I/O devices of a personal computer, and may lack human interaction devices of any kind.It is mandatory that microcontrollers provide real time response to events in the embedded system they are controlling. When certain events occur, an interrupt system can signal the processor to suspendprocessing the current instruction sequence and to begin an interrupt service routine (ISR). The ISR will perform any processing required based on the source of the interrupt before returning to the original instruction sequence. Possible interrupt sources are device dependent, and often include events such as an internal timer overflow, completing an analog to digital conversion, a logic level change on an input such as from a button being pressed, and data received on a communication link. Where power consumption is important as in battery operated devices, interrupts may also wake a microcontroller from a low power sleep state where the processor is halted until required to do something by a peripheral event.Microcontroller programs must fit in the available on-chip program memory, since it would be costly to provide a system with external, expandable, memory.Compilers and assembly language are used to turn high-level language programs into a compact machine code for storage in themicrocontroller's memory. Depending on the device, the program memory may be permanent, read-only memory that can only be programmed at the factory, or program memory may be field-alterable flash or erasableread-only memory.Since embedded processors are usually used to control devices, they sometimes need to accept input from the device they are controlling. This is the purpose of the analog to digital converter. Since processors are built to interpret and process digital data, i.e. 1s and 0s, theywon't be able to do anything with the analog signals that may be being sent to it by a device. So the analog to digital converter is used to convert the incoming data into a form that the processor can recognize. There is also a digital to analog converter that allows the processor to send data to the device it is controlling.In addition to the converters, many embedded microprocessors includea variety of timers as well. One of the most common types of timers isthe Programmable Interval Timer, or PIT for short. A PIT just countsdown from some value to zero. Once it reaches zero, it sends aninterrupt to the processor indicating that it has finished counting.This is useful for devices such as thermostats, which periodically test the temperature around them to see if they need to turn the airconditioner on, the heater on, etc.Time Processing Unit or TPU for short. Is essentially just another timer, but more sophisticated. In addition to counting down, the TPU can detect input events, generate output events, and other useful operations.Dedicated Pulse Width Modulation (PWM) block makes it possible forthe CPU to control power converters, resistive loads, motors, etc., without using lots of CPU resources in tight timer loops.Universal Asynchronous Receiver/Transmitter (UART) block makes it possible to receive and transmit data over a serial line with verylittle load on the CPU.For those wanting ethernet one can use an external chip like Crystal Semiconductor CS8900A, Realtek RTL8019, or Microchip ENC 28J60. All of them allow easy interfacing with low pin count.中文翻译:1.单片机单片机即单片微型计算机,是将中央处理器、存储器、定时/计数器、输入输出接口集成在一块集成电路芯片上的微型计算机。

相关文档
最新文档