【数学】数学旋转的专项培优练习题(含答案)附答案

合集下载

苏教版四年级数学下册第一单元 平移、旋转和轴对称专项试卷附答案

苏教版四年级数学下册第一单元 平移、旋转和轴对称专项试卷附答案

苏教版四年级数学下册单元培优测试卷第一单元平移、旋转和轴对称一、填空。

(每空1分,共32分)1.欣赏下面图形,它们分别是通过什么变换得到的?(填“平移”或“旋转”)( ) ( ) ( ) ( )2.钟面上的分针从3:30到3:45,按( )时针方向旋转了( )°。

3.正方形有( )条对称轴,长方形有( )条对称轴,圆有( )条对称轴。

4.寓意深远的汉字文化中也蕴含着数学的美,在“昌、日、比、台、正、全”这些汉字中,有( )个轴对称的字。

5.如图中,五角星向( )平移了( )格;六边形向( )平移了( )格;长方形向( )平移了( )格。

6.观察上图中①绕点O顺时针旋转90°到图形( )所在的位置,( )绕点O( )时针旋转90°到图形③所在的位置。

7.如果把上图中这串葡萄从托盘中取出来,指针会( )时针旋转( )°。

8.体育课上,当老师喊“立正,向左转”时,你的身体( )时针旋转( )°;当老师喊“立正,向右转”时,你的身体( )时针旋转( )°。

9.右图中:(1)图形B向下平移可以得到图形( )。

(2)与图形C可以组成轴对称图形的是图形( )、( )和( )。

(3)图形A绕点M顺时针旋转90°得到图形( )。

(4)图形E绕点M逆时针旋转90°得到图形( )。

(5)图形F绕点N逆时针旋转180°得到图形( )。

二、选择。

(将正确答案的字母填在括号里)(每小题2分,共12分)1.每年的12月2日是全国交通安全日。

下列交通标志中,是轴对称图形的有( )个。

禁止驶入禁止直行两侧变窄T形交叉直行注意行人A.2 B.3 C.4 D.5 2.这是一个电风扇开关,数字表示风速档。

现在风扇在“1”档运行,如果要关闭,可将旋钮( )。

A.按顺时针方向旋转90°B.按顺时针方向旋转120°C.按逆时针方向旋转90°D.按逆时针方向旋转120°3.把任意一个图形绕任意点顺时针旋转( ),又回到了原来的位置。

七年级数学尖子生培优竞赛专题辅导第十八讲 平移、对称、旋转(含答案)

七年级数学尖子生培优竞赛专题辅导第十八讲 平移、对称、旋转(含答案)

第十八讲平移、对称、旋转趣题引路】如图18-1,已知△ABC内有一点M,沿着平行于边BC的直线运动到CA边上时,再沿着平行于AB的直线运动到BC边时,又沿着平行于AC直线运动到AB边时,再重复上述运动,试证:点M最后必能再经过原来的出发点证明设点M运动过程中依次与三角形的边相遇于点A1,B1,B2,C2,C3,A3,A4,B5,….易知△AC2B₂≌△A1CB1≌△A3C3B.按点M平移的路线,△A C2B2可由△A1CB1平移得到;△A3C3B可由△AC2B2平移得到;△A1CB1可由△A3C3B平移得到,此时,A3应平移至A4,所以A4与A1重合.而这时的平移方向恰与点M开始平移时的方向一致,因此从A3平移到A1的过程中必经过点M,这表明在第七步时,点M又回到了原来的出发点.图18-1知识拓展】1.平移、对称和旋转是解决平面几何问题常用的三种图形变换方法,它们零散地分布在初中几何教材之中.例如,平行四边形的对边可以看成是平行移动而形成,这里的平行移动,就是平移变换.2.一般地,把图形F上的所有点都按照一定的方向移动一定距离形成图形F'.则由F到F'的变换叫做平移变换,简称平移.由此可知,线段平移可以保持长短、方向不变,角、三角形等图形平移保持大小不变.将平面图形F变到关于直线l成轴对称的图形F',这样的几何变换简称为对称,它可使线段、角大小不变.3.将平面图形F绕着平面内的一个定点O旋转一个定角a到图形F',由F到F'的变换简称为旋转.旋转变换下两点之间的距离不变,两直线的夹角不变,且对应直线的夹角等于旋转角.4.运用平移、对称或旋转变换,能够集中图形中的已知条件,沟通各条件间的联系.例1 已知:如图18-2,△ABC中,AD平分∠CAB,交BC于D,过BC中点E作AD的平行线交AB于F,交CA的延长线于C.求证:2ACAB=CG=BF.图18-2解析直接证三角形全等或者用角平分线定理显然不能解决问题.注意到要证式的形式,条件中又有角平分线和中点,如果能切分BF、CG,使分出的两部分一部分是AB的一半,余下的是AC的一半,问题就解决了.由中点,我们不难想到中位线,两条有推论效力的辅助线(EH和EI)就产生了,H、I切分了BF、CG,由平行线性质∠1=∠2=∠3=∠4=∠6,再由中位线定理,等腰三角形的判定定理,切分后的结论不难证明.略证过E作AC、AB的平行线交AB、AC于H、I,由平行线性质及已知条件得,∠1=∠2=∠3=∠4=∠6, ∴EI =GI ,EH =FH .∵E 为BC 中点,EH ∥AC ,EI ∥AB , ∴EI =2AB =BH ,EH =2AC=CI , ∴EI =GI =2AB=BH , FH =EH =2AC=CI . 由于BF =BH +FH , CG =GI +CI , ∴2ACAB =BF =CG .例2 如图18-3,E 是正方形ABCD 的BC 边上的一点,F 是∠DAE 的平分线与CD 的交点,求证:AE =FD +BE .图18-3解析 表面上看所要证等式的各边分布在正方形不同的边上,欲证它们之间的关系,似乎不可能.但我们可以将某一条边作适当的延伸,使等量关系转移(比如证某两个三角形全等,中位线的关系等).此题中可将FD 延长至G ,使得DG =BE ,于是易证△AGD ≌△AEB ,则将AE 与AG ,BE 与GD 联系了起来,转而只需证明AG =GF ,即只要证明△AGF 为等腰三角形即可,由∠1=∠2,∠3=∠4及AB ∥CD 即证得.略证 延长FD 至G 使DG =BE , ∵△ADG ≌△ABE ,∴AG =AE ,GD =BE ,∠1=∠2. 又∵ ∠3=∠4, ∴∠1+∠4=∠2+∠3. 由于DC ∥AB ,∴∠DFA =∠2+∠3, ∴∠1+∠4=∠DFA , ∴GF =AG .即GD +DF =BE +FD =AE .例3 已知∠MON =40°,P 为∠MON 内一点,A 为OM 上一点,B 为ON 上的点,则△PAB 的周长取最小值时,求∠APB 的度数.图18-4解析 如图18-4,若在OM 上A 点固定,不难在ON 上找出点B (B 为P 关于ON 的对称点P ''与A 点的连线与ON 的交点),同样若在ON 上B 点已固定,则点P 关于OM 的对称点P'与B 点的连线与OM 交于A ,因此A 、B 应为P'P ''与0M 、ON 的交点,这时可求得∠A .解 作P'为P 关于OM 的对称点,P ''为P 关于ON 的对称点,连接P'P ''分别交OM 、ON 于A 、B 两点,则△PAB 周长为最小,这时△ABP 的周长等于P'P ''的长(连接两点间距离最短).∵OM P P ⊥',ON P P ⊥''垂足分别为C 、D , ∴∠OCP =∠ODP =90°. ∵∠M O N=40°,∴∠CPD =180°-40°=140°.∴∠PP'P ''=∠P P ''P'=180°-140°=40°.由对称性可知:∠PAB =2∠P',∠PBA =2∠P '', ∴∠APB =180°-(∠PAB -∠PBA )=180°-(2∠P'-2∠P '')=100°.例4 如图18-5,在ABC 中,BC =h ,AB +AC =l ,由B ,C 向∠BAC 外角平分线作垂线,垂足为D 、E , 求证:BD ·CE =定值.图18-5解析 BC =h 是定值,AB +AC =l 是定值,要证BD ·CE 是定值,设法使BD ·CE 用h ,l 的代数式来表示,充分利用DE 是BAC 的外角平分线,构造对称图形,再利用勾股定理。

四年级数学培优练习题(含答案)

四年级数学培优练习题(含答案)

四年级数学培优练习题第一部分:基础应用一、填空。

(第2、7题1分,其余每题2分,共22分)1、295×42的积是()位数,得数在()左右。

2、把4升的水倒入500毫升的量杯,可以倒()杯。

3、要使125×□0的积的末尾有两个0,□里最小填(),最大填()。

4、67×99=67×100-67是运用了()律,要使25×□+75×□=8000,□里是()。

5、修一条800米的公路,每天修x米,修了3天,还剩()米没修。

6、一个等腰三角形的底角是顶角的2倍,这个三角形的顶角是()°。

7、一瓶牛奶大约190();浴缸大约可以盛水140()。

8、在“口”里填上合适的数,使它能同时是2、3、5的倍数。

93口7口5口9、你能在括号里填上合适的素数吗?14=()+()30=()+()=()+()10、把下面的算式合并成一道综合算式:72×9=648 432÷6=72 1000-648=352()。

11、一个圆形的花圃,绕一圈是180米。

如果沿着花圃周围每隔6米种一棵柳树,每两棵柳树之间种一棵杨树,可种()棵杨树。

12、四(2)竞选班委,同学们要在10个同学中选2人担任正、副班长,有()种不同的选法。

二、判断题。

(对的打√,错的打×。

)(共5分)1.所有的素数都是奇数。

------------------------------------------------- -------( )2.3×4=12,所以3、4是因数,12是倍数。

----------------- --------------( )3.能被3整除的数一定也能被9整除。

---------------------------------------( )4.有一组对边平行的四边形叫梯形。

------------------------------------------( )5.条形统计图可以看出数量的增减变化。

人教版数学五年级下册《图形的运动(三)》培优测试卷及答案

人教版数学五年级下册《图形的运动(三)》培优测试卷及答案
解:如图,
(1)图形2可看作图形1绕点B顺时针旋转90°,又向下平移2格得到的;
(2)图形3可看作图形2绕点C顺时针旋转90°,又向左平移2格得到的;
(3)图形4可看作图形1绕点A逆时针旋转90°,又向下平移2格得到的;
(4)由图1、图2、图3、图4组成的图形有4条对称轴;
故答案为B,90°,下,2,C.90°,左,2,A逆,90°,下,2,4.
【分析】
决定旋转后图形的位置的要素:一是旋转中心或轴,二是旋转方向(顺时针或逆时针),三是旋转角度。
【详解】
将图形甲绕点A按顺时针方向旋转90°得到图形乙,再将图形乙绕点B按逆时针方向旋转90°得到图形丙。
【点睛】
在平面内,把一个图形围绕某一固定点按顺时针或逆时针方向转动一定的角度的过程,称为旋转。
18.(本题9分)画出下面图形的另一半,使它成为轴对称图形A;再将图形A向右平移3格,得到图形B;把图形B沿点O'顺时针旋转90°,得到图形C。
五、解答题(共13分)
19.(本题13分)观察下面两组图形并回答问题。
(1)图形①先绕直角顶点()时针旋转()°,然后向()平移()格;图形②先绕直角顶点()时针旋转()°,然后向()平移()格。
【详解】
故答案为:A
【点睛】
熟练掌握平移与旋转的特点是解答此题的关键。
15.
【分析】
在保持原形状不变的情况下,以一定点为中心,以一定角度为旋转角度旋转后得到的图形为原图形旋转后得到的图形,据此解答即可。
【详解】
根据旋转的定义确定三幅图分别由哪个基本图形旋转而成,涂上喜欢的颜色,如下图:
故答案为: 。
故答案为:√
【点睛】
本题考查钟表上的时针所转过的角度计算,时针每小时转动5小格(或1大格),即30°。

备战中考数学旋转(大题培优)附答案

备战中考数学旋转(大题培优)附答案

一、旋转真题与模拟题分类汇编(难题易错题)1.在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在)'轴、工轴的正半轴上,点。

在原点.现将正方形Q48C绕。

点顺时针旋转,当A点一次落在直线)'=、上时停止旋转,旋转过程中,边交直线)'=x于点M,边交*轴于点N (如图).(1)求边。

4在旋转过程中所扫过的面积;(2)旋转过程中,当"和AC平行时,求正方形。

48C旋转的度数:(3)设的周长为P,在旋转正方形O45C的过程中,P值是否有变化?清证明你的结论. 【答案】(1)爪/2 (2)22.5°(3)周长不会变化,证明见解析【解析】试题分析:(1)根据扇形的而积公式来求得边0A在旋转过程中所扫过的面积:(2)解决本题需利用全等,根据正方形一个内角的度数求出ZAOM的度数:(3)利用全等把△ MBN的各边整理到成与正方形的边长有关的式子.试题解析:(1):A点第一次落在直线y=x上时停出旋转,直线y=x与y轴的夹角是45。

