高考数学-概率统计案例

合集下载

高考数学复习统计与统计案例概率节变量间的相关关系与统计案例文新人教A版PPT课件

高考数学复习统计与统计案例概率节变量间的相关关系与统计案例文新人教A版PPT课件

解析 易求-x=9,-y=4,样本点中心(9,4)代入验证,满足y^=0.7x-2.3.
答案 C
3.两个变量y与x的回归模型中,分别选择了4个不同模型,它 们的相关指数R2如下,其中拟合效果最好的模型是( ) A.模型1的相关指数R2为0.98 B.模型2的相关指数R2为0.80 C.模型3的相关指数R2为0.50 D.模型4的相关指数R2为0.25 解析 在两个变量y与x的回归模型中,它们的相关指数R2越
最新考纲 1.会作两个有关联变量的数据的散点图,会利用 散点图认识变量间的相关关系;2.了解最小二乘法的思想, 能根据给出的线性回归方程系数公式建立线性回归方程(线性 回归方程系数公式不要求记忆);3.了解独立性检验(只要求 2×2列联表)的基本思想、方法及其简单应用;4.了解回归分 析的基本思想、方法及其简单应用.

的区
域,两个变量的这种相关关系称为一负条相直关线.
(3)如果散点图中点的分布从整体上看大致在
2.线性回归方程
(1)最小二乘法:使得样本数据的点到回归直线的 距离的平方最和小的方法叫做最
小二乘法.
(2)回归方程:两个具有线性相关关系的变量的一组数据:(x1,y1),(x2,y2),…,(xn,
yn),其回归方程为
知识
1.相关关系与回归分析 梳 理 回归分析是对具有相关关系的两个变量进行统计分析的一种
常用方法;判断相散关点性图的常用统计图是:
;统左计下量角有相关右系上数角与相关指数.
(1)在散点图中,点散布在从

的区
域,对于两个变量的这左种上相角关关系右,下我角们将它称为正相关.
(2)在散点图中,点散布在从
≈4.844.


高考大题规范解答系列——概率与统计高三数学新高考一轮复习优秀课件

高考大题规范解答系列——概率与统计高三数学新高考一轮复习优秀课件

高考一轮总复习 • 数学 • 新高考
返回导航
(2)由(1)知,p=0.1,
(i)令 Y 表示余下的 180 件产品中的不合格品件数,依题意知 Y~B(180 得分点④
所以 E(X)=E(40+25Y)=40+25E(Y)=490.
10 分 得分点⑤
高考一轮总复习 • 数学 • 新高考
第十章
统计、统计案例
返回导航
第十章 统计、统计案例
高考一轮总复习 • 数学 • 新高考
返回导航
高考大题规范解答系列(六) ——概率与统计
第十章 统计、统计案例
高考一轮总复习 • 数学 • 新高考
返回导航
考点一 离散型随机变量的分布列与期望
例 1 (2018·课标Ⅰ)某工厂的某种产品成箱包装,每箱200件,每一箱产品 在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时, 先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检 验.设每件产品为不合格品的概率都为p(0<p<1),且各件产品是不是不合格品相互 独立.
高 考 大 题 规 范解答 系列6————概概率率与与统统计计高-三20数21 学版新高高三 考数一学轮( 复新习高优考 秀)一pp轮t课复件习课 件(共6 7张PPT )
第十章 统计、统计案例
高 考 大 题 规 范解答 系列6————概概率率与与统统计计高-三20数21 学版新高高三 考数一学轮( 复新习高优考 秀)一pp轮t课复件习课 件(共6 7张PPT )
第十章 统计、统计案例
高考一轮总复习 • 数学 • 新高考
返回导航
(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p0. (2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p的 值.已知每件产品的检验费用为2元.若有不合格品进入用户手中,则工厂要对每 件不合格品支付25元的赔偿费用. (i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为 X,求E(X); (ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产 品作检验?

高考大题规范解答系列(六)——概率与统计

高考大题规范解答系列(六)——概率与统计
第十章 概率(文)
高考一轮总复习 • 数学
考点一
随机抽样、频率分布直方图及其应用(文)
例 1 (2021·河南质量测评)“不忘
初心、牢记使命”主题教育活动正在全国
开展,某区政府为统计全区党员干部一周
参与主题教育活动的时间,从全区的党员
干部中随机抽取n名,获得了他们一周参
加主题教育活动的时间(单位:时)的频率
所以 E(X)=0×210+1×290+2×290+3×210=32.·········6 分 得分点④
第十章 概率(文)
高考一轮总复习 • 数学
(2)当乙盒中红球个数为0时,P1=0, ··························7分 得分点⑤ 当乙盒中红球个数为1时,P2=290×16=430, ···············8分 得分点⑥ 当乙盒中红球个数为2,P3=290×26=230, ···················9分 得分点⑦ 当乙盒中红球个数为3时,P4=210×36=410, ·············10分 得分点⑧ 所以从乙盒中任取一球是红球的概率为P1+P2+P3+P4=41. ·····················································································12分 得分点⑨
第十章 概率(文)
高考一轮总复习 • 数学
所以 X 的分布列为
X
0
1
2
3
P
1 20
9 20
9 20
1 20
·························································································5 分 得分点③

高考数学专题2024概率与统计历年题目解析

高考数学专题2024概率与统计历年题目解析

高考数学专题2024概率与统计历年题目解析概率与统计作为高考数学的重要部分,占据了相当大的比重。

掌握概率与统计的相关知识对于考生来说是至关重要的。

本文将通过对2024年高考概率与统计专题历年题目的解析,帮助考生更好地理解和掌握这一部分知识点。

一、选择题解析选择题是高考中常见的题型,对于考生来说,熟练掌握解题技巧是很重要的。

题目1:某班有30名学生,其中男生占总人数的40%。

已知从该班随机抽取一名学生,他是男生的概率是多少?解析:根据题目可知男生的人数为30 × 40% = 12人,所以男生的概率是12/30 = 2/5。

题目2:某工厂生产零件,每天生产150个。

已知每个零件的质量标准为99%,A同学随机抽样抽取2个零件,请问这两个零件都合格的概率是多少?解析:每个零件合格的概率为99% × 1/100 = 0.99。

因为是随机抽取,所以这两个零件都合格的概率为0.99 × 0.99 = 0.9801。

二、解答题解析解答题在概率与统计中也占据重要地位,考察学生的综合应用能力和解题能力。

题目3:某校学生的身高服从正态分布,其中男生的平均身高为170cm,标准差为5cm;女生的平均身高为165cm,标准差为4cm。

已知该校男女生比例为2:3,请问在该校随机抽取一个学生,他身高超过175cm的概率是多少?解析:根据题目可知男生的概率为2/5,女生的概率为3/5。

设男生身高超过175cm的概率为p1,女生身高超过175cm的概率为p2。

根据正态分布的性质,可以计算出男生身高超过175cm的概率为0.5 × (1 - p1) = 2/5,女生身高超过175cm的概率为0.5 × (1 - p2) = 3/5。

