插补原理与速度控制
第三章插补计算原理刀具半径补偿与速度控制4

21
现
下午4时23分
代 一、进给速度控制 数
控
脉冲增量插补和数据采样插补由于其计算方法不同,其
技 术
速度控制方法也有所不同。
1.脉冲增量插补算法的进给速度控制
第
脉冲增量插补的输出形式是脉冲,其频率与进给速度成
七
节 正比。因此可通过控制插补运算的频率来控制进给速度。常
进 用的方法有:软件延时法和中断控制法。
径
时) 过切,以避免产生过切。
补
偿
原
理
3
现
代 二. 刀具半径补偿的工作原理 数
控
技 术
1.刀具半径补偿的工作过程
第
刀补建立
六
节 刀补进行
刀具中心轨迹
刀 具
刀补撤销。 刀补撤销
半
径
起刀点 刀补建立
补
偿
原
理
下午4时23分
编程轨迹 刀补进行
4
现
下午4时23分
代 二. 刀具半径补偿的工作原理
数
控 技
第 速度进行加减速控制;
三
在加工过程中,为了保证加工质量,在进给速度发生
章 突变时必须对送到进给电动机的脉冲频率或电压进行加减
插 速控制。
补
在启动或速度突然升高时,应保证加在伺服当速度突降时,应保证
原 加在伺服电动机上的进给脉冲频率或电压逐渐减小。
理
。
。
。
补 偿
渡方式。
原
理
7
现 代
二.
刀具半径补偿的工作原理
下午4时23分
数
控
技 3. 刀具中心轨迹的转接形式和过渡方式列表
术
第
第十章插补与刀补

NR2,SR3 NR4,SR3 NR1,SR2 SR1,NR2 NR3,SR4
F<0 F≥0 F <0 F≥0 F <0
F←F+2y+1 y←y+1
F←F-2y+1 y←y-1
25
下午3时31分 现 代 第三节 数字积分法 装 备 一、数字积分法的基本原理 与 控 数字积分插补法,又称数字微分分析器(Digital differential analyzer),简称DDA. 制
2 2 Fi, j ( xi2 x0 ) ( y2 y j 0)
第一象限逆圆:
Fi,j >0 Fi,j =0 Fi,j <0
在圆外,向-X输出一步 在圆上,向-X输出一步 在圆内,向+Y输出一步
21
现 代 第二节 逐点比较法 装 备 与 2、偏差计算(递推式) 控 制 Fi,j 0故x轴须向负向进
Fi , j 2 yi 1
递推法把圆弧偏差运算式由平方运算简化为加法和乘2运算 .
22
第 十 章 插 补 、 刀 补 原 理 及 速 度 控 制
下午3时31分 现 代 第二节 逐点比较法 装 备 与 3、终点判别 控 制 X,Y坐标的总和-> n | xe x0 | | ye y0 | , 每走一步,n=n-1, 直到n=0.
插补算法稳定是确保轮廓精度要求的前提。
4
下午3时31分 现 代 第一节 概 述 装 备 与 插补精度指标 控 插补精度:插补轮廓与给定轮廓的符合程度,它可用插补误 制
第 十 章 插 补 、 刀 补 原 理 及 速 度 控 制
差来评价。 插补误差分类: 逼近误差(指用直线逼近曲线时产生的误差);
数控技术第3章插补原理

5. 运算举例(第Ⅰ 象限逆圆弧) 运算举例( 象限逆圆弧) 加工圆弧AE 起点(4,3) AE, (4,3), 终点(0,5) E=(4-0)+(5加工圆弧AE,起点(4,3), 终点(0,5) ,E=(4-0)+(53)=6 插补过程演示
三.逐点比较法的进给速度 逐点比较法的进给速度
逐点比较法除能插补直线和圆弧之外,还能插补椭圆、 逐点比较法除能插补直线和圆弧之外,还能插补椭圆、 抛物线和双曲线等二次曲线。此法进给速度平稳, 抛物线和双曲线等二次曲线。此法进给速度平稳, 精度较高。在两坐标联动机床中应用普遍. 精度较高。在两坐标联动机床中应用普遍. 对于某一坐标而言, 对于某一坐标而言,进给脉冲的频率就决定了进给速 度 :