,/. 0A 旋转了45。

.・•・0A在旋转过程中所扫过的面积为EE- = £360 2(2)•/ MNII AC,・.・Z BMN=Z BAC=45°, Z BNM=Z BCA=45°.Z BMN=Z BNM. /. BM=BN.又・..BA=BC, ・.・AM=CN.又..・OA=OC, Z OAM=Z OCN,二 ' OAM罢△ OCN.Z A0M=Z CON=- (Z AOC-Z MON ) =- (90o-45°)=22.5°.2 2・・・旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为45。

-22.5。

=22.5。

. (3)在旋转正方形OABC的过程中,p值无变化.证明:延长BA交y轴于E点,则匕AOE=45°-Z AOM, Z CON=90°-45°-Z AOM=45°-Z AOM,・.・ Z AOE=Z CON.又・.・OA=OC, Z OAE=180°-90°=90°=Z OCN./. △ OAE竺乙OCN.OE=ON, AE=CN.又■/ Z MOE=Z MON=45°, OM=OM,/. △ OME罢△ OMN. ... MN=ME=AM+AE./. MN=AM+CN,/. p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4.在旋转正方形OABC的过程中,p值无变化.考点:旋转的性质.2.如图1, OABCD和QAEFG是两个能完全重合的平行四边形,现从AB与AE重合时开始,将oABCD固定不动,oAEFG绕点A逆时针旋转,旋转角为a (0°<a<360o), AB=a,BC=2a;并发现:如图2,当uAEFG旋转到点E落在AD ±时,FE的延长线恰好通过点C.探究一:(1)在图2的情形下,求旋转角a的度数;探究二:(2)如图3,当oAEFG旋转到点E落在BC上时,EF与AD相交于点M,连接CM, DF, 请你判断四边形CDFM的形状,并给予证明:探究三:(3)如图1,连接CF, BF,在旋转过程中ABCF的面积是否存在最大的情形,如果存在,求出最大面积,如果不存在,请说明理由.【答案】(1) a=120。