解方程得到p1 = 1/5,p2 = 2/5,所以在该校随机抽取一个学生,他身高超过175cm的概率为(2/5) × (1/5) + (3/5) × (2/5) = 11/25。

2024届新高考数学大题精选30题:概率统计(精选30题)(解析版)

2024届新高考数学大题精选30题:概率统计(精选30题)(解析版)

大题概率统计(精选30题)1(2024·浙江绍兴·二模)盒中有标记数字1,2的小球各2个.(1)若有放回地随机取出2个小球,求取出的2个小球上的数字不同的概率;(2)若不放回地依次随机取出4个小球,记相邻小球上的数字相同的对数为X(如1122,则X=2),求X的分布列及数学期望E X.【答案】(1)1 2;(2)分布列见解析,1.【分析】(1)根据组合知识求得取球的方法数,然后由概率公式计算概率;(2)确定X的所有可能取值为0,1,2,然后分别计算概率得分布列,再由期望公式计算出期望.【详解】(1)设事件A=“取出的2个小球上的数字不同”,则P A=C12C12+C12C12C14C14=12.(2)X的所有可能取值为0,1,2.①当相邻小球上的数字都不同时,如1212,有2×A22×A22种,则P X=0=2×A22×A22A44=13.②当相邻小球上的数字只有1对相同时,如1221,有2×A22×A22种,则P X=1=2×A22×A22A44=13.③当相邻小球上的数字有2对相同时,如1122,有2×A22×A22种,则P X=2=2×A22×A22A44=13.所以X的分布列为X012P 131313所以X的数学期望E X=0×13+1×13+2×13=1.2(2024·江苏扬州·模拟预测)甲、乙两人进行某棋类比赛,每局比赛时,若决出输赢则获胜方得2分,负方得0分;若平局则各得1分.已知甲在每局中获胜、平局、负的概率均为13,且各局比赛结果相互独立.(1)若比赛共进行了三局,求甲共得3分的概率;(2)规定比赛最多进行五局,若一方比另一方多得4分,则停止比赛,求比赛局数X的分布列与数学期望.【答案】(1)7 27;(2)分布列见解析,31781.【分析】(1)写出所有可能情形,利用互斥事件的概率和公式即可求出;(2)算出X为不同值时对应的概率并填写分布列,之后求出数学期望即可.【详解】(1)设“三局比赛后,甲得3分”为事件A,甲得3分包含以下情形:三局均为平局,三局中甲一胜一平一负,所以P A=133+A3313 3=727,故三局比赛甲得3分的概率为7 27 .(2)依题意知X的可能取值为2,3,4,5,P X=2=2×132=29,P X=3=2×C12133=427,P X=4=2×C12134+C1313 4=1081,P X=5=1-P X=2-P X=3-P X=4=1-29-427-1081=4181,故其分布列为:X2345P2942710814181期望E X=2×29+3×427+4×1081+5×4181=31781.3(2024·江苏南通·二模)某班组建了一支8人的篮球队,其中甲、乙、丙、丁四位同学入选,该班体育老师担任教练.(1)从甲、乙、丙、丁中任选两人担任队长和副队长,甲不担任队长,共有多少种选法?(2)某次传球基本功训练,体育老师与甲、乙、丙、丁进行传球训练,老师传给每位学生的概率都相等,每位学生传球给同学的概率也相等,学生传给老师的概率为17.传球从老师开始,记为第一次传球,前三次传球中,甲同学恰好有一次接到球且第三次传球后球回到老师手中的概率是多少?【答案】(1)9种(2)349.【分析】(1)法一,利用分步乘法计数原理集合组合数的计算,即可求得答案;法二,利用间接法,即用不考虑队长人选对甲的限制的所有选法,减去甲担任队长的选法,即可得答案;(2)考虑第一次传球,老师传给了甲还是传给乙、丙、丁中的任一位,继而确定第二次以及第三次传球后球回到老师手中的情况,结合乘法公式以及互斥事件的概率求法,即可求得答案.【详解】(1)法一,先选出队长,由于甲不担任队长,方法数为C13;再选出副队长,方法数也是C13,故共有方法数为C13×C13=9(种).方法二先不考虑队长人选对甲的限制,共有方法数为A 24=4×3=12(种);若甲任队长,方法数为C 13,故甲不担任队长的选法种数为12-3=9(种)答:从甲、乙、丙、丁中任选两人分别担任队长和副队长,甲不担任队长的选法共有9种.(2)①若第一次传球,老师传给了甲,其概率为14;第二次传球甲只能传给乙、丙、丁中的任一位同学,其概率为67;第三次传球,乙、丙、丁中的一位传球给老师,其概率为17,故这种传球方式,三次传球后球回到老师手中的概率为:14×67×17=398.②若第一次传球,老师传给乙、丙、丁中的任一位,其概率为34,第二次传球,乙、丙、丁中的一位传球给甲,其概率为27,第三次传球,甲将球传给老师,其概率为17,这种传球方式,三次传球后球回到老师手中的概率为34×27×17=398,所以,前三次传球中满足题意的概率为:398+398=349.答:前三次传球中,甲同学恰好有一次接到球且第三次传球后球回到老师手中的概率是349.4(2024·重庆·模拟预测)中国在第75届联合国大会上承诺,努力争取2060年之前实现碳中和(简称“双碳目标”).新能源电动汽车作为战略新兴产业,对于实现“双碳目标”具有重要的作用.赛力斯汽车有限公司为了调查客户对旗下AITO 问界M 7的满意程度,对所有的意向客户发起了满意度问卷调查,将打分在80分以上的客户称为“问界粉”.现将参与调查的客户打分(满分100分)进行了统计,得到如下的频率分布直方图:(1)估计本次调查客户打分的中位数(结果保留一位小数);(2)按是否为“问界粉”比例采用分层抽样的方法抽取10名客户前往重庆赛力斯两江智慧工厂参观,在10名参观的客户中随机抽取2名客户赠送价值2万元的购车抵用券.记获赠购车券的“问界粉”人数为ξ,求ξ的分布列和数学期望E ξ .【答案】(1)73.3分(2)分布列见解析;期望为35【分析】(1)根据频率分布直方图求解中位数的方法可得答案;(2)确定抽取的“问界粉”人数,再确定ξ的取值,求解分布列,利用期望公式求解期望.【详解】(1)由频率分布直方图可知:打分低于70分的客户所占比例为40%,打分低于80分的客户的所占比例为70%,所以本次调查客户打分的中位数在[70,80)内,由70+10×0.50-0.400.70-0.40=2203≈73.3,所以本次调查客户打分的中位数约为73.3分;(2)根据按比例的分层抽样:抽取的“问界粉”客户3人,“非问界粉”客户7人,则ξ的所有可能取值分别为0,1,2,其中:P (ξ=0)=C 03C 27C 210=715,P (ξ=1)=C 13C 17C 210=715,P (ξ=2)=C 23C 07C 210=115,所以ξ的分布列为:ξ012P715715115所以数学期望E (ξ)=0×715+1×715+2×115=35.5(2024·福建三明·三模)某校开设劳动教育课程,为了有效推动课程实施,学校开展劳动课程知识问答竞赛,现有家政、园艺、民族工艺三类问题海量题库,其中家政类占14,园艺类占14,民族工艺类占12.根据以往答题经验,选手甲答对家政类、园艺类、民族工艺类题目的概率分别为25,25,45,选手乙答对这三类题目的概率均为12.(1)求随机任选1题,甲答对的概率;(2)现进行甲、乙双人对抗赛,规则如下:两位选手进行三轮答题比赛,每轮只出1道题目,比赛时两位选手同时回答这道题,若一人答对且另一人答错,则答对者得1分,答错者得-1分,若两人都答对或都答错,则两人均得0分,累计得分为正者将获得奖品,且两位选手答对与否互不影响,每次答题的结果也互不影响,求甲获得奖品的概率.【答案】(1)35(2)4411000【分析】(1)利用全概率公式,即可求得答案;(2)求出乙答对的概率,设每一轮比赛中甲得分为X ,求出X 的每个值对应的概率,即可求得三轮比赛后,甲总得分为Y 的每个值相应的概率,即可得答案.【详解】(1)记随机任选1题为家政、园艺、民族工艺试题分别为事件A i i =1,2,3 ,记随机任选1题,甲答对为事件B ,则P A 1 =14,P A 2 =14,P A 3 =12,P B |A 1 =25,P B |A 2 =25,P B |A 3 =45,则P B =P A1 P B |A 1 +P A2 P B |A 2 +P A3 P B |A 3=14×25+14×25+12×45=35;(2)设乙答对记为事件C ,则P C =P A 1 P C |A 1 +P A 2 P C |A 2 +P A 3 P C |A 3 =14×12+14×12+12×12=12,设每一轮比赛中甲得分为X ,则P X =1 =P BC =P B P C =35×1-12 =310,P X =0 =P BC ∪BC =P BC +P CB=35×12+1-35 ×1-12 =12,P (X =-1)=P B C =1-35 ×12=15,三轮比赛后,设甲总得分为Y ,则P Y =3 =3103=271000,P Y =2 =C 23310 2×12=27200,P Y =1 =C 13×310×122+C 23×3102×15=2791000,所以甲最终获得奖品的概率为P =P Y =3 +P Y =2 +P Y =1 =271000+27200+2791000=4411000.6(2024·江苏南京·二模)某地5家超市春节期间的广告支出x (万元)与销售额y (万元)的数据如下:超市A B C D E 广告支出x 24568销售额y3040606070(1)从A ,B ,C ,D ,E 这5家超市中随机抽取3家,记销售额不少于60万元的超市个数为X ,求随机变量X 的分布列及期望E (X );(2)利用最小二乘法求y 关于x 的线性回归方程,并预测广告支出为10万元时的销售额.附:线性回归方程y =b x +a中斜率和截距的最小二乘估计公式分别为:b =ni =1x i y i -nx yni =1x 2i -nx2,a =y -b x .【答案】(1)X 的分布列见解析,期望E (X )=95(2)y=7x +17;预测广告费支出10万元时的销售额为87万元.【分析】(1)根据超几何分布的概率公式求解分布列,进而可求解期望,(2)利用最小二乘法求解线性回归方程即可.【详解】(1)从A ,B ,C ,D ,E 这5家超市中随机抽取3家,记销售额不少于60万元的超市有C ,D ,E 这3家超市,则随机变量X 的可能取值为1,2,3P (X =1)=C 13C 22C 35=310,P (X =2)=C 23C 12C 35=35,P (X =3)=C 33C 35=110,∴X 的分布列为:X123P31035110数学期望E (X )=1×310+2×35+3×110=95.(2)x =2+4+5+6+85=5,y =30+40+60+60+705=52,b=ni =1x i y i -nx yni =1x 2i -nx2=60+160+300+360+560-5×5×524+16+25+36+64-5×52=7,a=52-7×5=17.∴y 关于x 的线性回归方程为y=7x +17;在y =7x +17中,取x =10,得y =7×10+17=87.∴预测广告费支出10万元时的销售额为87万元.7(2024·重庆·三模)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为12,各局比赛的结果都相互独立,第1局甲当裁判.记随机变量X i =1,第i 局乙当裁判0,第i 局甲或丙当裁判, i =1,2,⋅⋅⋅,n ,p i =P X i =1 ,X 表示前n 局中乙当裁判的次数.(1)求事件“n =3且X =1”的概率;(2)求p i ;(3)求E X ,并根据你的理解,说明当n 充分大时E X 的实际含义.附:设X ,Y 都是离散型随机变量,则E X +Y =E X +E Y .【答案】(1)34;(2)p i =-13 ×-12i -1+13;(3)p i ,答案见解析。