插补是数控系统最重要的功能; 插补是数控系统最重要的功能; 插补实际是数据密集化的过程; 插补实际是数据密集化的过程; 插补必须是实时的; 插补必须是实时的; 插补运算速度直接影响系统的控制速度; 插补运算速度直接影响系统的控制速度; 插补计算精度影响到整个数控系统的精度。 插补计算精度影响到整个数控系统的精度。 插补器按数学模型分类,可分为一次插补器、 插补器按数学模型分类,可分为一次插补器、二次插补器及高 次曲线插补器; 次曲线插补器; 根据插补所采用的原理和计算方法不同, 根据插补所采用的原理和计算方法不同,分为软件插补和硬件 插补。目前大多采用软件插补或软硬件结合插补。 插补。目前大多采用软件插补或软硬件结合插补。 根据插补原理可分为:脉冲增量插补和数字采样插补。 根据插补原理可分为:脉冲增量插补和数字采样插补。
脉冲当量: 脉冲当量:每一个脉冲使执行件按指令要求方向移动的直线 距离,称为脉冲当量, 表示。一般0.01mm 0.001mm。 0.01mm~ 距离,称为脉冲当量,用δ表示。一般0.01mm~0.001mm。 脉冲当量越小, 脉冲当量越小,则机床精度越高
插补原理

插补原理:在实际加工中,被加工工件轮廓形状千差万别,严格说来,为了满足几何尺寸精度要求,刀具中心轨迹应该准确地依照工件轮廓形状来生成,对于简单曲线数控系统可以比较容易实现,但对于较复杂形状,若直接生成会使算法变得很复杂,计算机工作量也相应地大大增加,因此,实际应用中,常采用一小段直线或圆弧去进行拟合就可满足精度要求(也有需要抛物线和高次曲线拟合情况),这种拟合方法就是“插补”,实质上插补就是数据密化过程。
插补任务是根据进给速度要求,在轮廓起点和终点之间计算出若干个中间点坐标值,每个中间点计算所需时间直接影响系统控制速度,而插补中间点坐标值计算精度又影响到数控系统控制精度,因此,插补算法是整个数控系统控制核心。
插补算法经过几十年发展,不断成熟,种类很多。
一般说来,从产生数学模型来分,主要有直线插补、二次曲线插补等;从插补计算输出数值形式来分,主要有脉冲增量插补(也称为基准脉冲插补)和数据采样插补[26]。
脉冲增量插补和数据采样插补都有个自特点,本文根据应用场合不同分别开发出了脉冲增量插补和数据采样插补。
1数字积分插补是脉冲增量插补一种。
下面将首先阐述一下脉冲增量插补工作原理。
2.脉冲增量插补是行程标量插补,每次插补结束产生一个行程增量,以脉冲方式输出。
这种插补算法主要应用在开环数控系统中,在插补计算过程中不断向各坐标轴发出互相协调进给脉冲,驱动电机运动。
一个脉冲所产生坐标轴移动量叫做脉冲当量。
脉冲当量是脉冲分配基本单位,按机床设计加工精度选定,普通精度机床一般取脉冲当量为:0.01mm,较精密机床取1或0.5 。
采用脉冲增量插补算法数控系统,其坐标轴进给速度主要受插补程序运行时间限制,一般为1~3m/min。
脉冲增量插补主要有逐点比较法、数据积分插补法等。
逐点比较法最初称为区域判别法,或代数运算法,或醉步式近似法。
这种方法原理是:计算机在控制加工过程中,能逐点地计算和判别加工偏差,以控制坐标进给,按规定图形加工出所需要工件,用步进电机或电液脉冲马达拖动机床,其进给方式是步进式,插补器控制机床。
第3章-插补原理

Y积分器
计t数 器JVX为(XeJ)E,JR均X 为溢三出位Jvy(Ye) JRy 溢出
终点计 数器
JE
备注
二0进制1存01 放器00。0
011 000
000
初始状态
1
101 101
011 011
001 第一次迭代
2
101 010
1
011 110
010
X溢出
3
101 111
011 001
1
011
Y溢出
∑=8-1=7
4
F<0
+Y
F4=F3+xe=-2+6=4
∑=7-1=6
5
F>0
+X
F5=F4-ye=4-4=0
∑=6-1=5
6
F=0
+X
F6=F5-ye=0-4=-4
∑=5-1=4
7
F<0
+Y
F7=F6+xe=-4+6=2
∑=4-1=3
8
F>0
+X
F8=F7-ye=2-4=-2
∑=3-1=2
9
F<0