《1.2.2数轴》培优专项练习 (原卷+解析) 2021-2022学年人教版数学七年级上册

《1.2.2数轴》培优专项练习 (原卷+解析) 2021-2022学年人教版数学七年级上册

2021年人教版七年级数学上册《1.2.2数轴》培优专项练习一.选择题(共12小题)1.在数轴上,点M,N在原点O的两侧,分别表示数m,2,将点M向右平移1个单位长度,得到点P,若PO=NO,则m的值为()A.1B.﹣1C.﹣2D.﹣32.下列关于数轴的图示,画法不正确的有()A.4个B.3个C.2个D.1个3.下列四个数表示在数轴上,它们对应的点中,离原点最近的是()A.﹣2B.1.3C.﹣0.4D.0.64.已知a,b,c三个数在数轴上,对应点的位置如图所示,下列各式错误的是()A.b<a<c B.﹣a<b C.a+b<0D.c﹣a>05.如图,在数轴上,点A表示的数是﹣2,将点A沿数轴正方向向右移动4个单位长度得到点P,则点P表示的数是()A.4B.3C.2D.﹣26.如图,如果数轴上A,B两点之间的距离是3,且点B在原点左侧,那么点B表示的数是()A.3B.﹣3C.1D.﹣17.有理数a在数轴上的对应点的位置如图所示,若有理数b满足﹣a<b<a,则b的值不可能是()A.2B.0C.﹣1D.﹣38.数轴上点A和点B表示的数分别是﹣1和3,点P到A、B两点的距离之和为6,则点P 表示的数是()A.﹣3B.﹣3或5C.﹣2D.﹣2或49.有理数a、b在数轴上的对应位置如图所示,则下列四个选项正确的是()A.a<b<﹣b<﹣a B.a<﹣b<b<﹣a C.a﹣b>0D.a+b>010.如图,数轴上点A,B,C分别表示数a,b,c,有下列结论:①a+b>0;②abc<0;③a﹣c<0;④﹣1<<0,则其中正确结论的序号是()A.①②B.②③C.②③④D.①③④11.在一条可以折叠的数轴上,A,B表示的数分别是﹣7,4,如图,以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=1,则C点表示的数是()A.﹣2B.﹣2.5C.﹣1D.112.等边△ABC在数轴上的位置如图所示,点A、C对应的数分别为0和﹣1,若△ABC绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为1,则连续翻转2020次后,则数2020对应的点为()A.点A B.点BC.点C D.这题我真的不会二.填空题(共6小题)13.有如下定义:数轴上有三个点,若其中一个点与其它两个点的距离恰好满足3倍的数量关系,则称该点是其它两个点的“关键点”.若点A表示数﹣4,点B表示数8,M为数轴一个动点.若点M在线段AB上,且点M是点A、点B的“关键点”,则此时点M表示的数是.14.如图,有一根木棒MN放置在数轴上,它的两端M、N分别落在点A、B处.将木棒在数轴上水平移动,当MN的中点移动到点B时,点N所对应的数为17.5,当MN的右三等分点移动到点A时,点M所对应的数为4.5,则木棒MN的长度为.15.数轴上A、B两点间的距离为5,点A表示的数为3,则点B表示的数为.16.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上表示“0cm”、“8cm”的点分别对应数轴上的﹣2和x,那么x的值为.17.如图,圆的直径为1个单位长度,该圆上的点A与数轴上表示﹣1的点重合,将该圆沿数轴滚动1周,点A到达点B的位置,则点B表示的数是.18.已知在纸面上有一数轴,折叠纸面,数轴上﹣1表示的点与7表示的点重合.若数轴上A、B两点之间的距离为1016(A在B的左侧),且A、B两点经以上方法折叠后重合,则A点表示的数是.三.解答题(共8小题)19.如图,在一条不完整的数轴上,从左到右的点A,B,C把数轴分成①②③④四部分,点A,B,C对应的数分别是a,b,c,已知bc<0.(1)请直接写出原点在第几部分;(2)若AC=5,BC=3,b=﹣1,求a;(3)若点C表示数3,数轴上一点D表示的数为d,当点C、原点、点D这三点中其中一点是另外两点的中点时,直接写出d的值.20.在数轴上,表示数0的点记作点O.点A,B是该数轴上不重合的两点,点B关于点A 的联动点定义如下:若射线AB上存在一点C,满足线段AB+AC=2AO,则称点C是点B 关于点A的联动点.如图是点B关于点A的联动点的示意图.当点C与点A重合时,规定AC=0.(1)当点A表示的数为1时,①点B表示的数为1.5,则其关于点A的联动点C表示的数为;②若点B与O重合,则其关于点A的联动点C表示的数为;③若点B关于点A存在联动点,则点B表示的数x的取值范围是.(2)当点A表示的数为a时,点B关于点A的联动点为C,点B表示的数为﹣1,点C 表示的数为1,则a的取值范围是.21.【新知理解】如图①,点C在线段AB上,若BC=2AC或AC=2BC,则称点C是线段AB的“雅点”,线段AC、BC称作互为“雅点”伴侣线段.(1)若点C为图①中线段AB的“雅点”AC=6(AC<BC),则AB=;(2)若点D也是图①中线段AB的“雅点”(不同于点C),则AC BD;(填“=”或“≠”)【解决问题】如图②,数轴上有一点E表示的数为1,向右平移5个单位到达点F;(3)若M、N两点都在线段OF上,且M,N均为线段OF的“雅点”,求线段MN的长;(4)图②中,若点G在射线EF上,且线段GF与以E、F、G中某两个点为端点的线段互为“雅点”伴侣线段,请写出点G所表示的数.22.对于数轴上的A,B,C三点,给出如下定义:若其中一个点与其他两个点的距离恰好满足3倍的数量关系,则称该点是其它两个点的“倍分点”.例如数轴上点A,B,C表示的数分别是1,4,5,此时点B是点A,C的“倍分点”.(1)当点A表示数﹣2,点B表示数2时,下列各数,0,1,4是点A、B的“倍分点”的是;(2)当点A表示数﹣10,点B表示数30时,P为数轴上一个动点,①若点P是点A,B的“倍分点”,求此时点P表示的数;②若点P,A,B中,有一个点恰好是其它两个点的“倍分点”,直接写出此时点P表示的数.23.如图,已知在纸面上有一条数轴.操作一:折叠数轴,使表示1的点与表示﹣1的点重合,则表示﹣5的点与表示的点重合.操作二:折叠数轴,使表示1的点与表示3的点重合,在这个操作下回答下列问题:①表示﹣2的点与表示的点重合;②若数轴上A,B两点的距离为7(A在B的左侧),且折叠后A,B两点重合,则点A表示的数为,点B表示的数为24.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M,N所表示的数分别为0,12.将一枚棋子放置在点M处,让这枚棋子沿数轴在线段MN上往复运动(即棋子从点M出发沿数轴向右运动,当运动到点N处,随即沿数轴向左运动,当运动到点M处,随即沿数轴向右运动,如此反复…).并且规定棋子按照如下的步骤运动:第1步,从点M开始运动t个单位长度至点Q1处;第2步,从点Q1继续运动2t个单位长度至点Q2处;第3步,从点Q2继续运动3t个单位长度至点Q3处….例如:当t=3时,点Q1,Q2,Q3,的位置如图2所示.解决如下问题:(1)如果t=4,那么线段Q1Q3=;(2)如果t<4,且点Q3表示的数为3,那么t=;(3)如果t≤2,且线段Q2Q4=2,那么请你求出t的值.25.如图,有两条线段,AB=2(单位长度),CD=1(单位长度)在数轴上,点A在数轴上表示的数是﹣12,点D在数轴上表示的数是15.(1)点B在数轴上表示的数是,点C在数轴上表示的数是,线段BC 的长=;(2)若线段AB以1个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.当点B与C重合时,点B与点C在数轴上表示的数是多少?(3)若线段AB以1个单位长度/秒的速度向左匀速运动,同时线段CD以2个单位长度/秒的速度也向左匀速运动.设运动时间为t秒,当0<t<24时,M为AC中点,N为BD 中点,则线段MN的长为多少?26.阅读与计算:出租车司机小李某天上午营运时是在太原迎泽公园门口出发,沿东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午所接送八位乘客的行车里程(单位:km)如下:﹣3,+6,﹣2,+1,﹣5,﹣2,+9,﹣6.(1)将最后一位乘客送到目的地时,小李在什么位置?(2)将第几位乘客送到目的地时,小李离迎泽公园门口最远?(3)若汽车消耗天然气量为0.2m3/km,这天上午小李接送乘客,出租车共消耗天然气多少立方米?(4)若出租车起步价为5元,起步里程为3km(包括3km),超过部分每千米1.2元,问小李这天上午共得车费多少元?2021年人教版七年级数学上册《1.2.2数轴》培优专项练习参考答案与试题解析一.选择题(共12小题)1.在数轴上,点M,N在原点O的两侧,分别表示数m,2,将点M向右平移1个单位长度,得到点P,若PO=NO,则m的值为()A.1B.﹣1C.﹣2D.﹣3【分析】M向右平移1个单位后,表示的数是m+1,根据PO=NO列方程即可解得m的值.【解答】解:∵点M表示数m,将点M向右平移1个单位长度得到点P,∴平移后P表示的数是m+1,∵N表示数2,PO=NO,∴m+1与2互为相反数,即m+1=﹣2,∴m=﹣3,故选:D.【点评】本题考查数轴上点表示的数,解题的关键是用含m的代数式表示P表示的数.2.下列关于数轴的图示,画法不正确的有()A.4个B.3个C.2个D.1个【分析】通过观察数轴上的原点,单位长度,正方向即可进行判断,从而选出答案.【解答】解:通过观察易知(1)数轴单位长度不一致故错误;(2)数轴没有原点,故错误;(3)数轴原点,单位长度,正方向都具有,故正确;(4)数轴没有正方向,故错误;故不正确的由(1)(2)(4)共三个,故选:B.【点评】本题考查数轴相关概念,熟练掌握数轴上原点,单位长度,正方向三要素是解题关键.3.下列四个数表示在数轴上,它们对应的点中,离原点最近的是()A.﹣2B.1.3C.﹣0.4D.0.6【分析】离原点最近的即是绝对值最小的数,依次求出绝对值进行比较即可选出正确答案.【解答】∵|﹣2|=2,|1.3|=1.3,|﹣0.4|=0.4,|0.6|=0.6,∴0.4<0.6<1.3<2,又∵离原点最近的即是绝对值最小的数,∴离原点最近的是﹣0.4,故选:C.【点评】本题考查数轴相关知识,掌握数轴中绝对值的概念是解题关键.4.已知a,b,c三个数在数轴上,对应点的位置如图所示,下列各式错误的是()A.b<a<c B.﹣a<b C.a+b<0D.c﹣a>0【分析】先根据在数轴上,右边的数总比左边的数大,得出b<a<c,再由相反数的定义、绝对值的性质以及有理数的加减法法则得出结果.【解答】解:根据数轴可得:b<a<0<c,∴a+b<0、c﹣a>0.∴A、C、D选择正确.∵a<0.∴﹣a>0.∴﹣a>b.∴B选项错误.故选:B.【点评】此题主要考查学生数轴上的点的位置和数的关系.解题的关键是掌握有理数的大小的比较,有理数的加减法运算.5.如图,在数轴上,点A表示的数是﹣2,将点A沿数轴正方向向右移动4个单位长度得到点P,则点P表示的数是()A.4B.3C.2D.﹣2【分析】根据右移加可求点P表示的数.【解答】解:点P表示的数是﹣2+4=2.故选:C.【点评】本题考查的是数轴,关键是熟悉数轴上的点左减右加的知识点.6.如图,如果数轴上A,B两点之间的距离是3,且点B在原点左侧,那么点B表示的数是()A.3B.﹣3C.1D.﹣1【分析】观察数轴易知点A到原点的距离大于点B到原点的距离,且B在原点左边,即可找到B点所表示的数.【解答】解:因为点A到原点的距离大于点B到原点的距离,且B在原点左边,故A、C错误;B选项为﹣3,大于A的绝对值,故B错误;故选:D.【点评】本题考查数轴相关知识,熟练掌握数轴上点的相关特征是解题关键.7.有理数a在数轴上的对应点的位置如图所示,若有理数b满足﹣a<b<a,则b的值不可能是()A.2B.0C.﹣1D.﹣3【分析】根据a的范围确定出﹣a的范围,进而确定出b的范围,判断即可.【解答】解:根据数轴上的位置得:2<a<3,∴﹣3<﹣a<﹣2,∵﹣a<b<a,∴﹣3<b<3,则b的值不可能为﹣3.故选:D.【点评】此题考查了数轴,弄清b的范围是解本题的关键.8.数轴上点A和点B表示的数分别是﹣1和3,点P到A、B两点的距离之和为6,则点P 表示的数是()A.﹣3B.﹣3或5C.﹣2D.﹣2或4【分析】根据AB的距离为4,小于6,分点P在点A的左边和点B的右边两种情况分别列出方程,然后求解即可.【解答】解:∵AB=|3﹣(﹣1)|=4,点P到A、B两点的距离之和为6,设点P表示的数为x,∴点P在点A的左边时,﹣1﹣x+3﹣x=6,解得:x=﹣2,点P在点B的右边时,x﹣3+x﹣(﹣1)=6,解得:x=4,综上所述,点P表示的数是﹣2或4.故选:D.【点评】本题考查了数轴,主要利用了数轴上两点间的距离的表示方法,读懂题目信息,理解两点间的距离的表示方法是解题的关键.9.有理数a、b在数轴上的对应位置如图所示,则下列四个选项正确的是()A.a<b<﹣b<﹣a B.a<﹣b<b<﹣a C.a﹣b>0D.a+b>0【分析】根据数轴上绝对值所表示的含义作答.【解答】解:由图象可得,a<0<b,|a|>|b|,∴a<﹣b<b<﹣a.故选:B.【点评】本题考查数轴上绝对值的意义及有理数比较大小,解题关键是熟练掌握有理数及绝对值的意义.10.如图,数轴上点A,B,C分别表示数a,b,c,有下列结论:①a+b>0;②abc<0;③a﹣c<0;④﹣1<<0,则其中正确结论的序号是()A.①②B.②③C.②③④D.①③④【分析】根据数轴,可得b<0<a<c,|a|<|b|,据此逐项判定即可.【解答】解:①∵b<0<a,|a|<|b|,∴a+b<0,∴①错误;②∵b<0<a<c,∴abc<0,∴②正确;③∵b<0<a<c,∴a﹣c<0,∴③正确;④∵b<0<a,|a|<|b|,∴﹣1<<0,∴④正确.∴正确的有②③④.故选:C.【点评】本题考查了数轴.解题的关键是熟练掌握数轴的特征和运用,以及有理数的运算.11.在一条可以折叠的数轴上,A,B表示的数分别是﹣7,4,如图,以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=1,则C点表示的数是()A.﹣2B.﹣2.5C.﹣1D.1【分析】根据A与B表示的数求出AB的长,再由折叠后AB的长,求出BC的长,即可确定出C表示的数.【解答】解:∵A,B表示的数为﹣7,4,∴AB=4﹣(﹣7)=4+7=11,∵折叠后AB=1,∴BC==5,∵点C在B的左侧,∴C点表示的数为﹣1.故选:C.【点评】此题考查了数轴,折叠的性质,熟练掌握各自的性质是解本题的关键.12.等边△ABC在数轴上的位置如图所示,点A、C对应的数分别为0和﹣1,若△ABC绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为1,则连续翻转2020次后,则数2020对应的点为()A.点A B.点BC.点C D.这题我真的不会【分析】根据随着翻转点的变化,可找出点的变化周期为3,结合2020为3的整数倍余1,可得出数2020对应的点为B.