概率与统计(解答题)(文科专用)(原卷版)五年(2018-2022)高考数学真题分项汇编(全国通用)

概率与统计(解答题)(文科专用)(原卷版)五年(2018-2022)高考数学真题分项汇编(全国通用)

专题16 概率与统计(解答题)(文科专用)1.【2022年全国甲卷】甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关? 附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d), P (K 2⩾k )0.100 0.050 0.010 k 2.7063.8416.6352.【2022年全国乙卷】某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:m 2)和材积量(单位:m 3),得到如下数据:并计算得∑x i 210i=1=0.038,∑y i 210i=1=1.6158,∑x i y i10i=1=0.2474. (1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量; (2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186m 2.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值. 附:相关系数r =i n i=1i √∑(x i −x̅)2ni=1∑(y i−y ̅)2ni=1√1.896≈1.377.3.【2021年甲卷文科】甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++4.【2021年乙卷文科】某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备和新设备生产产品的该项指标的样本平均数分别记为x和y,样本方差分别记为21s和22s.(1)求x,y,21s,22s;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x-≥认为有显著提高).5.【2020年新课标1卷文科】某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务6.【2019年新课标1卷文科】某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.7.【2019年新课标2卷文科】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602.8.【2018年新课标1卷文科】某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于30.35m的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)。