4
101 100
1
011 100
100
X溢出
5
101 001
1
011 111
101
X溢出
6
101 110
011 010
1
110
Y溢出
7
101 011
1
011 101
111
件加工的要求,现在的数控系统已很少采用这类算法 了。
4
*
第三章 数控插补原理

解:插补完这段直线刀具沿X和Y轴应走的总步数为 = x e + y e =5 + 3=8。 Y 刀具的运动轨迹如图 E(5,3) 3
2 1 O 1 2 3 4 5 X
第二节 基准脉冲插补
插补运算过程见表:
循环序号 偏差判别 F ≥0 坐标进给 +X 偏差计算 Fi+1=Fi-ye
教案 3
终点判别
m
Y
m(Xm,Ym) B(XB,YB)
+Y2
2 m-R
若Fm=0,表示动点在圆弧上;
若Fm>0,表示动点在圆弧外; 若Fm<0,表示动点在圆弧内。
Rm
R A(XA,YA)
第Ⅰ象限逆圆弧
X
第二节 基准脉冲插补
2)坐标进给
教案 3
与直线插补同理,坐标进给应使加工点逼近给定圆弧,规定如下: 当Fm≥0时,向-X方向进给一步; 当Fm<0时,向+Y方向进给一步。
教案 3
若Fi=0,表示动点在直线OE上,如P; 若Fi>0,表示动点在直线OE上方,如P′; 若Fi<0,表示动点在直线OE下方,如P″。
O
xi 第Ι象限直线
X
第二节 基准脉冲插补
2)坐标进给
教案 3
坐标进给应逼近给定直线方向,使偏差缩小的方向进给一步,由插补装 置发出一个进给脉冲控制向某一方向进给。
教案 3
直线线型 进给方向 偏差计算 直线线型
L1、L4 L2、L3 +X -X Fi+1=Fi-ye L1、L2 L3、L4
偏差计算
Fi+1=Fi+xe
注:表中L1、L2、L3、L4分别表示第Ⅰ、第Ⅱ、 第Ⅲ、第Ⅳ象限直线,偏差计算式中xe、ye均代 入坐标绝对值。
逐点比较法直线插补原理幻灯片

Institute of Numerical Control And Equipment TechnologyInstitute of Numerical Control And Equipment
Technology
4.1 插补原理与软件设计
(一) 逐点比较法 基本思路:
当刀具按要求的轨迹移动时,每走一步都要与规定的轨迹比较, 根据比较的结果决定下一步的移动方向,使刀具向减小偏差的方 向并趋向终点移动。 NhomakorabeaX
动点P在直线上方 F>0
(0,0)
动点P在直线下方 F<0
根据偏差函数F的计算值,可确定加工点相对于直线 的位置,然后,让动点P沿减小误差的方向进给一步。
当 F≥0 +X向进一步; 当F<0 +Y向进一步
8
Institute of Numerical Control And Equipment TechnologyInstitute of Numerical Control And Equipment
第四章 插补、刀补与速度控制
4.1 插补原理与软件设计 4.2 刀补原理与软件设计 4.3 进给速度及加减速控制
1
Institute of Numerical Control And Equipment TechnologyInstitute of Numerical Control And Equipment
插补程序是CNC系统控制软件的核心。 插补分直线插补和曲线插补: 直线和圆弧是构成工件轮廓的基本线条,大多数CNC系统都 具有直线和圆弧的插补功能。高档CNC系统还具有抛物线、螺旋
4
线等插补功能。 Institute of Numerical Control And Equipment TechnologyInstitute of Numerical Control And Equipment Technology
数控机床控制原理(ppt 51页)

Y P2 (Xe,Ye) P1 P3 X
图3-3 插补点与直线的位置关系