【解答】解:∵翻转1次后,数1对应的点为B,翻转2次后,数2对应的点为C,翻转3次后,数3对应的点为A,翻转4次后,数4对应的点为B,…,∴点的变化周期为3.又∵2020÷3=673…1,∴连续翻转2020次后,则数2020对应的点为B.故选:B.【点评】本题考查了数轴以及变化类:数的变化,根据点的变化,找出变化规律是解题的关键.二.填空题(共6小题)13.有如下定义:数轴上有三个点,若其中一个点与其它两个点的距离恰好满足3倍的数量关系,则称该点是其它两个点的“关键点”.若点A表示数﹣4,点B表示数8,M为数轴一个动点.若点M在线段AB上,且点M是点A、点B的“关键点”,则此时点M表示的数是5或者﹣1.【分析】根据已知,表示出线段之间的距离,利用定义分类讨论即可求解.【解答】解:设M表示的数为x.∴MA=x﹣(﹣4)=x+4;BM=8﹣x.∵若其中一个点与其它两个点的距离恰好满足3倍的数量关系,则称该点是其它两个点的“关键点”.∴MA=3BM或BM=3MA∴x+4=3(8﹣x)或8﹣x=3(x+4).解得:x=5或x=﹣1.故答案为:5或者﹣1.【点评】本题考查数轴上两点之间的距离知识,关键在于设立未知数,利用已知定义建立等式.14.如图,有一根木棒MN放置在数轴上,它的两端M、N分别落在点A、B处.将木棒在数轴上水平移动,当MN的中点移动到点B时,点N所对应的数为17.5,当MN的右三等分点移动到点A时,点M所对应的数为4.5,则木棒MN的长度为6.【分析】设木棒MN长为x,根据“有一根木棒MN放置在数轴上,它的两端M、N分别落在点A、B.将木棒在数轴上水平移动,当点M当MN的中点移动到点B时,点N所对应的数为17.5,当MN的右三等分点移动到点A时,点M所对应的数为4.5”,结合数轴,得到关于x的一元一次方程,解之即可.【解答】解:设木棒MN长为x,根据题意得:x+x+(1﹣)x=17.5﹣4.5,解得:x=6.故答案为:6.【点评】本题考查了一元一次方程在数轴问题中的应用,找到题目的等量关系是解题的关键.15.数轴上A、B两点间的距离为5,点A表示的数为3,则点B表示的数为8或﹣2.【分析】设B点表示的数为b,则|b﹣3|=5,可求得b的值.【解答】解:设B点表示的数为b,则|b﹣3|=5,∴b﹣3=5或b﹣3=﹣5,∴b=8或b=﹣2.故答案为:8或﹣2.【点评】本题考查了数轴上两点间距离的求法,绝对值的性质等内容;熟练掌握数轴上两点间距离的求法是解决本题的关键.本题也可画出数轴直接解答.16.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上表示“0cm”、“8cm”的点分别对应数轴上的﹣2和x,那么x的值为6.【分析】根据直尺的长度知x为﹣2右边8个单位的点所表示的数,据此可得.【解答】解:由题意知,x的值为﹣2+(8﹣0)=6,故答案为:6.【点评】本题主要考查了数轴,解题的关键是确定x与表示﹣2的点之间的距离.17.如图,圆的直径为1个单位长度,该圆上的点A与数轴上表示﹣1的点重合,将该圆沿数轴滚动1周,点A到达点B的位置,则点B表示的数是π﹣1或﹣π﹣1.【分析】先求出圆的周长为π,从A滚动先向右运动再向左运动,运动的路程为圆的周长,需要分类讨论.【解答】解:C圆=πd=π,向右滚动:设B点坐标为x,x﹣(﹣1)=π,x=π﹣1,∴B点表示的数为:π﹣1.向左运动:﹣1﹣x=π,x=﹣π﹣1,∴B点表示的数为:﹣π﹣1.∴B点表示数为π﹣1或﹣π﹣1.故答案为:π﹣1或﹣π﹣1.【点评】本题考查了数轴上两点之间的线段长如何用坐标来表示,即:右减左;圆的周长公式及分类讨论.18.已知在纸面上有一数轴,折叠纸面,数轴上﹣1表示的点与7表示的点重合.若数轴上A、B两点之间的距离为1016(A在B的左侧),且A、B两点经以上方法折叠后重合,则A点表示的数是﹣505.【分析】根据数轴上两点间的距离为这两个数差的绝对值,若﹣1表示的点与7表示的点重合,则折痕经过3;若数轴上A、B两点之间的距离为1016(A在B的左侧),则A、B 两个点分别距离中点3都是508个单位长度,进一步得到A点表示的数.【解答】解:依题意得:两数是关于﹣1和7的中点对称,即关于(﹣1+7)÷2=3对称,∵A、B两点之间的距离为1016(A在B的左侧),且A、B两点经以上方法折叠后重合,则A、B关于3对称,1016÷2=508.∴点A在表示3的点的左边508的单位长度,∴点A表示的数为:3﹣508=﹣505.故答案为:﹣505.【点评】本题考查了数轴的知识,注意根据轴对称的性质,可以求得使两个点重合的折痕经过的点所表示的数即是两个数的平均数.三.解答题(共8小题)19.如图,在一条不完整的数轴上,从左到右的点A,B,C把数轴分成①②③④四部分,点A,B,C对应的数分别是a,b,c,已知bc<0.(1)请直接写出原点在第几部分;(2)若AC=5,BC=3,b=﹣1,求a;(3)若点C表示数3,数轴上一点D表示的数为d,当点C、原点、点D这三点中其中一点是另外两点的中点时,直接写出d的值.【分析】(1))因为bc<0,所以b,c异号,所以原点在第③部分;(2)求出AB的值,然后根据点A在点B左边2个单位求出a的值;(3)由于不知道点D的位置,所以分三种情况分别计算即可.【解答】解:(1)∵bc<0,∴b,c异号,∴原点在第③部分;(2)∵AC=5,BC=3,∴AB=AC﹣BC=5﹣3=2,∵b=﹣1,∴a=﹣1﹣2=﹣3;(3)当点C是OD的中点时,OD=2OC=2×3=6,此时d=6;当O是CD的中点时,OD=OC=3,此时d=﹣3;当D是OC的中点时,OD=OC=×3=,此时d=.∴d=6或﹣3或.【点评】本题考查了数轴,线段的中点,体现了分类讨论的数学思想,做到不重不漏是解题的关键.20.在数轴上,表示数0的点记作点O.点A,B是该数轴上不重合的两点,点B关于点A 的联动点定义如下:若射线AB上存在一点C,满足线段AB+AC=2AO,则称点C是点B 关于点A的联动点.如图是点B关于点A的联动点的示意图.当点C与点A重合时,规定AC=0.(1)当点A表示的数为1时,①点B表示的数为1.5,则其关于点A的联动点C表示的数为 2.5;②若点B与O重合,则其关于点A的联动点C表示的数为0;③若点B关于点A存在联动点,则点B表示的数x的取值范围是﹣1≤x<1或1<x≤3.(2)当点A表示的数为a时,点B关于点A的联动点为C,点B表示的数为﹣1,点C 表示的数为1,则a的取值范围是a<﹣1或a≥1.【分析】(1)①根据点B关于点A的联动点的定义求解即可;②根据点B关于点A的联动点的定义求解即可;③根据点B关于点A的联动点的定义求解即可;(2)分a≥1,a<﹣1,﹣1<a<1三种情况讨论求解即可.【解答】解:(1)①当点A表示的数为1,点B表示的数为1.5时,AB=1.5﹣1=0.5.设点C表示的数为x,则AC=x﹣1.∵AB+AC=2AO,∴0.5+x﹣1=2×1,解得x=2.5,∴点C表示的数为2.5.故答案为:2.5;②当点B与O重合时,OA=AB=1.设点C表示的数为y,则AC=1﹣y.∵AB+AC=2AO,∴1+1﹣y=2×1,解得y=0,∴点C表示的数为0.故答案为:0;③∵点B关于点A存在联动点,∴AC≥0,∵AO=1,∴AB+AC=2AO=2,∴AC=2﹣AB≥0,∴AB≤2,∵点A,B是该数轴上不重合的两点,∴点B表示的数x的取值范围是﹣1≤x<1或1<x≤3.故答案为:﹣1≤x<1或1<x≤3;(2)当点A表示的数为a时,点B表示的数为﹣1,点C表示的数为1,当a≥1时,AC=a﹣1,AB=a+1,AO=a,满足AB+AC=2AO,即当a≥1时,符合题意;当a<﹣1时,AC=1﹣a,AB=﹣1﹣a,AO=﹣a,也满足AB+AC=2AO,即当a<﹣1时,符合题意;当﹣1<a<1时,AB+AC=BC=2,OA<1,∴AB+AC≠2AO,∴当﹣1<a<1时,不存在点B关于点A的联动点C.故a的取值范围是a<﹣1或a≥1.故答案为:a<﹣1或a≥1.【点评】本题考查了数轴,新定义,两点间的距离,掌握点B关于点A的联动点定义是解题的关键.21.【新知理解】如图①,点C在线段AB上,若BC=2AC或AC=2BC,则称点C是线段AB的“雅点”,线段AC、BC称作互为“雅点”伴侣线段.(1)若点C为图①中线段AB的“雅点”AC=6(AC<BC),则AB=18;(2)若点D也是图①中线段AB的“雅点”(不同于点C),则AC=BD;(填“=”或“≠”)【解决问题】如图②,数轴上有一点E表示的数为1,向右平移5个单位到达点F;(3)若M、N两点都在线段OF上,且M,N均为线段OF的“雅点”,求线段MN的长;(4)图②中,若点G在射线EF上,且线段GF与以E、F、G中某两个点为端点的线段互为“雅点”伴侣线段,请写出点G所表示的数.【分析】(1)由BC=2AC即可得答案;(2)求出BD即可得答案;(3)画出图形分类讨论;(4)画出图形分情况讨论即可.【解答】解:(1)∵点C为线段AB的“雅点”,AC=6(AC<BC),∴BC=2AC,∵AC=6,∴BC=12,∴AB=AC+BC=18,故答案为:18;(2)∵点D也是线段AB的“雅点”(不同于点C),∴AD=2BD,而AD+BD=18,∴BD=6,∵AC=6,∴AC=BD,故答案为:=;(3)∵数轴上有一点E表示的数为1,向右平移5个单位到达点F,∴OF=1+5=6,M、N两点都在线段OF上,且M,N均为线段OF的“雅点”,①M、N为线段OF的同一个“雅点”时,MN=0,②M、N为线段OF的不同“雅点”,且MF=2OM,ON=2FN,如答图1:∵MF=2OM,OM+FM=6,∴OM=2,∵ON=2FN,ON+FN=6,∴ON=4,∴MN=ON﹣OM=2,③M、N为线段OF的不同“雅点”,且OM=2FM,FN=2ON,如答图2:∵OM=2FM,OM+FM=6,∴OM=4,∵FN=2ON,ON+FN=6,∴ON=2,∴MN=OM﹣ON=2,总上所述,MN的长为0或2;(4)点G在射线EF上,且线段GF与以E、F、G中某两个点为端点的线段互为“雅点”伴侣线段,分以下四种情况:①G在线段EF上,EG=2FG,如答图3:∵EG=2FG,EG+FG=5,∴EG=,∵E表示的数为1,∴G点表示的数为1+=,②G在线段EF上,且FG=2EG,如答图4:∵FG=2EG,EG+FG=5,∴EG=,∵E表示的数为1,∴G表示的数为1+=,③G在线段EF外,且EF=2FG,如答图5:∵EF=2FG,EF=5,∴FG=2.5,∴G表示的数是1+5+2.5=8.5,④G在EF外,且FG=2EF,如答图6:∵FG=2EF,EF=5,∴FG=10,∴G表示的数为1+5+10=16,总上所述,G表示的数为:或或8.5或16.【点评】本题考查数轴相关知识,解答需要分类,解题的关键是读懂“雅点”、“雅点”伴侣线段的定义.22.对于数轴上的A,B,C三点,给出如下定义:若其中一个点与其他两个点的距离恰好满足3倍的数量关系,则称该点是其它两个点的“倍分点”.例如数轴上点A,B,C表示的数分别是1,4,5,此时点B是点A,C的“倍分点”.(1)当点A表示数﹣2,点B表示数2时,下列各数,0,1,4是点A、B的“倍分点”的是1,4;(2)当点A表示数﹣10,点B表示数30时,P为数轴上一个动点,①若点P是点A,B的“倍分点”,求此时点P表示的数;②若点P,A,B中,有一个点恰好是其它两个点的“倍分点”,直接写出此时点P表示的数.【分析】根基题干提供新定义求解.(1)根据所提供四个数字求解.(2)分类讨论点P位置求解.【解答】解:(1)1,4.(2)①设点P对应的数为x.当点P在AB之间时,∵AB=30+10=40,∴BP=AB时,BP=10,即x=30﹣10=20.当BP=AB时,BP=30,即x=30﹣30=0.当点P在点B右侧,AP=3BP.即x+10=3(x﹣30),解得x=50.当点P在点A左侧,BP=3AP.即30﹣x=3(﹣10﹣x),解得x=﹣30.综上,x=20,0,50,﹣30.②由①得点P是倍分点时,P表示的数为20,0,50,﹣30.当A为倍分点,点P在AB之间时,AB=3AP,40=3(x+10),解得x=.P在点A左侧时,AP=3AB,﹣10﹣x=3×40,解得x=﹣130.AB=3AP,40=3(﹣10﹣x),解得x=.点P在点B右侧,AP=3AB,x﹣(﹣10)=3×40,解得x=110.当点B为倍分点时,同理可求x=110,,,﹣90.综上,P点表示的数可为:20,0,50,﹣30,,﹣130,,110,,,﹣90.【点评】本题考查数轴相关知识点,解题关键是根据题意分类讨论符合题干的情况.23.如图,已知在纸面上有一条数轴.操作一:折叠数轴,使表示1的点与表示﹣1的点重合,则表示﹣5的点与表示5的点重合.操作二:折叠数轴,使表示1的点与表示3的点重合,在这个操作下回答下列问题:①表示﹣2的点与表示6的点重合;②若数轴上A,B两点的距离为7(A在B的左侧),且折叠后A,B两点重合,则点A表示的数为﹣1.5,点B表示的数为 5.5【分析】根据两个点对折重合,可求出对折点所表示的数,再根据数轴上两点之间的距离的计算方法,求出该点所对应的数.【解答】解:操作一:表示1的点与表示﹣1的点重合,即对折点所表示的数为=0,设这个数为a,则有0﹣(﹣5)=a﹣0,解得,a=5,故答案为:5;操作二:表示1的点与表示3的点重合,即对折点所表示的数为=2,①设b与﹣2表示的点重合,则有=2,解得,b=6,故答案为:6;②设A点、B点所表示的数为x、y,则有,,解得,x=﹣1.5,y=5.5,故答案为:﹣1.5,5.5.【点评】考查数轴表示数的意义,求出对折点所表示的数以及数轴上两点之间距离的计算方法是解决问题的关键.24.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M,N所表示的数分别为0,12.将一枚棋子放置在点M处,让这枚棋子沿数轴在线段MN上往复运动(即棋子从点M出发沿数轴向右运动,当运动到点N处,随即沿数轴向左运动,当运动到点M处,随即沿数轴向右运动,如此反复…).并且规定棋子按照如下的步骤运动:第1步,从点M开始运动t个单位长度至点Q1处;第2步,从点Q1继续运动2t个单位长度至点Q2处;第3步,从点Q2继续运动3t个单位长度至点Q3处….例如:当t=3时,点Q1,Q2,Q3,的位置如图2所示.解决如下问题:(1)如果t=4,那么线段Q1Q3=4;(2)如果t<4,且点Q3表示的数为3,那么t=或;(3)如果t≤2,且线段Q2Q4=2,那么请你求出t的值.【分析】(1)分别求出Q1、Q2、Q3所表示的数,进而求出Q1Q3的长;(2)分两种情况进行解答,①当Q3未到点N返回前,②当Q3点到达N返回再到表示3的位置,分别列方程解答即可;(3)分三种情况,①当Q4未到点N前,②当Q4到达点N返回且在Q2的右侧,③当Q4到达点N返回且在Q2的左侧,分别列方程解答即可.【解答】解:(1)当t=4时,Q1表示的数为4,Q1Q2=4×2=8,Q2表示的数为4+8=12,Q2Q3=4×3=12,Q3所表示的数为0,∴Q1Q3=4,故答案为:4.(2)①当Q3未到点N返回前,有t+2t+3t=3,解得:t=,。