2021年高考数学(文)一轮复习讲义第11章高考专题突破六高考中的概率与统计统计案例

2021年高考数学(文)一轮复习讲义第11章高考专题突破六高考中的概率与统计统计案例

高考专题突破六高考中的概率与统计、统计案例统计与统计案例例1(2022·长沙市雅礼中学模拟)随着智能 的普及,使用 上网成为了人们日常生活的一局部,很多消费者对 流量的需求越来越大.某通信公司为了更好地满足消费者对流量的需求,准备推出一款流量包.该通信公司选了人口规模相当的4个城市采用不同的定价方案作为试点,经过一个月的统计,发现该流量包的定价x (单位:元/月)和购置总人数y (单位:万人)的关系如表:定价x (元/月) 20 30 50 60 年轻人(40岁以下) 10 15 7 8 中老年人(40岁以及40岁以上)20 15 3 2 购置总人数y (万人)30301010(1)计10元/月的流量包将有多少人购置(2)假设把50元/月以下(不包括50元)的流量包称为低价流量包,50元以上(包括50元)的流量包称为高价流量包,试运用独立性检验知识,填写下面列联表,并通过计算说明能否在犯错误的概率不超过0.01的前提下,认为购置人的年龄大小与流量包价格上下有关小于50元大于或等于50元总计 年轻人(40岁以下) 中老年人(40岁以及40岁以上)总计参考公式:y ^=b ^x +a ^,其中b ^=∑i =1nx i y i -n x y∑i =1nx 2i -n x2=i =1n (x i -x )(y i -y )i =1n (x i -x )2,a ^=y -b ^x .K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .参考数据:P (K 2≥k 0)0.100.050.0250.0100.0050.001解(1)x =20+30+50+604=40,y =30+30+10+104=20,b ^=i =1n (x i -x )(y i -y )2i =1n (x i -x )2=-20×10-10×10+10×(-10)+20×(-10)(-20)2+(-10)2+102+202=-0.6,a ^=y -b ^x =20-(-0.6)×40=44, 所以y 关于x 的回归方程是y ^=-0.6x +44,当x =10时,y =38,估计10元/月的流量包将有38万人购置. (2)K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d )=80×(25×5-35×15)60×20×40×40≈6.667,因为6.667>6.635,所以能在犯错误的概率不超过0.01的前提下,认为购置人的年龄大小与流量包价格上下有关. 思维升华统计与统计案例在解答题中考查时,以频率分布直方图、线性回归方程与独立性检验为重点,充分表达了数学核心素养——数据分析.跟踪训练1(2022·湖北省荆、荆、襄、宜四地七校联考)为积极响应国家“阳光体育运动〞的号召,某学校在了解到学生的实际运动情况后,发起以“走出教室,走到操场,走到阳光〞为口号的课外活动建议.为调查该校学生每周平均体育运动时间的情况,从高一、高二根底年级与高三三个年级学生中按照4∶3∶3的比例分层抽样,收集300位学生每周平均体育运动时间的样本数据(单位:小时),得到如下列图的频率分布直方图.(高一年级共有1200名学生)(1)据图估计该校学生每周平均体育运动时间.并估计高一年级每周平均体育运动时间缺乏4小时的人数;(2)规定每周平均体育运动时间不少于6小时记为“优秀〞,否那么为“非优秀〞,在样本数据中,有30位高三学生的每周平均体育运动时间不少于6小时,请完成以下2×2列联表,并判断是否有99%的把握认为“该校学生的每周平均体育运动时间是否‘优秀’与年级有关.〞根底年级高三 总计 优秀 非优秀 总计300附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ).参考数据:P (K 2≥k 0)0.100 0.050 0.010 0.005 k 02.7063.8416.6357.879解(1)该校学生每周平均体育运动时间为x =1×0.05+3×0.2+5×0.3+7×0.25+9×0.15+11×0.05=5.8,样本中高一年级每周平均体育运动时间缺乏4小时的人数为300×410×(0.025×2+0.100×2)=30.又样本中高一的人数有120,所以估计高一年级每周平均体育运动时间缺乏4小时的人数约为1200×30120=300.(2)列联表如下:根底年级 高三 总计 优秀 105 30 135 非优秀 105 60 165 总计21090300K 2=300×(105×60-105×30)2210×90×135×165=70099≈7.071, 因为7.071>6.635,所以有99%的把握认为“该校学生的每周平均体育运动时间是否优秀与年级有关〞.古典概型与统计的综合应用例2(2022·华中师大附中、实验中学、广雅中学、深圳中学四校联考) 汉字听写大会 不断创收视新高,为了防止“书写危机〞,弘扬传统文化,某市对全市10万名市民进行了汉字听写测试,现从某社区居民中随机抽取25名市民进行听写测试情况,发现被测试市民正确书写汉字的个数全部在160到184之间,将测试结果按如下方式分成六组:第一组[160,164),第二组[164,168),…,第六组[180,184],如图是按上述分组方法得到的频率分布直方图. (1)假设电视台记者要从抽取的市民中选1人进行采访,求被采访人恰好在第1组或第4组的概率;(2)第1组市民中男性有3名,组织方要从第1组中随机抽取2名市民组成弘扬传统文化宣传队,求至少有1名女性被选中的概率.解(1)被采访人恰好在第1组或第4组的频率为(0.05+0.02)×4=0.28, ∴估计被采访人恰好在第1组或第4组的概率为0.28. (2)第1组[160,164)的人数为0.05×4×25=5, ∴第1组中共有5名市民,那么其中女性市民共2名,记第1组中的3名男性市民分别为A ,B ,C,2名女性市民分别为x ,y ,从第1组中随机抽取2名市民组成宣传队,共有10个根本领件,列举如下:AB ,AC ,Ax ,Ay ,BC ,Bx ,By ,Cx ,Cy ,xy ,至少有1名女性Ax ,Ay ,Bx ,By ,Cx ,Cy ,xy ,共7个根本领件,∴从第1组中随机抽取2名市民组成弘扬传统文化宣传队,至少有1名女性的概率为710.思维升华古典概型与统计的综合题一般是先给出样本数据或样本数据的分布等,解题中首先要把数据分析清楚,明确频率可近似替代概率,抽象得到古典概型,把握根本领件的构成要素.跟踪训练2(2022·汉中模拟)槟榔原产于马来西亚,在中国主要分布在云南、海南及台湾等热带地区.槟榔是重要的中药材,在南方一些少数民族还将果实作为一种咀嚼嗜好品,但其被世界卫生组织国际癌症研究机构列为致癌物清单Ⅰ类致癌物.云南某民族中学为了解A ,B 两个少数民族班的学生咀嚼槟榔的情况,分别从这两个班中随机抽取5名学生进行调查,将他们平均每周咀嚼槟榔的颗数作为样本,绘制成如下列图的茎叶图(图中的茎表示十位数字,叶表示个位数字).(1)你能否估计哪个班的学生平均每周咀嚼槟榔的颗数较多(2)从A 班不超过19的样本数据中随机抽取一个数据记为a ,从B 班不超过21的样本数据中随机抽取一个数据记为b ,求a ≥b 的概率.解(1)A 班样本数据的平均值为15(9+11+14+20+31)=17,由此估计A 班学生平均每周咀嚼槟榔的颗数为17; B 班样本数据的平均值为15(11+12+21+25+26)=19,由此估计B 班学生平均每周咀嚼槟榔的颗数为19, 故估计B 班学生平均每周咀嚼槟榔的颗数较多.(2)A 班样本数据中不超过19的数据a 有3个,分别为9,11,14,B 班样本数据中不超过21的数据b 也有3个,分别为11,12,21.