• 例:脉冲当量为1,起点(0,0),终点(5,3)
序号 偏差判别 进给控制
偏差计算
1
F0=0
+△x F1=F0-Ye=0-3=-3
2
F1<0
+△Y F2=F1+Xe=-3+5=2
3
F2>0
+△X F3=F2-Ye=2-3=-1
Fi+1=YiXe-(Xi+1)Ye 1=YiXe-(Xi+1)Ye = YiXe-XiYe-Ye =Fi-Ye
• 同理,如果向y正向进给一步,则 • Fi+1=(Yi +1)Xe-XiYe= Fi+ Xe • 4、终点判别: • 1)单向计数:取Xe和Ye中较大的作为计数长度 • 2)双向计数:将Xe和Ye的长度加和,作为计数长度 • 3)分别计数:即计X,又计Y,直到X减到0,Y也减到0,停
序号 偏差判别 坐标进给 起点
1 F0=0 +X 2 F1<0 +Y 3 F2>0 +X 4 F3<0 +Y 5 F3>0 +X 6 F5<0 +Y 7 F6>0 +X
偏差计算
F0 0 F1F0Ye 3 F2 F1Xe 1 F3F2Ye 2 F4 F3Xe 2 F5F4Ye 1 F6 F5Xe 3 F7 F6Ye 0
• 3、二阶递归扩展数字积分圆弧插补法;
• 4、圆弧双数字积分插补法;
• 5、角度逼近圆弧插补法;
• 6、“改进吐斯丁”(Improved Tustin
Method――ITM)法。
• 近年来,众多学者又研究了更多的插补类型及改进方法。 改进DDA圆弧插补算法,空间圆弧的插补时间分割法, 抛物线的时间分割插补方法,椭圆弧插补法,Bezier、 B样条等参数曲线的插补方法,任意空间参数曲线的插 补方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、脉冲增量插补 (一)逐点比较法 逐点比较法又称区域判别法或醉步式近似法。逐 点比较法的基本思想是被控制对象在数控装置的控制 下,按要求的轨迹运动时,每走一步都要和规定的轨 迹比较,根据比较的结果决定下一步的移动方向。逐 点比较法可以实现直线和圆弧插补。 逐点比较法的特点是运算直观,插补误差小于一 个脉冲当量,而且输出脉冲均匀,输出脉冲的速度变 化小,调节方便。 逐点比较法的应用对象主要在两坐标开环CNC系 统中应用。
⑶迭代法偏差函数F的推导 为了减少计算量,通常采用迭代法计算偏差函数F:即每 走一步,新加工点的偏差用前一点的偏差递推出来。 ①F≥0时,应向+X发出一进给脉冲,刀具从现加工点(Xi,Yi) 向+X方向前进一步,达到新加工点(Xi+1,Yi),则新加工点 的偏差值为: Fi+1,i= XeYi – Xi+1Ye= XeYi – (Xi+1)Ye = XeYi – XiYe - Ye =F – Ye ②F<0时,应向+Y发出一进给脉冲,刀具从现加工点(Xi,Yi) 向+Y方向前进一步,达到新加工点(Xi+1,Yi),则新加工点 的偏差值为: Fi+1,i= XeYi+1 – XiYe= Xe(Yi+1) – XiYe = XeYi – XiYe +Xe =F + Xe
终点判别 N=12 N= 11 N= 10 N= 9 N= 8 N= 7 N= 6 N= 5 N= 4 N= 3 N= 2 N= 1 N= 0
F1=F0-2X0+1=-19 F2=F1+2Y1+1=-18 F3=F2+2Y2+1=-15 F4=F3+2Y3+1=-10 F5=F4+2Y4+1=-3 F6=F5+2Y5+1=6 F7=F6-2X6+1=-11 F8=F7+2Y7+1=0 F9=F8-2X8+1=-15 F10=F9+2Y9+1=-2 F11=F10+2Y10+1=13 F12=F11-2X11+1=0