2019年中考数学知识点过关培优训练:图形的变化(对称+平移+旋转+相似+视图+锐角三角函数)(附答案)

2019年中考数学知识点过关培优训练:图形的变化(对称+平移+旋转+相似+视图+锐角三角函数)(附答案)

2019年中考数学知识点过关培优训练:图形的变化一.选择题1.把下列英文字母看成图形,是轴对称图形的是()A.B.C.D.2.如图,在Rt△ABC中,∠C=90°,AB=5,BC=4,则下列三角函数表示正确的是()A.tan A=B.tan B=C.sin A=D.cos A=3.中国的汉字博大精深.下面四个黑体汉字中,不是轴对称的是()A.品B.里C.用D.且4.鲁班锁,民间也称作孔明锁、八卦锁,它起源于中国古代建筑中首创的棒卯结构,下图是鲁班锁的其中一个部件,它的主视图是()A.B.C.D.5.如图,Rt△ABC中,∠BAC=90°,AB=AC,将△ABC绕点C顺时针旋转40°得到△A′B′C,CB′与AB相交于点D,连接AA′,则∠B′A′A的度数为()A.10°B.15°C.20°D.30°6.在Rt△ACB中,∠C=90°,AC=8,sin A=,点D是AB中点,则CD的长为()A.4 B.5 C.6 D.77.如图,在△ABC中,AB=AC,AD,BE是△ABC的两条中线,P是AD上一动点,则下列线段的长度等于PC+PE的最小值的是()A.BE B.AD C.AC D.BC8.已知:在直角坐标系中,点A,B的坐标分别是(1,0),(0,3),将线段AB平移,平移后点A的对应点A′的坐标是(2,﹣1),那么点B的对应点B′的坐标是()A.(2,1)B.(2,3)C.(2,2)D.(1,2)9.在矩形ABCD中,AB=6,AD=9,点E为线段AD上一点,且DE=2AE,点G是线段AB上的动点,EF⊥EG交BC所在直线于点F,连接GF.则GF的最小值是()A.3 B.6 C.6D.310.如图,已知E、F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M则下列结论①∠AME=90°;②∠BAF=∠EDB;③MD=2AM=4EM;④AM=MF,其中正确结论的个数是()A.4个B.3个C.2个D.1个二.填空题11.如图,在4×5的正方形网格中点A,B,C都在格点上,则tan∠ABC=.12.如图,△ABC中,AB=AC=4,∠C=72°,D是AB中点,点E在AC上,DE⊥AB,则cos A =.13.如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=8cm,EF=15cm,则边AD的长是cm.14.如图,△ABC是边长为6的等边三角形,点D在边AB上,AD=2,点E是BC上一点连结DE,将DE绕点D逆时针旋转60°得DF,连结CF,则CF的最小值是.15.科技改变生活,手机导航极大方便了人们的出行.如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶6千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C.小明发现古镇C恰好在A地的正北方向,则B、C两地的距离是千米.16.如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积(阴影部分)是△ABC面积的一半,若BC=2,则△ABC移动的距离是.17.如图,四边形ABCD中,AB∥CD,∠B=90°,AB=1,CD=2,BC=m,点P是边BC上一动点,若△PAB与△PCD相似,且满足条件的点P恰有2个,则m的值为.18.如图所示,等边△ABC中D点为AB边上一动点,E为直线AC上一点,将△ADE沿着DE 折叠,点A落在直线BC上,对应点为F,若AB=4,BF:FC=1:3,则线段AE的长度为.19.如图,△ABC中,D、E两点分别在AB、BC上,若AD:DB=CE:EB=2:3,则△DBE的面积:△ADC的面积=.20.在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP翻折得到△AD'P,PD的延长线交边AB于点M,过点B作BN∥MP交DC于点N,连接AC,分别交PM,PB于点E,F.现有以下结论:①连接DD',则AP垂直平分DD';②四边形PMBN是菱形;③AD2=DP•PC;④若AD=2DP,则;其中正确的结论是(填写所有正确结论的序号)三.解答题21.北盘江大桥坐落于云南宜威与贵州水城交界处,横跨云贵两省,为目前世界第一高桥图1是大桥的实物图,图2是从图1中引申出的平面图,测得桥护栏BG=1.8米,拉索AB 与护栏的夹角是26°,拉索ED与护栏的夹角是60°,两拉素底端距离BD为300m,若两拉索顶端的距离AE为90m,请求出立柱AH的长.(tan26°≈0.5,sin26°≈0.4,1.7)22.某公园内有一如图所示地块,已知∠A=30°,∠ABC=75°,AB=BC=8米,求C点到人行道AD的距离(结果保留根号).23.如图,直线l 1∥l 2∥l 3,AC 分别交l 1,l 2,l 3于点A ,B ,C ;DF 分别交l 1,l 2,l 3于点D ,E ,F ;AC 与DF 交于点O .已知DE =3,EF =6,AB =4.(1)求AC 的长;(2)若BE :CF =1:3,求OB :AB .24.如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC 的三个顶点的坐标分别为A (﹣1,3),B (﹣4,0),C .(0,0)(1)将△ABC 向上平移1个单位长度,再向右平移5个单位长度后得到的△A 1B 1C 1,画出△A 1B 1C 1,并直接写出点A 1的坐标;(2)△ABC 绕原点O 逆时针方向旋转90°得到△A 2B 2O ;(3)如果△A 2B 2O ,通过旋转可以得到△A 1B 1C 1,请直接写出旋转中心P 的坐标25.如图1,点D、C、F、B共线,AC=DF=3,BC=EF=4,∠ACB=∠DFE=90°.点A在DE上,EF与AB交点为G.现固定△ABC,将△DEF沿CB方向平移,当点F与点B重合,停止运动.设BF=x.(1)如图1,请写出图中所有与△DEF相似的三角形(全等除外);(2)如图2,在△DEF运动过程中,设△CGF的面积为y,求当x为何值时y取得最大值?最大值为多少?(3)如图2,在△DEF运动过程中,若△ACG为等腰三角形,请直接写出x的值.26.已知:如图,△ABC是等边三角形,点D是平面内一点,连接CD,将线段CD绕C顺时针旋转60°得到线段CE,连接BE,AD,并延长AD交BE于点P.(1)当点D在图1所在的位置时①求证:△ADC≌△BEC;②求∠APB的度数;③求证:PD+PE=PC;(2)如图2,当△ABC边长为4,AD=2时,请直接写出线段CE的最大值.27.折叠矩形ABCD,使点D落在BC边上的点F处.(1)求证:△ABF∽△FCE;(2)若DC=8,CF=4,求矩形ABCD的面积S.28.已知:点A、B在∠MON的边OM上,作AC⊥OM,BD⊥OM,分别交ON于C、D两点.(1)若∠MON=45°.①如图1,请直接与出线段AB和CD的数量关系.②将△AOC绕点O逆时针旋转到如图2的位置,连接AB、CD,猜想线段AB和CD的数量关系,并证明你的猜想.(2)若∠MON=α(0°<α<90°),如图3,请直接写出线段OC、OD、AB之间的数量关系.(用含α的式子表示)29.某校数学课外实践小组一次活动中,测量一座楼房的高度.如图,在山坡坡脚A处测得这座楼房的楼顶B点的仰角为60°,沿山坡往上走到C处再测得B点的仰角为45°,已知山坡的坡比i=1:,OA=200m,且O、A、D在同一条直线上.(1)求楼房OB的高度;(2)求山坡上AC的距离(结果保留根号)30.问题情景:如图1,在等腰直角三角形ABC中∠ACB=90°,BC=a.将AB绕点B顺时针旋转90°得到线段BD,连接CD,过点D作△BCD的BC边上的高DE.易证△ABC≌△BDE,从而得到△BCD的面积为.简单应用:如图2,在Rt△ABC中,∠ACB=90°,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,用含a的代数式表示△BCD的面积,并说明理由.参考答案1.解:A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、是轴对称图形,符合题意.故选:D.2.解:∵∠ACB=90°,AB=13,BC=12,∴,∴tan A=,故选项A错误;tan B=,故选项B错误;sin A=,故选项C错误;cos A=,故选项D正确.故选:D.3.解:A、“品”字是轴对称,故此选项不合题意;B、“里”字是轴对称,故此选项不合题意;C、“用”字不是轴对称,故此选项符合题意;D、“且”字是轴对称,故此选项不合题意;故选:C.4.解:它的主视图是:.故选:C.5.解:∵将△ABC绕点C顺时针旋转40°得到△A′B′C,∴△ABC≌△A'B'C∴AC=A'C,∠ACA'=40°,∠BAC=∠B'A'C=90°∴∠AA'C=70°=∠A'AC∴∠B'A'A=∠B'A'C﹣∠AA'C=20°故选:C.6.解:依照题意,画出图形,如图所示.设BC=3x,则AB=5x,AC==4x,∴4x=8,∴x=2,∴AB=5x=10.∵在Rt△ACB中,∠C=90°,AB=10,点D是AB中点,∴CD=AB=5.故选:B.7.解:如图,连接PB,∵AB=AC,BD=CD,∴AD⊥BC,∴PB=PC,∴PC+PE=PB+PE,∵PE+PB≥BE,∴P、B、E共线时,PB+PE的值最小,最小值为BE的长度,故选:A.8.解:∵A(1,0)的对应点A′的坐标为(2,﹣1),∴平移规律为横坐标加1,纵坐标减1,∵点B(0,3)的对应点为B′,∴B′的坐标为(1,2).故选:D.9.解:如图,过点F作FM⊥AD于M,∵四边形ABCD为矩形,∴∠A=∠EMF=90°,MF=AB=6,∵EF⊥GE,∴∠AGE+∠AEG=90°,∠AEG+∠MEF=90°,∴∠AGE=∠MEF,∴△AEG∽△MFE,∴=,设AG=x,∵AD=9,DE=2AE,∴AE=3,∴=,∴ME=2x,∴BF=AM=3+2x,在Rt△GBF中,GF2=GB2+BF2=(6﹣x)2+(3+2x)2=5x2+45,∵点G在线段AB上,∴0≤x≤6,由二次函数的性质可知,当x=0时,GF2有最小值45,∴GF的最小值为3,故选:D.10.