从A 班和B 班的样本数据中各随机抽取一个共有9种不同情况,分别为(9,11),(9,12),(9,21),(11,11),(11,12),(11,21),(14,11),(14,12),(14,21). 其中a ≥b 的情况有(11,11),(14,11),(14,12)3种, 故a ≥b 的概率P =39=13.古典概型与统计案例的综合应用例3(2022·河南八市重点高中联考)某县一中学的同学为了解本县成年人的交通平安意识情况,利用假期进行了一次全县成年人平安知识抽样调查.该县成年人中40%的人拥有驾驶证,先根据是否拥有驾驶证,用分层抽样的方法抽取了100名成年人,然后对这100人进行问卷调查,所得分数的频率分布直方图如下列图.规定分数在80以上(含80)的为“平安意识优秀〞.拥有驾驶证没有驾驶证总计 得分优秀 得分不优秀25 总计100(1)补全上面2×驶证〞有关(2)假设规定参加调查的100人中分数在70以上(含70)的为“平安意识优良〞,从参加调查的100人中根据平安意识是否优良,按分层抽样的方法抽出5人,再从5人中随机抽取3人,试求抽取的3人中恰有一人为“平安意识优良〞的概率. 附表及公式:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .P (K 2≥k 0)0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 02.0722.7063.8415.0246.6357.87910.828解(1)列联表为K 2=100×(15×55-25×5)240×60×20×80=122596≈12.76>6.635, 所以有超过99%的把握认为“平安意识优秀与是否拥有驾驶证〞有关.(2)由频率分布直方图可求得70分以上(含70)的人数为100×(0.020+0.015+0.005)×10=40,所以按分层抽样的方法抽出5人时,“平安意识优良〞的有2人.记“平安意识优良〞的人分别为1,2,其余的3人分别为a ,b ,c ,从中随机抽取3人,根本领件有(1,2,a ),(1,2,b ),(1,2,c ),(1,a ,b ),(1,a ,c ),(1,b ,c ),(2,a ,b ),(2,a ,c ),(2,b ,c ),(a ,b ,c ),共10个,恰有一人为“平安意识优良〞的事件有6个,所以恰有一人为“平安意识优良〞的概率P =610=35.思维升华古典概型与统计案例相结合,要注意理解实际问题的意义,掌握独立性检验的计算公式及古典概型的根本领件的构成,才能有效地解决问题.跟踪训练3(2022·娄底期末)H 大学就业指导中心对该校毕业生就业情况进行跟踪调查,发现不同的学历对就业专业是否为所学专业有影响,就业指导中心从2022届的毕业生中,抽取了本科和研究生各50名,得到下表中的数据.(1)业生学历有关;(2)为了进一步分析和了解本科毕业生就业的问题,按分层抽样的原那么从本科毕业生中抽取一个容量为5的样本,要从5人中任选2人参加座谈,求被选取的2人中至少有1人就业为非所学专业的概率.附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),n =a +b +c +d .解(1)由题意知,K 2=100(30×5-45×20)275×25×50×50=12>6.635,故能在犯错概率不超过0.01的前提下认为就业专业是否为所学专业与毕业生学历有关. (2)由题意知,所取样本中本科毕业生就业为所学专业的为3人,设为A ,B ,C ,非所学专业的为2人,设为a ,b .从5人中任选2人,其结果有(A ,B ),(A ,C ),(A ,a ),(A ,b ),(B ,C ),(B ,a ),(B ,b ),(C ,a ),(C ,b ),(a ,b ),共10种.记“至少有1人就业为非所学专业〞为事件S ,共有(A ,a ),(A ,b ),(B ,a ),(B ,b ),(C ,a ),(C ,b ),(a ,b )7种情况,所以P (S )=710,即所求概率为710.例(12分)(2022·北京)改革开放以来,人们的支付方式发生巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(1)(2)从样本仅使用B 的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率; (3)上个月样本学生的支付方式在本月没有变化.现从样本仅使用B 的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(2)的结果,能否认为样本仅使用B 的学生中本月支付金额大于2000元的人数有变化说明理由. 标准解答解(1)由题意知,样本中仅使用A 的学生有27+3=30(人),仅使用B 的学生有24+1=25(人),A ,B 两种支付方式都不使用的学生有5人,故样本中A ,B 两种支付方式都使用的学生有100-30-25-5=40(人).[2分] 估计该校学生中上个月A ,B 两种支付方式都使用的人数为40100×1000=400.[4分](2)记事件C为“从样本仅使用B的学生中随机抽取1人,该学生上个月的支付金额大于2000元〞,=0.04,[8分]那么P(C)=125(3)记事件E为“从样本仅使用B的学生中随机抽查1人,该学生本月的支付金额大于2000元〞.假设样本仅使用B的学生中,本月支付金额大于2000元的人数没有变化,那么由(2)知,P(E)=0.04.[10分]答案例如1:可以认为有变化.理由如下:P(E)比较小,概率比较小的事件一般不容易发生.一旦发生,就有理由认为本月的支付金额大于2000元的人数发生了变化,所以可以认为有变化.[12分]答案例如2:无法确定有没有变化,理由如下:事件E是随机事件,P(E)比较小,一般不容易发生,但还是有可能发生的,所以无法确定有没有变化.[12分]第一步:审清题意,理清条件和结论,找到关键数量关系.第二步:找数量关系,把图表语言转化为数字,将图表中的数字转化为公式中的字母.第三步:建立解决方案,找准公式,根据图表数据代入公式计算数值.第四步:作出判断得结论,依据题意,借助数表作出正确判断.第五步:反思回忆,查看关键点、易错点和答题标准性.1.(2022·南宁适应性测试)某电子商务平台的管理员随机抽取了1000位上网购物者,并对其年龄(在10岁到69岁之间)进行了调查,统计情况如表所示.[30,40)(1)求a,b的值;(2)假设将年龄在[30,50)内的上网购物者定义为“消费主力军〞,其他年龄段内的上网购物者定义为“消费潜力军〞.现采用分层抽样的方式从参与调查的1000位上网购物者中抽取5人,再从这5人中抽取2人,求这2人中至少有一人是消费潜力军的概率.解(1)由题意得⎩⎪⎨⎪⎧a +b =500,ab =40000,a >b ,解得a =400,b =100.(2)由题意可知,在抽取的5人中,有3人是消费主力军,分别记为a 1,a 2,a 3,有2人是消费潜力军,分别记为b 1,b 2.记“这2人中至少有一人是消费潜力军〞为事件A .从这5人中抽取2人所有可能的情况为(a 1,a 2),(a 1,a 3),(a 1,b 1),(a 1,b 2),(a 2,a 3),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2),共10种.符合事件A 的有(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2),共7种.故所求概率为P (A )=710.2.(2022·南阳一中模拟)某校在一次期末数学测试中,为统计学生的考试情况,从学校的2000名学生中随机抽取50名学生的考试成绩,被测学生成绩全部介于60分到140分之间(总分值150分),将统计结果按如下方式分成八组:第一组[60,70),第二组[70,80),…,第八组[130,140],如图是按上述分组方法得到的频率分布直方图的一局部. (1)求第七组的频率,并完成频率分布直方图;(2)估计该校的2000名学生这次考试成绩的平均分(可用区间中点值代替各组数据平均值); (3)假设从样本成绩属于第一组和第六组的所有学生中随机抽取2名,求他们的分差小于10分的概率.