(3)迭代法偏差函数F的推导 ①设加工点P在圆弧外侧或圆弧上,则加工偏差F≥0, 刀具需向X坐标负方向进给一步,即移动到新的加工点 P(Xi+1,Yi)。新加工点的偏差为: Fi+1,i = (Xi – 1)2 +Yi2 -(X02 + Y02) =Xi2-2Xi+1-X02+Yi2-Y02 =F-2Xi+1 ②设加工点P在圆弧内侧,则加工偏差F<0,刀具需向 Y坐标正方向进给一步,即移动到新的加工点P(Xi, Yi+1)。新加工点的偏差为: Fi,i+1 = Xi 2 - X02+(Yi+1)2-Y02 =Xi2-X02+Yi2+2Yi+1-Y02 =F+2Yi+1
⑵精插补 精插补是在粗插补算出的每一条微小直线段上再做 “数据点的密化”工作,这一步相当于对直线的脉冲 增量插补。粗插补一般用软件来实现,精插补既可以 用软件完成,也可以用硬件来完成。 ⒉ 数字增量插补实现过程 粗插补在每个插补周期内计算出坐标位置增量值, 而精插补则在每个采样周期内采样闭环或半闭环反馈 位置增量值及插补输出的指令位置增量值。然后算出 各坐标轴相应的插补指令位置和实际反馈位置并进行 比较,计算出跟随误差。根据跟随误差算出相应轴的 进给速度指令并输出给驱动装置。插补周期和采样周 期可以相等,也可以不相等,如不相等,则插补周期 应是采样周期的整数倍。
(一)脉冲增量插补算法 脉冲增量插补为行程标量插补。这类插补算法的 特点是每次插补结束仅产生一个行程增量,以一个个 脉冲的方式输出。脉冲增量插补算法主要应用在开环 数控系统中。 一个脉冲所产生的坐标轴移动量叫做脉冲当量, 通常用δ表示。脉冲当量δ是脉冲分配的基本单位,按 机床设计的加工精度选定。 脉冲当量δ值越小,数控 机床的加工精度就越高,对数控系统的计算能力的要 求也越高。采用脉冲增量插补算法的CNC系统,其坐 标轴进给速度受插补程序运行时间的限制。
⑷插补步骤 逐点比较法的直线插补过程,每走一步要进行以下四 个步骤,具体如下: ①偏差判别 根据偏差值确定刀具相对加工直线的位置。 ②坐标进给 根据偏差判别的结果,决定控制沿哪个坐标 进给一步,以接近直线。 ③偏差计算 计算新加工点相对直线的偏差,作为下一步 偏差判别的依据。 ④终点判别 判断是否到达终点,未到达终点则返回第一 步,继续插补,到终点,则停止本程序段的插补。终 点判别可采用两种方法:一是每走一步判断Xi-Xe≥0及 Yi-Ye≥0是否成立,如成立,则插补结束否则继续。二 是把每个程序段中的总步数求出来,即n=|Xe | + | Ye | , 每走一步n-1,直到n=0为止。
F0=0,Xe=5,Ye=3 n=8
Y A(5,3) 8 5 4 3 2 O 1 图4- 逐点比较法直线插补轨迹 X 6 7
2.逐点比较法圆弧插补 ⑴判别函数及判别条件 如图所示为第一象限逆圆弧,圆心为原点,起点A(X0,Y0), 终点B(Xe,Ye),圆弧半径为R。P(Xi ,Yi)为任一加工点。 其偏差函数为: F = (Xi2 +Yi2 )- R2 =(Xi2 –X02)+(Yi2 -Y02) 根据加工点所在区域的不同,有下列三种情况: 当F=0时,加工点P落在圆弧上; 当F>0时,加工点P落在圆弧外侧; 当F<0时,加工点P落在圆弧内侧;
(二)数字增量(数据采样)插补算法 1.数字增量插补的特点 数字增量插补也称数据采样插补,它为时间标量 插补,这类插补算法的特点是插补运算分两步完成: 第一步是粗插补:计算出插补周期内各坐标轴的增量 值。第二步是精插补:根据采样得到的实际位置增量 值,计算跟随误差,得到速度指令,输出给伺服系统, 通常称为精插补。 ⑴粗插补 它是在给定起点和终点的曲线之间插入若干个点, 即用若干条微小直线段来逼近给定的曲线,这些微小 直线段的长度∆L相等且与给定的进给速度有关。由于 粗插补在每个插补周期内之计算一次,因此每一微小 直线段的长度∆L与进给速度F和插补周期T的关系如下: ∆L=FT。粗插补在每个插补周期内计算出坐标位置增 量值。