解:(1)∵四边形ABCD为正方形,∴AD=AB=∴BC,∠DAE=∠ABF=90°,∵E、F分别为正方形ABCD的边AB,BC的中点,∴AE=AB,BF=BC,∴AE=BF,∴△DAE≌△ABF(SAS),∴∠BAF=∠ADE,∵∠BAF+∠DAM=90°,∴∠ADE+∠DAM=90°,∴∠AME=∠ADE+∠DAM=90°,故①正确;(2)设AF与BD交于点N,正方形ABCD的边长为4,则AE=BE=BF=2,∴DE=AF==2,∵AD∥BF,∴△BFN∽△DAN,∴==,∴FN=,AN=,=AD•AE=DE•AM,∵S△AED∴AM===,∴MN=AF﹣AM﹣NF=,∴AM≠MN,若∠BAF=∠EDB,则∠ADE=∠EDB,又∵DM=DM,∠DMA=∠DMN=90°,∴△DAM≌△DNM(ASA),∴AM=MN,不符合题意,故②错误;(3)由(1)知,∠BAF=∠ADE,又∵∠AME=∠EAD=∠AMD=90°,∴△AME∽△DMA∽△DAE,∴===,∴AM=2EM,DM=2AM,∴MD=2AM=4EM,故③正确;(4)由(2)知AM=,MN=,FN=,∴MF=MN+FN=+=,∴=,故④正确;故选:B.二.填空题(共10小题)11.解:过点C作CE⊥AB于点E,如图所示.∵S=AC•3=AB•CE,即×2×3=×3•CE,△ABC∴CE=.在Rt△BCE中,BC=,CE=,∴BE==2,∴tan∠ABC==.故答案为:.12.解:∵在△ABC中,AB=AC,∠C=72°,∴∠ABC=∠C=72°,∠A=180°﹣∠C﹣∠ABC=36°.∵D是AB中点,DE⊥AB,∴AE=BE,∠ABE=∠A=36°,∴∠BEC=∠A+∠ABE=72°=∠C,∴BE=BC=AE.设BC=x,则CE=AC﹣AE=4﹣x.∵∠ABC=∠BEC,∠C=∠C,∴△ABC∽△BEC,∴=,即=,解得:x1=2﹣2,x2=﹣2﹣2(舍去),∴cos A===.故答案为:.13.解:设AH=e,AE=BD=f,BF=HD=m在Rt△AHE中,e2+f2=82在Rt△EFH中,f2=em在Rt△EFB中,f2+m2=152(e+m)2=e2+m2+2em=189AD=e+m=3故答案为314.解:如图,把△CDB绕点D逆时针旋转60°,得到△C′DB′,∵∠B=∠BDB′=60°,∴B′在BC上,BB′=BD=4.∵∠C′B′D=60°,∴∠CB′C′=60°,∴B′C′∥AB,过点C作CF′⊥B′C′时,此时的CF′就是CF最小值的情况.∵B'C=BC﹣BB'=2,∴CF'=B'C×cos∠CB'C'=2×=∴CF最小值为.故答案为:15.解:作BE⊥AC于E,在Rt△ABE中,sin∠BAC=,∴BE=AB•sin∠BAC=6×=3,由题意得,∠C=45°,∴BC==3÷=3(千米),故答案为:3.16.解:∵△ABC沿BC边平移到△DEF的位置,∴AB∥DE,∴△ABC∽△HEC,∴,∴EC:BC=1:,∵BC=2,∴EC=,∴BE=BC﹣EC=2﹣.故答案为:2﹣.17.解:∵AB∥CD,∠B=90°,∴∠C+∠B=180°,∴∠C=90°,当∠BAP=∠CDP时,△PAB∽△PDC,∴=,即=,∴PC=2PB①,当∠BAP=∠CPD时,△PAB∽△DPC,∴=,即PB×PC=1×2=2②,由①②得:2PB2=2,解得:PB=1,∴PC=2,∴BC=3;故答案为:3.18.解:按两种情况分析:①点F在线段BC上,如图所示,由折叠性质可知∠A=∠DFE=60°∵∠BFD+∠CFE=120°,∠BFD+∠BDF=120°∴∠BDF=∠CFE∵∠B=∠C∴△BDF∽△CFE∴∵AB=4,BF:FC=1:3∴BF=1,CF=3设AE=x,则EF=AE=x,CE=4﹣x∴解得BD=,DF=∵BD+DF=AD+BD=4∴解得x=,经检验当x=时,4﹣x≠0∴x=是原方程的解②当点F在线段CB的延长线上时,如图所示,同理可知△BDF∽△CFE∴∵AB=4,BF:FC=1:3,可得BF=2,CF=6设AE=a,可知AE=EF=a,CE=a﹣4∴解得BD =,DF =∵BD +DF =BD +AD =4∴解得a =14经检验当a =14时,a ﹣4≠0∴a =14是原方程的解,综上可得线段AE 的长为或14故答案为或1419.解:∵==,∴==,又∵∠DBE =∠ABC ,∴△BED ∽△BCA ,∴==,分别过点B ,D 作AC 的垂线BM ,DN , 则DN ∥BM ,∴△ADN ∽△ABM ,∴==,∵S △ADC =AC •DN ,S △BCA =A C •BM ,∴===,∴=×=,故答案为:.20.解:∵将△ADP沿AP翻折得到△AD'P,∴AP垂直平分DD',故①正确;解法一:过点P作PG⊥AB于点G,∴易知四边形DPGA,四边形PCBG是矩形,∴AD=PG,DP=AG,GB=PC∵∠APB=90°,∴∠APG+∠GPB=∠GPB+∠PBG=90°,∴∠APG=∠PBG,∴△APG∽△PBG,∴,∴PG2=AG•GB,即AD2=DP•PC;解法二:易证:△ADP∽△PCB,∴=,由于AD=CB,∴AD2=DP•PC;故③正确;∵DP∥AB,∴∠DPA=∠PAM,由题意可知:∠DPA=∠APM,∴∠PAM=∠APM,∵∠APB﹣∠PAM=∠APB﹣∠APM,即∠ABP=∠MPB∴AM=PM,PM=MB,∴PM=MB,又易证四边形PMBN是平行四边形,∴四边形PMBN是菱形;故②正确;由于=,可设DP=1,AD=2,由(1)可知:AG=DP=1,PG=AD=2,∵PG2=AG•GB,∴4=1•GB,∴GB=PC=4,AB=AG+GB=5,∵CP∥AB,∴△PCF∽△BAF,∴==,∴,又易证:△PCE∽△MAE,AM=AB=∴===∴,∴EF=AF﹣AE=AC﹣=AC,∴==,故④错误,即:正确的有①②③,故答案为:①②③.三.解答题(共10小题)21.解:设CD=x,∵∠EDC=60°,∴CE=x,∴AC=AE+C E=90+x,BC=CD+BD=300+x,∵tan26°=,∴0.5=,解得:x≈48.70,∴AH=BG+AC=1.8+90+×48.70≈176.15.22.解:过点B作BE⊥AD于E,作BF∥AD,过C作CF⊥BF于F,在Rt△ABE中,∠A=30°,AB=8m,∴BE=4m,∵BF∥AD,∴∠ABF=30°,∵∠ABC=75°,∴∠CBF=45°,在Rt△BCF中,CB=8m,∴CF=4m,∴C点到人行道AD的距离为4+4米;23.解:(1)∵l 1∥l 2∥l 3,∴,即,解得:AC =12;(2)∵l 1∥l 2∥l 3,∴,∵AB =4,AC =12,∴BC =9,∴OB =,∴.24.解:(1)如图所示,△A 1B 1C 1为所求作的三角形.A 1(4,4);(2)如图所示,△A 2B 2O 为所求作的三角形.(3)将△A 2B 2C 2绕某点P 旋转可以得到△A 1B 1C 1,点P 的坐标为:(2,﹣3).25.解:(1)△AEG 、△DAC 、△BFG 和△ABD ;理由:在△ABC和△DEF中,,∴△ABC≌△DFE(SAS),∴∠B=∠E,∠BAC=∠D,∵∠D+∠DAC=90°,∴∠BAC+∠DAC=90°,∴∠BAD=90°,∴∠EAG=90°=∠EFD,∵∠E=∠E,∴△GEA∽△DEF,∵∠ACB=∠DFE=90°,∴∠ACB+∠DFE=180°,∴AC∥EF,∴△DAC∽△DEF,△BFG∽△BCA,∵△ABC≌△DFE,∴△BFG∽△FED,∵∠BAD=90°=∠EFD,∠B=∠E,∴△ABD∽△FED;(2)∵∠ACB=∠DFE=90°,∠B=∠B.∴△BGF∽△BAC.∴=.∴=.∵CF=BC﹣BF=4﹣x,∴y==,=.∴当x=2时,y的最大值为;(3)在Rt△ABC中,AB=,若GA=GC,易证G为AB的中点,∵∠ACB=∠DFE=90°,∴AC∥EF,∴BF=BC=2,即x=2;若AG=AC=3,则BG=BA﹣AG=2,∵AC∥EF,∴,∴BF=,即x=;若CA=CG,如图,作CP⊥AB,垂足为P,则AG=2AP,∵∠ACB=90°,∴△ACP∽△ABC.∴,∴AP=,AG=2AP=,∴BG=BA﹣AG=,∵AC∥EF,∴,∴BF=,即x=;∴x的值为2、或.26.解:(1)①∵△ABC是等边三角形,∴AB=AC=BC,∠BAC=∠ACB=∠ABC=60°,∵将线段CD绕C顺时针旋转60°得到线段CE,∴CE=CD,∠DCE=60°,∴△DCE是等边三角形,∴∠DCE═60°,∵∠ACD+∠DCB=60°,∠BCE+∠DCB=60°,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS);②∵△ACD≌△BCE,∴∠EBC=∠DAC,∵∠DAC+∠BAD=∠BAC=60°,∴∠PBC+∠BAD=60°,∴∠APB=180°﹣∠ABC+∠PBC+∠BAP=180°﹣60°﹣60°=60°;③∵△ACD≌△BCE,∴∠CBE=∠CAD,∵∠CAD+∠BAD=60°,∠BAD+∠DBC=60°,∴∠BAD+∠ABD=∠BDP=60°,∵∠APB=60°,∴△BDP是等边三角形,∴DP=BP,∴PD+PE=BE,∵△ADC≌△BEC,∴AD=BE,∵在△ABD与△CBP中,∴△ABD≌△CBP(SAS),∴AD=PC,∴PD+PE=PC;(2)当∠ADC=90°时,CE取最大值,∵AB=AC=4,AD=2,∴CD=,∴CE=2,即当∠ADC=90°时,CE取最大值为2.27.(1)证明:∵矩形ABCD中,∠B=∠C=∠D=90°.∴∠BAF+∠AFB=90°.由折叠性质,得∠AFE=∠D=90°.∴∠AFB+∠EFC=90°.∴∠BAF=∠EFC.∴△ABF∽△FCE;(2)解:由折叠性质,得AF=AD,DE=EF.设DE=EF=x,则CE=CD﹣DE=8﹣x,在Rt△EFC中,EF2=CE2+CF2,∴x2=(8﹣x)2+42.解得x=5.由(1)得△ABF∽△FCE,∴.∴.∴AD=AF=10.∴S=AD•CD=10×8=80.28.解:(1)①如图1中,∵AC⊥OM,BD⊥OM,∴∠OAC=∠OBD=90°,∵∠MON=45°,∴△AOC,△BOD都是等腰直角三角形,∴OD=OB.OC=OAM∴CD=OD﹣OC=(OB﹣OA)=AB.故答案为CD=AB.②如图2中,结论:CD=AB.∵∠AOC=∠BOD=45°,∴∠AOB=∠COD,∴==,∴△AOB∽△COD,∴=,∴CD=AB.(2)如图3中,作CE⊥BD于E.∵AO⊥AC,OB⊥BD,∴∠CAB=∠ABE=∠CEB=90°,∴四边形ABEC是矩形,∴AB=CE,OB∥CE,∴∠ECD=∠MON=α,∴CD=,∴OD﹣OC=,故答案为:OD﹣OC=,29.解:(1)在Rt△AOB中,tan∠BAO=,则OB=OA•tan∠BAO=200,答:楼房OB的高度为200m;(2)作CE⊥OB于E,CF⊥OD于F,则四边形EOFC为矩形,∴CE=OF,CF=OE,设CF=xm,∵AC坡的坡比i=1:,∴AF=x,AC=2x,在Rt△BEC中,∠BCE=45°,∴BE=CE,即OB﹣OE=OA+AF,∴200﹣x=200+x,解得,x=200(2﹣)∴AC=2x=400(2﹣),答:山坡上AC的距离为400(2﹣)m.30.解:△BCD的面积为.理由如下:过点D作△BCD的BC边上的高DE.如图2,∵边AB绕点B顺时针旋转90°得到线段BD,∴BA=BD,∠ABD=90°,∵∠ABC+∠DBE=90°,∠ABC+∠A=90°,∴∠A=∠DBE,在△ABC和△BDE中∴△ABC≌△BDE(AAS),∴DE=BC=a,∴△BCD的面积=BC•DE=.。