解(1)由频率分布直方图知第七组的频率f 7=1-(0.004+0.012+0.016+0.03+0.02+0.006+0.004)×10=0.08.频率分布直方图如图.(2)估计该校的2000名学生这次考试的平均成绩为(3)第六组有学生3人,分别记作A 1,A 2,A 3,第一组有学生2人,分别记作B 1,B 2,那么从中任取2人的所有根本领件为(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(A 1,A 2),(A 1,A 3),(A 2,A 3),(B 1,B 2),共10个.分差大于10分表示所选2人来自不同组,其根本领件有6个:(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),所以从中任意抽取2人,分差小于10分的概率P =410=25.3.(2022·内江模拟)基于移动网络技术的共享单车被称为“新四大创造〞之一,短时间内就风行全国,给人们带来新的出行体验,某共享单车运营公司的市场研究人员为了了解公司的经营状况,对公司最近6个月的市场占有率y %进行了统计,结果如下表:出y 关于x 的线性回归方程;如果不能,请说明理由;(2)根据调研数据,公司决定再采购一批单车扩大市场,从本钱1000元/辆的A 型车和800元/辆的B 型车中选购一种,两款单车使用寿命频数如下表:假设每辆单车的使用寿命都是整数年,用频率估计每辆车使用寿命的概率,以平均每辆单车所产生的利润的估计值为决策依据,如果你是公司负责人,会选择采购哪款车型 参考数据:i =16(x i -x )(y i -y )=35,i =16(x i -x )2=17.5,i =16(y i -y )2=76,1330≈36.5.参考公式:相关系数r =i =1n (x i -x )(y i -y )i =1n (x i -x )2i =1n (y i -y )2,b ^=i =1n (x i -x )(y i -y )i =1n (x i -x )2,a ^=y -b ^x .解(1)由表格中数据可得,x =3.5,y =16.∵r =i =1n (x i -x )(y i -y )i =1n (x i -x )2i =1n (y i -y )2=3517.5×76=351330≈0.96.∴y 与月份代码x 之间具有较强的相关关系,故可用线性回归模型拟合两变量之间的关系.b ^=i =1n (x i -x )(y i -y )i =1n (x i -x )2=3517.5=2. ∴a ^=y -b ^x =16-2×3.5=9, ∴关于x 的线性回归方程为y ^=2x +9. (2)这100辆A 款单车平均每辆车的利润为1100(-500×10+0×30+500×40+1 000×20)=350(元), 这100辆B 款单车平均每辆车的利润为1100(-300×15+200×40+700×35+1 200×10)=400(元), ∴用频率估计概率,A 款单车与B 款单车平均每辆的利润估计值分别为350元、400元,应采购B 款车型.4.(2022·湖南长沙雅礼中学、河南省实验中学联考)环境问题是当今世界共同关注的问题,我国环保总局根据空气污染指数PM2.5浓度,制定了空气质量标准:指数,绘制了频率分布直方图,经过分析研究,决定从2022年11月1日起在空气质量重度污染和严重污染的日子对机动车辆限号出行,即车牌尾号为单号的车辆单号出行,车牌尾号为双号的车辆双号出行(尾号是字母的,前13个视为单号,后13个视为双号).王先生有一辆车,假设11月份被限行的概率为0.05. (1)求频率分布直方图中m 的值;(2)假设按分层抽样的方法,从空气质量良好与中度污染的天气中抽取6天,再从这6天中随机抽取2天,求至少有一天空气质量是中度污染的概率;(3)该市环保局为了调查汽车尾气排放对空气质量的影响,对限行两年来的11月份共60天的空气质量进行统计,其结果如下表:90%的把握认为空气质量的优良与汽车尾气的排放有关.参考数据:参考公式:K 2=(a +b )(c +b )(a +c )(b +d ),其中n =a +b +c +d .解(1)因为限行分单双号,王先生的车被限行的概率为0.05, 所以空气重度污染和严重污染的概率应为0.05×2=0.1,由频率分布直方图可知(0.004+0.006+0.005+m )×50+0.1=1,解得m =0.003. (2)因为空气质量良好与中度污染的天气的概率之比为0.3∶0.15=2∶1,按分层抽样的方法从中抽取6天,那么空气质量良好的天气被抽取的有4天,记作A 1,A 2,A 3,A 4,空气中度污染的天气被抽取的有2天,记作B 1,B 2,从这6天中随机抽取2天,所包含的根本领件有(A 1,A 2),(A 1,A 3),(A 1,A 4),(A 1,B 1),(A 1,B 2),(A 2,A 3),(A 2,A 4),(A 2,B 1),(A 2,B 2),(A 3,A 4),(A 3,B 1),(A 3,B 2),(A 4,B 1),(A 4,B 2),(B 1,B 2),共15个,记事件A 为“至少有一天空气质量是中度污染〞,那么事件A 所包含的事件有(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(A 4,B 1),(A 4,B 2),(B 1,B 2),共9个,故P (A )=915=35,即至少有一天空气质量是中度污染的概率为35.(3)2×2列联表如下:由表中数据可得,K 2=240×(90×22-90×38)2180×60×128×112≈3.214>2.706,所以有90%的把握认为空气质量的优良与汽车尾气的排放有关.5.某公司方案购置1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购置这种零件作为备件,每个200元.在机器使用期间,如果备件缺乏再购置,那么每个500元.现需决策在购置机器时应同时购置几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图.记x 表示1台机器在三年使用期内需要更换的易损零件数,y 表示1台机器在购置易损零件上所需要的费用(单位:元),n 表示购机的同时购置的易损零件数. (1)假设n =19,求y 与x 的函数解析式;(2)假设要求“需更换的易损零件数不大于n 〞的频率不小于0.5,求n 的最小值;(3)假设这100台机器在购机的同时每台都购置19个易损零件,或每台都购置20个易损零件,分别计算这100台机器在购置易损零件上所需费用的平均数,以此作为决策依据,购置1台机器的同时应购置19个还是20个易损零件 解(1)当x ≤19时,y =3800;当x >19时,y =3800+500(x -19)=500x -5700. 所以y 与x 的函数解析式为y =⎩⎪⎨⎪⎧3800,x ≤19,500x -5700,x >19(x ∈N ). (2)由柱状图知,需要更换的零件数不大于18的频率为0.46,不大于19的频率为0.7,故n 的最小值为19.(3)假设每台机器在购机同时都购置了19个易损零件,那么这100台机器中有70台购置易损零件的费用为3800,20台的费用为4300,10台的费用为4800,因此这100台机器在购置易损零件上所需费用的平均数为1100(3800×70+4300×20+4800×10)=4000; 假设每台机器在购机同时都购置20个易损零件,那么这100台机器中有90台在购置易损零件上的费用为4000,10台的费用为4500,因此这100台机器在购置易损零件上所需费用的平均数为1100×(4000×90+4500×10)=4050.比较两个平均数可知,购置1台机器的同时应购置19个易损零件.。