⒊ 坐标变换及自动过象限处理 ⑴逐点比较法直线插补的象限与坐标变换 前面介绍的逐点比较法进行直线插补的原理、计 算公式,只适用于第一象限。对于不同的象限,要做 不同的处理。对于1、3象限的直线,当F≥0时,都向X 坐标发脉冲,当F<0时,都向Y坐标发脉冲,之间的差 别只是发脉冲的方向不同。对于2、4象限的直线插补, 不但要考虑分配脉冲的方向,还要考虑坐标轴的变换。 下表为各个象限直线插补脉冲分配规律。
(2)进给方向判别
①当F>0时,应该向X轴发出一负方向运动的进给脉冲使 刀具向圆弧内走一步。 ②当F<0时,应该向Y轴发出一正方向运动的进给脉冲, 使刀具向圆弧外走一步。 ③当F=0时,既可以向X轴方向发一负方向运动的进给脉 冲,也可以向Y轴方向发一负方向运动的进给脉冲。但 通常将F=0和F>0做同样的处理。
第四章 插补原理与速度控制
第一节 插补原理 一、插补及其算法 二、脉冲增量插补 三、数字增量插补 第二节 刀具半径补偿 一、刀具半径补偿的基本概念 二、B功能刀具半径补偿计算 三、C功能刀具半径补偿 第三节 进给速度和加减速控制 一、开环CNC系统的进给速度及加减速控制 二、闭环(或半闭环)CNC系统的加减速控制
(4)逐点比较法圆弧插补终点判别 和直线插补一样,逐点比较法圆弧插补除偏差计 算外,还要进行终点判别。下面我们介绍两种方法。 ①插补运算开始前计算出两个坐标进给的总步数N, N=|Xe-X0|+|Ye-Y0|,在插补过程中,X或Y每走一步, 就从总步数N中减1,当N=0时,表示到达终点。 ②插补前分别计算两个坐标进给的总步数Nx和Ny,其 中Nx=|Xe-X0|,Ny=|Ye-Y0|,当X坐标进给一步时,计 算Nx-1,当Y坐标进给一步时,计算Ny-1,两坐标进给 的总步数均减为零时,表示到达终点。
线 型
G01
偏 判 F≥0 F<0
差 别
象 1 +X +Y 2 +Y - X
限 3 -X -Y 4 -Y +X
(2)逐点比较法圆弧插补象限与坐标变换 各象限的顺、逆圆弧插补都可以采用第一象限逆 圆弧的插补计算公式,至于沿着哪一个坐标轴进给, 向哪一个方向进给可以根据圆弧所在的象限及其走向 决定,下表所示为八种圆弧插补的脉冲分配规律。
逐点比较法逆圆插补运算过程
脉冲个数 0 1 2 3 4 5 6 7 8 9 10 11 12 F0=0 F1=-19<0 F2=-18<0 F3=-15<0 F4=-10<0 F5=-3<0 F6=6>0 F7=-11<0 F8=0 F9=-15<0 F10=-2<0 F11=13>0 -X +Y +Y +Y +Y +Y -X +Y -X +Y +Y -X
第一节 插补原理 一、插补及其算法 所谓“插补”就是指在一条已知起点和终点的曲 线上进行数据点的密化。插补的任务就是根据进给速 度的要求,在一段零件轮廓的起点和终点之间,计算 出若干个中间点的坐标值。 CNC系统中具有的插补功能有直线插补功能、圆 弧插补功能、抛物线插补功能以及螺旋线插补功能等。 直线和圆弧插补功能采用的插补算法一般为脉冲 增量插补算法和数字增量插补(数据采样插补)算法。
插补开始 偏差判别 坐标进给
偏差计算
到达终点? 插补结束 Y N
图4- 逐点比较法工作循环图
(5)逐点比较法插补算法例题
设欲加工的直线位于XY平面的第一象限,直线的起点坐标为坐标原 点,终点坐标为Xe=5,Ye=3。试用逐点比较法对该段直线进行插补,并 画出插补轨迹。 解 插补过程运算过程如下表所示,表中Xe,Ye是直线终点坐标,n 为总步数,n= | Xe | + | Ye | =8。 脉冲个数 0 1 2 3 4 5 6 7 8 F0=0 F1= -3<0 F2=2>0 F3= -1<0 F4=4>0 F5=1>0 F6= -2<0 F7=3>0 +X +Y +X +Y +X +X +Y +X 偏差判别 进给方向 偏差计算 F1=F0-Ye=-3 F2=F1+Xe=2 F3=F2-Ye=-1 F4=F3+Xe=4 F5=F4-Ye=1 F6=F5-Ye=-2 F7=F6+Xe=3 F8=F7-Ye=0 7 6 5 4 3 2 1 0 到达终点 终点判别