2019-2020人教版九上数学23.1图形的旋转培优专题(含答案)

2019-2020人教版九上数学23.1图形的旋转培优专题(含答案)

2019-2020图形的旋转培优专题(含答案)一、单选题1.如图,在Rt △ABC 中,∠ACB=90°,∠A=60°,AC=6,将△ABC 绕点C 按逆时针方向旋转得到△A'B'C',此时点A'恰好在AB 边上,则点B'与点B 之间的距离为( )A .12B .6C .62D .632.如图,在正方形ABCD 中,AB=3,点M 在CD 的边上,且DM=1,ΔAEM 与ΔADM 关于AM 所在的直线对称,将ΔADM 按顺时针方向绕点A 旋转90°得到ΔABF ,连接EF ,则线段EF 的长为( )A.3B.23C.13D.153.如图,在ABC 中,65CAB ∠=,将ABC 在平面内绕点A 旋转到''AB C 的位置,使'//CC AB ,则旋转角的度数为( )A.35B.40C.50D.654.如图直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD=2,BC=3,将腰CD 以D 为中心逆时针旋转90°至ED ,连AE 、CE ,则△ADE 的面积是( )A.1B.2C.3D.不能确定5.如图,已知菱形OABC 的顶点O (0,0),B (2,2),若菱形绕点O 逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D 的坐标为( )A.(1,-1)B.(-1,-1)C.(2,0)D.(0,-2)6.点P 是正方形ABCD 边AB 上一点(不与A ,B 重合),连接PD 并将线段PD 绕点P 顺时针旋转90°,得线段PE ,连接BE ,则∠CBE 等于( )A .75°B .60°C .45°D .30°7.如图所示,将一个含30°角的直角三角板ABC 绕点A 旋转,使得点B ,A ,C′在同一直线上,则三角板ABC旋转的度数是()A.60°B.90°C.120°D.150°8.如图,把边长为1的正方形ABCD绕顶点A逆时针旋转30°到正方形AB′C′D′,则它们的公共部分的面积等于()A.3B.33C.332D.329.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.B.6 C.D.10.如图,将△ABC绕点A顺时针旋转60°得到△ADE,点C的对应点E恰好落在BA的延长线上,DE与BC交于点F,连接BD.下列结论不一定正确的是()A.AD=BDB.AC∥BDC.DF=EFD.∠CBD=∠E11.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.30°B.40°C.50°D.65°12.如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )A.68°B.20°C.28°D.22°二、填空题13.如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为_____.14.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,将Rt△ABC绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为弧BD,则图中阴影部分的面积为_____.15.如图,平面直角坐标系中,矩形OABC的顶点A(﹣6,0),C(0,23).将矩形OABC绕点O顺时针方向旋转,使点A恰好落在OB上的点A1处,则点B的对应点B1的坐标为_____.16.如图,在Rt△ABC中,∠ACB=90°,BC=6,CD是斜边AB上的中线,将△BCD沿直线CD翻折至△ECD的位置,连接AE.若DE∥AC,计算AE的长度等于_____.17.如图,△ABC中,AB=6,DE∥AC,将△BDE绕点B顺时针旋转得到△BD′E′,点D的对应点D′落在边BC上.已知BE′=5,D′C=4,则BC的长为______.18.如图,在Rt△ABC中,∠C=90°,AC=BC,将其绕点A逆时针旋转15°得到Rt△AB′C′,B′C′交AB于E,若图中阴影部分面积为23,则B′E的长为__.19.两个全等的三角尺重叠放在△ACB的位置,将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,则CF=______cm.20.如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连接CE,则CE的长是________.21.已知:如图,在△AOB中,∠AOB=90°,AO=3 cm,BO=4 cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=__________cm.22.如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC 于点E ,PF ⊥CD 于点F ,连接E ,F .给出下列五个结论:①AP=EF ;②PD=EC ;③∠PFE=∠BAP ;④△APD 一定是等腰三角形;⑤AP ⊥EF .其中正确结论的序号是_____.三、解答题23.已知,点P 是等边三角形△ABC 中一点,线段AP 绕点A 逆时针旋转60°到AQ ,连接PQ 、QC . (1)求证:PB =QC ;(2)若PA =3,PB =4,∠APB =150°,求PC 的长度.24.如图,在ABC 中,ACB 90∠=,AC BC =,D 是AB 边上一点,点D 与A ,B 不重合,连结CD,将线段CD绕点C按逆时针方向旋转90得到线段CE,连结DE交BC于点F,连接BE.()求证:△ACD≌△BCE;1()当AD BF2∠的度数.=时,求BEF25.如图,在四边形ABCD中,AB=AD=4,∠A=60°,BC=45,CD=8.(1)求∠ADC的度数;(2)求四边形ABCD的面积.26.如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.27.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,(1)当直线MN绕点C旋转到图(1)的位置时,显然有:DE=AD+BE;(2)当直线MN 绕点C 旋转到图(2)的位置时,求证:DE=AD ﹣BE ;(3)当直线MN 绕点C 旋转到图(3)的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请直接写出这个等量关系.28.如图1,点E 是正方形ABCD 边CD 上任意一点,以DE 为边作正方形DEFG ,连接BF ,点M 是线段BF 中点,射线EM 与BC 交于点H ,连接CM .(1)请直接写出CM 和EM 的数量关系和位置关系;(2)把图1中的正方形DEFG 绕点D 顺时针旋转45°,此时点F 恰好落在线段CD 上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由;(3)把图1中的正方形DEFG 绕点D 顺时针旋转90°,此时点E 、G 恰好分别落在线段AD 、CD 上,如图3,其他条件不变,(1)中的结论是否成立,请说明理由.29.如图,在正方形ABCD 中,E 为DC 边上的点,连接BE ,将BCE 绕点C 顺时针方向旋转90得到DCF ,连结EF ,若30EBC ∠=,求EFD ∠的度数.30.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.31.点O为直线AB上一点,过点O作射线OC,使∠BOC=65°.将一直角三角板的直角顶点放在点O处.(1)如图①,将三角板MON的一边ON与射线OB重合时,则∠MOC=;(2)如图②,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,求旋转角∠BON=;∠CON=.(3)将三角板MON绕点O逆时针旋转至图③时,∠NOC=5°,求∠AOM.32.四边形ABCD 是正方形,E 、F 分别是DC 和CB 的延长线上的点,且DE =BF ,连接AE 、AF 、EF .(1)求证:△ADE ≌△ABF ;(2)若BC =12,DE =5,求△AEF 的面积.33.已知正方形ABCD 中,45MAN ∠=,MAN ∠绕点A 顺时针旋转,它的两边分别交CB 、(DC 或它们的延长线于点M 、N ,当MAN ∠绕点A 旋转到BM DN =时如图1),则()1线段BM 、DN 和MN 之间的数量关系是______;()2当MAN ∠绕点A 旋转到BM DN ≠时(如图2),线段BM 、DN 和MN 之间有怎样的数量关系?写出猜想,并加以证明;()3当MAN∠绕点A旋转到(如图3)的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.34.如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.(1)求证:∠AEB=∠ADC;(2)连接DE,若∠ADC=105°,求∠BED的度数.35.如图,正方形ABCD的边长为6,E,F分别是AB,BC边上的点,且,将△绕点D逆时针旋转,得到△.求证:.当时,求EF的长.参考答案1.D【解析】【分析】连接B'B,利用旋转的性质和直角三角形的性质解答即可.【详解】连接B'B,∵将△ABC绕点C按逆时针方向旋转得到△A'B'C,∴AC=A'C,AB=A'B,∠A=∠CA'B'=60°,∴△AA'C是等边三角形,∴∠AA'C=60°,∴∠B'A'B=180°-60°-60°=60°,∵将△ABC绕点C按逆时针方向旋转得到△A'B'C,∴∠ACA'=∠BAB'=60°,BC=B'C,∠CB'A'=∠CBA=90°-60°=30°,∴△BCB'是等边三角形,∴∠CB'B=60°,∵∠CB'A'=30°,∴∠A'B'B=30°,∴∠B'BA'=180°-60°-30°=90°,∵∠ACB=90°,∠A=60°,AC=6,∴AB=12,∴A'B=AB-AA'=AB-AC=6,∴B'B=63,故选D.【点睛】此题考查旋转问题,关键是利用旋转的性质和直角三角形的性质解答.2.C【解析】分析:连接BM.证明△AFE≌△AMB得FE=MB,再运用勾股定理求出BM的长即可. 详解:连接BM,如图,由旋转的性质得:AM=AF.∵四边形ABCD是正方形,∴AD=AB=BC=CD,∠BAD=∠C=90°,∵ΔAEM与ΔADM关于AM所在的直线对称,∴∠DAM=∠EAM.∵∠DAM+∠BAM=∠FAE+∠EAM=90°,∴∠BAM=∠EAF,∴△AFE≌△AMB∴FE=BM.在Rt△BCM中,BC=3,CM=CD-DM=3-1=2,∴BM=22223213+=+=BC CM∴FE=13.故选C.点睛:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.3.C【解析】分析:根据两直线平行,内错角相等可得∠ACC′=∠CAB,根据旋转的性质可得AC=AC′,然后利用等腰三角形两底角相等求∠CAC′,再根据∠CAC′、∠BAB′都是旋转角解答.详解:∵CC′∥AB,∴∠ACC′=∠CAB=65°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°-2∠ACC′=180°-2×65°=50°,∴∠CAC′=∠BAB′=50°故选C.点睛:本题考查了旋转的性质,等腰三角形两底角相等的性质,熟记性质并准确识图是解题的关键. 4.A 【解析】【分析】如图作辅助线,利用旋转和三角形全等证明△DCG 与△DEF 全等,再根据全等三角形对应边相等可得EF 的长,即△ADE 的高,然后得出三角形的面积. 【详解】如图所示,作EF ⊥AD 交AD 延长线于F ,作DG ⊥BC ,∵CD 以D 为中心逆时针旋转90°至ED , ∴∠EDF+∠CDF=90°,DE=CD , 又∵∠CDF+∠CDG=90°, ∴∠CDG=∠EDF ,在△DCG 与△DEF 中,90CDG EDFEFD CGD DE CD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△DCG ≌△DEF (AAS ), ∴EF=CG , ∵AD=2,BC=3, ∴CG=BC ﹣AD=3﹣2=1, ∴EF=1,∴△ADE 的面积是:12×AD×EF=12×2×1=1, 故选A .【点睛】本题考查梯形的性质和旋转的性质,熟知旋转变换前后,对应点到旋转中心的距离相等、每一对对应点与旋转中心连线所构成的旋转角相等是解题的关键.同时要注意旋转的三要素:①定点为旋转中心;②旋转方向;③旋转角度.5.B【解析】试题分析:根据已知条件O(0,0),B(2,2),可求得D(1,1),OB与x轴、y轴的交角为45°,当菱形绕点O逆时针旋转,每秒旋转45°,时,8秒可旋转到原来的位置,因60÷8=7....4,所以第60秒时是第8循环的地上个位置,这时点D的坐标原来位置点D的坐标关于原点对称,所以为(-1,-1),故答案选B.考点:规律探究题.6.C【解析】【分析】过E作AB的延长线AF的垂线,垂足为F,可得出∠F为直角,先利用AAS证明△ADP≌△PEF,根据全等三角形的对应边相等可得出AD=PF,AP=EF,再由正方形的边长相等得到AD=AB,由AP+PB=PB+BF,得到AP=BF,等量代换可得出EF=BF,即三角形BEF为等腰直角三角形,可得出∠EBF为45°,再由∠CBF为直角,即可求出∠CBE的度数.【详解】过点E作EF⊥AF,交AB的延长线于点F,则∠F=90°,∵四边形ABCD为正方形,∴AD=AB,∠A=∠ABC=90°,∴∠ADP+∠APD=90°,由旋转可得:PD=PE,∠DPE=90°,∴∠APD+∠EPF=90°,∴∠ADP=∠EPF,在△APD和△FEP中∠ADP=∠FPE∠A=∠F=90°PD=EP,∴△APD≌△FEP(AAS),∴AP=EF,AD=PF,又∵AD=AB,∴PF=AB,即AP+PB=PB+BF,∴AP=BF,∴BF=EF,又∠F=91°,∴△BEF为等腰直角三角形,∴∠EBF=45°,又∠CBF=90°,则∠CBE=45°.故选C.【点睛】此题考查了正方形的性质,全等三角形的判定与性质,旋转的性质,以及等腰直角三角形的判定与性质,其中作出相应的辅助线是解本题的关键.7.D【解析】试题分析:根据旋转角的定义,两对应边的夹角就是旋转角,即可求解.旋转角是∠CAC′=180°﹣30°=150°.故选:D.考点:旋转的性质.8.B【解析】分析:设CD、B′C′相交于点M,连结AM,根据旋转角的定义易得:∠BAB′=30°,根据HL易得△AB′M≌△ADM,所以公共部分面积等于△ADM面积的2倍;设DM=x,在△AMD中利用勾股定理求得DM,进而解答即可.详解:设CD、B′C′相交于点M,连结AM,设DM=x,根据旋转的性质以及正方形的性质可得AB′=AD,AM=AM,∠BAB′=30°,∠B′=∠D=90°.∵AB′=AD,AM=AM,∴△AB′M≌△ADM.∵∠BAB′=30°,∴∠MAD=30°,AM=2x.∵x2+1=4x2,∴x=33,∴S ADM′=1331236⨯⨯=,∴重叠部分的面积S ADMB′=326⨯=33.故选B.点睛:本题考查了正方形的性质,旋转的性质,含30°三角形的性质,勾股定理,全等三角形的判定与性质,证明△AB′M≌△ADM是解答本题的关键;9.A【解析】试题分析:∵∠ACB=∠AC′B′=90°,AC=BC=3,∴AB==,∠CAB=45°,∵△ABC和△A′B′C′大小、形状完全相同,∴∠C′AB′=∠CAB=45°,AB′=AB=,∴∠CAB′=90°,∴B′C==,故选A.考点:勾股定理.10.C【解析】【分析】由旋转的性质知∠BAD=∠CAE=60°、AB=AD,△ABC≌△ADE,据此得出△ABD是等边三角形、∠C=∠E,证AC∥BD得∠CBD=∠C,从而得出∠CBD=∠E.【详解】由旋转知∠BAD=∠CAE=60°、AB=AD,△ABC≌△ADE,∴∠C=∠E,△ABD是等边三角形,∠CAD=60°,∴∠D=∠CAD=60°、AD=BD,∴AC∥BD,∴∠CBD=∠C,∴∠CBD=∠E,则A、B、D均正确,故选C.【点睛】本题主要考查旋转的性质,解题的关键是熟练掌握旋转的性质、等边三角形的判定与性质及平行线的判定与性质.11.C【解析】试题解析:∵CC′∥AB,∴∠ACC′=∠CAB=65°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°-2∠ACC′=180°-2×75°=30°,∴∠CAC′=∠BAB′=30°故选A.考点:旋转的性质.12.D【解析】试题解析:∵四边形ABCD为矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,∵∠2=∠1=112°,而∠ABD=∠D′=90°,∴∠3=180°-∠2=68°,∴∠BAB′=90°-68°=22°,即∠α=22°.故选D.13.32【解析】【分析】根据旋转的性质知AB=AE,在直角三角形ADE中根据勾股定理求得AE长即可得.