专题27 数列问题-2021年新高考数学题型全归纳之概率统计(原卷版)

专题27 数列问题-2021年新高考数学题型全归纳之概率统计(原卷版)

专题27 数列问题例1. 随着5G 商用进程的不断加快,手机厂商之间围绕5G 用户的争夺越来越激烈,5G 手机也频频降价飞入寻常百姓家.某科技公司为了打开市场,计划先在公司进行“抽奖免费送5G 手机”优惠活动方案的内部测试,测试成功后将在全市进行推广.(1)公司内部测试的活动方案设置了第()+∈i i N 次抽奖中奖的名额为+32i ,抽中的用户退出活动,同时补充新的用户,补充新用户的名额比上一次中奖用户的名额少2个.若某次抽奖,剩余全部用户均中奖,则活动结束.参加本次内部测试第一次抽奖的有15人,甲、乙均在其中. ①请分别求出甲在第一次中奖和乙在第二次中奖的概率; ②请求出甲参加抽奖活动次数的分布列和期望.(2)由于该活动方案在公司内部的测试非常顺利,现将在全市进行推广. 报名参加第一次抽奖活动的有20万用户,该公司设置了第()+∈i i N 次抽奖中奖的概率为+-=9(1)40ii P ,每次中奖的用户退出活动,同时补充相同人数的新用户,抽奖活动共进行()+∈2n n N 次,已知用户丙参加了第一次抽奖,并在这2n 次抽奖活动中中奖了,在此条件下,求证:用户丙参加抽奖活动次数的均值小于92.例2. 某几位大学生自主创业创办了一个服务公司提供A 、B 两种民生消费产品(人们购买时每次只买其中一种)服务,他们经过统计分析发现:第一次购买产品的人购买A 的概率为23、购买B 的概率为13,而前一次购买A 产品的人下一次来购买A 产品的概率为14、购买B 产品的概率为34,前一次购买B 产品的人下一次来购买A 产品的概率为12、购买B 产品的概率也是12,如此往复.记某人第n 次来购买A 产品的概率为n P .(1)求2P ,并证明数列⎧⎫-⎨⎬⎩⎭25n P 是等比数列; (2)记第二次来公司购买产品的3个人中有X 个人购买A 产品,求X 的分布列并求()E X ;(3)经过一段时间的经营每天来购买产品的人稳定在800人,假定这800人都已购买过很多次该两款产品,那么公司每天应至少准备A 、B 产品各多少份.(直接写结论、不必说明理由).例3. 从原点出发的某质点M ,按向量()0,1a =移动的概率为23,按向量()0,2b =移动的概率为13,设M 可到达点()0,n 的概率为n P(1)求1P 和2P 的值;(2)求证:()21113n n n n P P P P +++-=--;(3)求n P 的表达式.例4. 某人玩硬币走跳棋的游戏。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学-概率一、选择题1.下列事件属于不可能事件的为().A.连续投掷骰子两次,掷得的点数和为4B.连续投掷骰子两次,掷得的点数和为8C.连续投掷骰子两次,掷得的点数和为12D.连续投掷骰子两次,掷得的点数和为162.给出下列事件:①同学甲竞选班长成功;②两球队比赛,强队胜利了;③一所学校共有730名学生,至少有三名学生的生日相同;④若集合A,B,C,满足A⊆B,B⊆C,则A⊆C;⑤古代有一个国王想处死一位画师,背地里在2张签上都写上“死”字,再让画师抽“生死签”,画师抽到死签;⑥7月天下雪;⑦从1,3,9中任选两数相加,其和为偶数;⑧骑车通过10个十字路口,均遇红灯.其中属于随机事件的有().A.3个B.4个C.5个D.6个3.每道选择题都有4个选择支,其中只有1个选择支是正确的.某次考试共有12道选择题,如果每题都选择第一个选择支,则结果是().A.恰有3道题选对B.选对的题数与3无一定大小关系C.至多选对3道题D.至少选对3道题4.下列事件属于必然事件的为().A.没有水分,种子发芽B.电话铃响一声时就被接听C.实数的平方为正数D.全等三角形的面积相等5.在10件同类产品中,其中8件为正品,2件为次品.从中任意抽出3件时,必然事件是().A.3件都是正品B.至少有1件是次品C.3件都是次品D.至少有1件是正品6.事件A的概率P(A)必须满足().A.0<P(A)<1B.P(A)=1C.0≤P(A)≤1D.P(A)=0或17.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是().A.至少有1个白球;都是白球B.至少有1个白球;至少有一个红球C.恰有一个白球;恰有2个白球D.至少有一个白球;都是红球8.如果事件A,B互斥,那么().A.A+B是必然事件B.错误!未找到引用源。

是必然事件C.错误!未找到引用源。

与错误!未找到引用源。

一定互斥D.错误!未找到引用源。

与错误!未找到引用源。

一定不互斥9.将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是().A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

10.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1,2,3,4,5,6),骰子朝上的面的点数分别为X,Y,则log2X Y=1的概率为().A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

二、填空题11.向面积为S的△ABC内任投一点P,则随机事件“△PBC的面积小于错误!未找到引用源。

”的概率为.12.任意投掷两枚骰子,出现点数相同的概率为.13.在圆心角为150°的扇形AOB中,过圆心O作射线交弧AB于P,则同时满足∠AOP ≥45°且∠BOP≥75°的概率为.14.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率为0.42,摸出白球的概率是0.28.若红球有21个,则黑球有个.15.若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷2次,则出现向上的点数之和为4的概率是.16.把两封不同的信投入A,B两个信箱,A,B两信箱中各有1封信的概率为.三、解答题17.一盒中装有各色球12个,其中5个红球、4个黑球、2个白球、1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率;(2)取出的1球是红球或黑球或白球的概率.18.现有8名奥运会志愿者,其中志愿者A1,A2,A3通晓日语,B1,B2,B3通晓俄语,C1,C2通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(1)求A1被选中的概率;(2)求B1和C1不全被选中的概率.19.为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下:5,6,7,8,9,10.把这6名学生的得分看成一个总体.(1)求该总体的平均数;(2)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率.20.设有关于x的一元二次方程x2+2ax+b2 =0.若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.21.某初级中学共有学生2 000名,各年级男、女生人数如下表:(1)已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19.求x的值;(2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?(3)已知y≥245,z≥245,求初三年级中女生比男生多的概率.参考答案一、选择题1.D解析:两次点数和的最大值为12.2.C解析:①②③⑥⑧为随机事件.3.B解析:由于每次试验的结果都是随机的,因而不能保证做12次试验中,一定有3道题是正确的,也不能保证选对的题数大于(或小于)3.4.D解析:C中实数的平方是非负才是正确的.5.D解析:因次品共2件,故抽出的3件中至少有1件为正品.6.C解析:概率的第一条基本性质.7.C解析:恰有一个白球,便不再可能恰有2个白球,且恰有一个白球与恰有2个白球的事件不可能“必有一个发生”.8.B解析:借助集合的Venn图加以理解,错误!未找到引用源。

为全集.9.D解析:抛掷3次,共有6×6×6=216个事件总数.一次也不出现6,则每次抛掷都有5种可能,故一次也未出现6的事件总数为5×5×5=125.于是P(没有出现一次6点向上)=错误!未找到引用源。

.∴P(至少出现一次6点向上)=1-P(没有出现一次6点向上)=错误!未找到引用源。

.10.C解析:总事件数为36种.而满足条件的(X,Y)为(1,2),(2,4),(3,6),共3种情形.二、填空题11.答案:错误!未找到引用源。

.解析:作△ABC的边BC上的高AD,取E∈AD且ED=错误!未找到引用源。

,过E作直线MN∥BC分别交AB于M,AC于N,则当P落在梯形BCNM内时,△PBC的面积小于△ABC的面积的错误!未找到引用源。

,故P=错误!未找到引用源。

=错误!未找到引用源。

.12.答案:错误!未找到引用源。

.解析:总事件数为6×6=36种,相同点数的有6种情形.13.答案:错误!未找到引用源。

.解析:P点只能在中间一段弧上运动,该弧所对的圆心角为150°-45°-75°,就是30°,P=错误!未找到引用源。

=错误!未找到引用源。

.14.答案:15.解析:1-0.42-0.28=0.30,21÷0.42=50,50×0.30=15.15.答案:错误!未找到引用源。

.解析:基本事件共6×6 个,点数和为4 的有(1,3)、(2,2)、(3,1)共3 个,故P=错误!未找到引用源。

=错误!未找到引用源。

.16.答案:错误!未找到引用源。

.解析:分别记两封信为a,b,共有投法(即所有基本事件)为:A中a,b,B中无;A 中a,B中b;A中b,B中a;A中无,B中a,b,共有4种,并且这4种投法都是等可能的.其中A中投1封,B中投1封的有2种投法,故所求概率为错误!未找到引用源。

.三、解答题17.解法1:(1)从12个球中任取1球得红球有5种取法,得黑球有4种取法,得红球或黑球共有5+4=9种不同取法,任取1球有12种取法.∴任取1球得红球或黑球的概率为P1=错误!未找到引用源。

=错误!未找到引用源。

.(2)从12只球中任取一球得红球有5种取法,得黑球有4种取法,得白球有2种取法.从而得红球或黑球或白球的概率为错误!未找到引用源。

.解法2:(利用互斥事件求概率)记事件A1={任取1球为红球},A2={任取一球为黑球},A3={任取一球为白球},A4={任取一球为绿球},则P(A1)=错误!未找到引用源。

,P(A2)=错误!未找到引用源。

,P(A3)=错误!未找到引用源。

,P(A4)=错误!未找到引用源。

.根据题意知,事件A1,A2,A3,A4彼此互斥,由互斥事件概率公式,得(1)取出1球为红球或黑球的概率为P(A1+A2)=P(A1)+P(A2)=错误!未找到引用源。

+错误!未找到引用源。

=错误!未找到引用源。

.(2)取出1球为红球或黑球或白球的概率为P(A1+A2+A3)=P(A1)+P(A2)+P(A3)=错误!未找到引用源。

+错误!未找到引用源。

+错误!未找到引用源。

=错误!未找到引用源。

.解法3:(利用对立事件求概率的方法)(1)由解法2知,取出1球为红球或黑球的对立事件为取出一白球或绿球,即A1+A2的对立事件为A3+A4.所以取得一红球或黑球的概率为P(A1+A2)=1-P(A3+A4)=1-P(A3)-P(A4)=1-错误!未找到引用源。

-错误!未找到引用源。

=错误!未找到引用源。

.(2)A1+A2+A3的对立事件为A4,所以P(A1+A2+A3)=1-P(A4)=1-错误!未找到引用源。

=错误!未找到引用源。

.18.解:(1)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2),(A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2),(A2,B3,C1),(A2,B3,C2),(A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B2,C2),(A3,B3,C1),(A3,B3,C2)}.由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.用M表示“A1恰被选中”这一事件,则M={(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2)},事件M由6个基本事件组成,因而P(M)=错误!未找到引用源。

=错误!未找到引用源。

.(2)用N表示“B1,C1不全被选中”这一事件,则其对立事件错误!未找到引用源。

表示“B1,C1全被选中”这一事件,由于错误!未找到引用源。

={(A1,B1,C1),(A2,B1,C1),(A3,B1,C1)},事件错误!未找到引用源。

有3个基本事件组成,所以P(错误!未找到引用源。

)=错误!未找到引用源。

=错误!未找到引用源。

,由对立事件的概率公式得P(N)=1-P(错误!未找到引用源。

相关文档
最新文档