【详解】∵四边形ABCD是矩形,∴∠D=90°,BC=AD=3,∵将矩形ABCD绕点A逆时针旋转得到矩形AEFG,∴EF=BC=3,AE=AB,∵DE=EF,∴AD=DE=3,∴AE=22AD DE+=32,∴AB=32,故答案为:32.【点睛】本题考查矩形的性质和旋转的性质,熟知旋转前后哪些线段是相等的是解题的关键.14.2 3π【解析】【分析】先根据勾股定理得到AB=22,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD.【详解】∵∠ACB=90°,AC=BC=2,∴AB=22,∴S扇形ABD =()2302223603ππ⨯=,又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD=23π,故答案为:23π.【点睛】本题考查了旋转的性质、扇形面积的计算,得到S阴影部分=S扇形ABD是解题的关键. 15.(-23,6)【解析】分析:连接OB1,作B1H⊥OA于H,证明△AOB≌△HB1O,得到B1H=OA=6,OH=AB=23,得到答案.详解:连接OB1,作B1H⊥OA于H,由题意得,OA=6,AB=OC-23,则tan∠BOA=33 ABOA=,∴∠BOA=30°,∴∠OBA=60°,由旋转的性质可知,∠B1OB=∠BOA=30°,∴∠B1OH=60°,在△AOB和△HB1O,111B HO BAO B OH ABO OB OB ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△AOB ≌△HB 1O ,∴B 1H=OA=6,OH=AB=23,∴点B 1的坐标为(-23,6),故答案为:(-23,6).点睛:本题考查的是矩形的性质、旋转变换的性质,掌握矩形的性质、全等三角形的判定和性质定理是解题的关键.16.23 【解析】 【分析】根据题意、解直角三角形、菱形的性质、翻折变化可以求得AE 的长. 【详解】 由题意可得,DE=DB=CD=12AB , ∴∠DEC=∠DCE=∠DCB ,∵DE ∥AC ,∠DCE=∠DCB ,∠ACB=90°, ∴∠DEC=∠ACE ,∴∠DCE=∠ACE=∠DCB=30°, ∴∠ACD=60°,∠CAD=60°,∴△ACD是等边三角形,∴AC=CD,∴AC=DE,∵AC∥DE,AC=CD,∴四边形ACDE是菱形,∵在Rt△ABC中,∠ACB=90°,BC=6,∠B=30°,∴AC=23,∴AE=23.故答案为23.【点睛】本题考查翻折变化、平行线的性质、直角三角形斜边上的中线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.17.234+.【解析】解:由旋转可得,BE=BE'=5,BD=BD',∵D'C=4,∴BD'=BC﹣4,即BD=BC﹣4,∵DE∥AC,∴BD BEBA BC=,即456BCBC-=,解得BC=234+(负值已舍去),即BC的长为234+.故答案为:234+.点睛:本题主要考查了旋转的性质,解一元二次方程以及平行线分线段成比例定理的运用,解题时注意:对应点到旋转中心的距离相等.解决问题的关键是依据平行线分线段成比例定理,列方程求解.18.23﹣2【解析】【分析】求出∠C′AE=30°,推出AE=2C′E,AC′=3C′E,根据阴影部分面积为23得出12×C′E×3C′E=23,求出C′E=2,即可求出C′B′,即可求出答案.【详解】解:∵将Rt△ACB绕点A逆时针旋转15°得到Rt△AB′C′,∴△ACB≌△AC′B′,∴AC=AC′,CB=C′B′,∠CAB=∠C′AB′,∵在Rt△ABC中,∠C=90°,AC=BC,∴∠CAB=45°,∵∠CAC′=15°,∴∠C′AE=30°,∴AE=2C′E,AC′=3C′E,∵阴影部分面积为23,∴12×C′E×3C′E=23,C′E=2,∴AC=BC=C′B′=3C′E=23,∴B′E=23-2,故答案为:23-2.【点睛】本题考查了旋转的性质,含30度角的直角三角形性质,勾股定理,等腰三角形的性质的应用,主要考查学生的推理和计算能力.19.【解析】试题解析∵将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE 上,∴DC=AC,∠D=∠CAB,∴∠D=∠DAC,∵∠ACB=∠DCE=90°,∠B=30°,∴∠D=∠CAB=60°,∴∠DCA=60°,∴∠ACF=30°,可得∠AFC=90°,∵AB=8cm,∴AC=4cm,∴FC=4cos30°=2cm.【点睛】此题主要考查了旋转的性质以及直角三角形的性质,正确得出∠AFC的度数是解题关键.20.【解析】解:连接AG,由旋转变换的性质可知,∠ABG=∠CBE,BA=BG=5,BC=BE,由勾股定理得,CG==4,∴DG=DC﹣CG=1,则AG==,∵,∠ABG=∠CBE,∴△ABG∽△CBE,∴,解得,CE=,故答案为:.点睛:本题考查的是翻转变换的性质、相似三角形的判定和性质,掌握勾股定理、矩形的性质、旋转变换的性质是解题的关键.21.1.5【解析】试题解析:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB=22OA OB=5cm,∵点D为AB的中点,∴OD=12AB=2.5cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.5cm.故答案为:1.5.22.①③⑤【解析】【分析】可以作PG⊥AB,证明△APG≌△FEP即可. 【详解】如图,作PG⊥AB,易知PG=PE,且AG=EC=FP,则△APG≌△FEP,所以AP=EF,∠PFE=∠BAP,运用旋转的知识易知AP⊥EF,所以正确结论的序号是①③⑤.【点睛】做辅助线证明全等是解题的关键.23.(1)证明见解析;(2)5.【解析】【分析】(1)直接利用旋转的性质可得AP=AQ,∠P AQ=60°,然后根据“SAS”证明△BAP≌△CAQ,结合全等三角形的性质得出答案;(2)由△APQ是等边三角形可得AP=PQ=3,∠AQP=60°,由全等的性质可得∠AQC =∠APB=150°,从而可求∠PQC=90°,然后根据勾股定理求PC的长即可.直接利用等边三角形的性质结合勾股定理即可得出答案.【详解】(1)证明:∵线段AP绕点A逆时针旋转60°到AQ,∴AP=AQ,∠PAQ=60°,∴△APQ是等边三角形,∠PAC+∠CAQ=60°,∵△ABC是等边三角形,∴∠BAP+∠PAC=60°,AB=AC,∴∠BAP=∠CAQ , 在△BAP 和△CAQ 中,∴△BAP ≌△CAQ (SAS ), ∴PB=QC ;(2)解:∵由(1)得△APQ 是等边三角形, ∴AP=PQ=3,∠AQP=60°, ∵∠APB=150°,∴∠PQC=150°﹣60°=90°, ∵PB=QC , ∴QC=4,∴△PQC 是直角三角形,∴PC===5.【点睛】本题考查了旋转的性质,等边三角形的性质与判定,全等三角形的判定与性质,勾股定理.证明△BAP ≌△CAQ 是解(1)的关键,证明∠PQC =90°是解(2)的关键. 24.()1证明见解析;()2BEF 67.5∠=. 【解析】【分析】()1由题意可知:CD CE =,DCE 90∠=,由于ACB 90∠=,从而可得ACD BCE ∠∠=,根据SAS 即可证明ACD ≌BCE ;()2由ACD ≌()BCE SAS 可知:A CBE 45∠∠==,BE BF =,从而可求出BEF ∠的度数.【详解】()1由题意可知:CD CE =,DCE 90∠=,ACB 90∠=,ACD ACB DCB ∠∠∠∴=-,BCE DCE DCB ∠∠∠=-,ACD BCE ∠∠∴=,在ACD 与BCE 中,AC BCACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ACD ∴≌()BCE SAS ;()2ACB 90∠=,AC BC =,A 45∠∴=,由()1可知:A CBE 45∠∠==,AD BF =, BE BF ∴=,BEF 67.5∠∴=.【点睛】本题考查了旋转的性质、全等三角形的判定与性质,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质.25.(1) 150°;(2)43+16【解析】试题分析:(1)连接BD,首先证明△ABD是等边三角形,可得∠ADB=60°,DB=4,再利用勾股定理逆定理证明△BDC是直角三角形,进而可得答案;(2)过B作BE⊥AD,利用三角形函数计算出BE长,再利用△ABD的面积加上△BDC的面积可得四边形ABCD的面积.试题解析:(1)连接BD,∵AB=AD,∠A=60°,∴△ABD是等边三角形,∴∠ADB=60°,DB=4,∵42+82=(4)2,∴DB2+CD2=BC2,∴∠BDC=90°,∴∠ADC=60°+90°=150°;(2)过B作BE⊥AD,∵∠A=60°,AB=4,∴BE=AB•sin60°=4×32=23,∴四边形ABCD的面积为:12AD•EB+12DB•CD=12×4×23+12×4×8=43+16.26.(1)45°;(2)12.5.【解析】【分析】(1)由旋转的性质得,AD=AB=10,∠ABD=45°,再由平移的性质即可得出结论;(2)先判断出∠ADE=∠ACB,进而得出△ADE∽△ACB,得出比例式求出AE,即可得出结论.【详解】(1)∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB=10,∴∠ABD=45°,∵△EFG是△ABC沿CB方向平移得到,∴AB∥EF,∴∠BDF=∠ABD=45°;(2)由平移的性质得,AE∥CG,AB∥EF,∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°,∵∠DAB=90°,∴∠ADE=90°,∵∠ACB=90°,∴∠ADE=∠ACB,∴△ADE∽△ACB,∴AD AE AC AB,∵AB=8,AB=AD=10,∴AE=12.5,由平移的性质得,CG=AE=12.5.【点睛】此题主要考查了图形的平移与旋转,平行线的性质,等腰直角三角形的判定和性质,解直角三角形,相似三角形的判定和性质,判断出△ADE∽△ACB是解本题的关键.27.(1)详见解析;(2)详见解析;(3)DE=BE﹣AD.【解析】【分析】(1)利用垂直的定义得∠ADC=∠CEB=90°,则根据互余得∠DAC+∠ACD=90°,再根据等角的余角相等得到∠DAC=∠BCE ,然后根据“AAS”可判断△ADC ≌△CEB ,所以CD=BE ,AD=CE ,再利用等量代换得到DE=AD+BE ;(2)与(1)一样可证明△ADC ≌△CEB ,则CD=BE ,AD=CE ,于是有DE=CE ﹣CD=AD ﹣BE ;(3)与(1)一样可证明△ADC ≌△CEB ,则CD=BE ,AD=CE ,于是有DE=CD ﹣CE=BE ﹣AD . 【详解】(1)∵AD ⊥MN ,BE ⊥MN , ∴∠ADC=∠CEB=90°, ∴∠DAC+∠ACD=90°, ∵∠ACB=90°, ∴∠BCE+∠ACD=90°, ∴∠DAC=∠BCE , 在△ADC 和△CEB ,ADC CEB DAC ECB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADC ≌△CEB (AAS ), ∴CD=BE ,AD=CE , ∴DE=CE+CD=AD+BE ;(2)与(1)一样可证明△ADC ≌△CEB , ∴CD=BE ,AD=CE , ∴DE=CE ﹣CD=AD ﹣BE ;(3)DE=BE﹣AD.【点睛】本题考查了全等三角形的判定与性质,判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,根据实际情况选择合适的方法证明△ADC≌△CEB是解决问题的关键.28.(1)CM=EM,CM⊥EM,理由见解析;(2)(1)中的结论成立,理由见解析;(3)(1)中的结论成立,理由见解析.【解析】分析:(1)延长EM交AD于H,证明△FME≌△AMH,得到HM=EM,根据等腰直角三角形的性质可得结论;(2)根据正方形的性质得到点A、E、C在同一条直线上,根据直角三角形斜边上的中线是斜边的一半证明即可;(3)根据题意画出完整的图形,根据平行线分线段成比例定理、等腰三角形的性质证明即可.详解:(1)如图1,结论:CM=EM,CM⊥EM.理由:∵AD∥EF,AD∥BC,∴BC∥EF,∴∠EFM=∠HBM,在△FME和△BMH中,EFM MBH FM BMFME BMH ∠∠⎧⎪⎨⎪∠∠⎩===,, ∴△FME ≌△BMH , ∴HM=EM ,EF=BH , ∵CD=BC ,∴CE=CH ,∵∠HCE=90°,HM=EM , ∴CM=ME ,CM ⊥EM . (2)如图2,连接AE ,∵四边形ABCD 和四边形EDGF 是正方形, ∴∠FDE=45°,∠CBD=45°, ∴点B 、E 、D 在同一条直线上,∵∠BCF=90°,∠BEF=90°,M 为AF 的中点,∴CM=12AF ,EM=12AF , ∴CM=ME , ∵∠EFD=45°, ∴∠EFC=135°,∵CM=FM=ME ,∴∠MCF=∠MFC ,∠MFE=∠MEF , ∴∠MCF+∠MEF=135°, ∴∠CME=360°-135°-135°=90°, ∴CM ⊥ME .(3)如图3,连接CF ,MG ,作MN ⊥CD 于N ,在△EDM 和△GDM 中,DE DG MDE MDG DM DM ⎧⎪∠∠⎨⎪⎩===, ∴△EDM ≌△GDM ,∴ME=MG ,∠MED=∠MGD , ∵M 为BF 的中点,FG ∥MN ∥BC , ∴GN=NC ,又MN ⊥CD , ∴MC=MG ,∴MD=ME ,∠MCG=∠MGC , ∵∠MGC+∠MGD=180°, ∴∠MCG+∠MED=180°,∴∠CME+∠CDE=180°, ∵∠CDE=90°, ∴∠CME=90°, ∴(1)中的结论成立.点睛:本题考查的是正方形的性质、全等三角形的判定定理和性质定理以及直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题. 29.15° 【解析】 【分析】根据旋转性质可得:BEC DFC ∠=∠,90ECF BCE ∠=∠=,CF CE =,由等腰直角三角形三角形性质可得45CFE FEC ∠=∠=,所以EFD DFC EFC ∠=∠-∠. 【详解】 解:DCF 是BCE 旋转得到的图形,903060BEC DFC ∴∠=∠=-=,90ECF BCE ∠=∠=,CF CE =, 45CFE FEC ∴∠=∠=.604515EFD DFC EFC ∴∠=∠-∠=-=.【点睛】本题考核知识点:旋转性质,等腰直角三角形. 解题关键点:熟记旋转性质,等腰直角三角形性质.30.(1)PM =PN ,PM ⊥PN ;(2)△PMN 是等腰直角三角形;(3). 【解析】 【分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.【详解】(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN,(2)由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,(3)如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,,∴MN最大=2+5=7∴S△PMN最大=PM2=×MN2=×(7)2= .【点睛】解(1)的关键是判断出PM=CE,PN=BD,解(2)的关键是判断出△ABD≌△ACE,解(3)的关键是判断出MN最大时,△PMN的面积最大31.25°40°25°【解析】【分析】(1)根据∠MON和∠BOC的度数可以得到∠MOC的度数;(2)根据OC平分∠MOB,∠BOC=65°可以求得∠BOM的度数,由∠MON=90°,可得∠BON的度数,继而可得∠CON的度数;(3)由∠NOC=5°,∠BOC=65°,∠MON=90°结合平角的定义即可求得.【详解】(1)∠MOC=∠MON﹣∠BOC=90°﹣65°=25°,故答案为:25°;(2)∵OC是∠MOB的角平分线,∴∠MOB=2∠BOC=2×65°=130°,∴旋转角∠BON=∠MOB﹣∠MON=130°﹣90°=40°,∠CON=∠BOC﹣∠BON=65°﹣40°=25°,故答案为:40°,25°;(3)∵∠NOC=5°,∠BOC=65°,∴∠BON=∠NOC+∠BOC=70°,∵点O为直线AB上一点,∴∠AOB=180°,∵∠MON=90°,∴∠AOM=∠AOB﹣∠MON﹣∠BON=180°﹣90°﹣70°=20°.【点睛】本题考查了旋转的性质,角平分线的定义,平角的定义等,熟练掌握相关的定义和性质是解题的关键.32.(1)见解析;(2)84.5.【解析】【分析】(1)由正方形的性质得出AD=AB,∠D=∠ABC=∠ABF=90°,依据“SAS”即可证得;(2)根据勾股定理求得AE=13,再由旋转的性质得出AE=AF ,∠EAF=90°,从而由面积公式得出答案. 【详解】解:(1)∵四边形ABCD 是正方形, ∴AD=AB ,∠D=∠ABC=90°, 而F 是CB 的延长线上的点, ∴∠ABF=90°, 在△ADE 和△ABF 中,∵AB AD ABF ADE BF DE =⎧⎪∠=∠⎨⎪=⎩, ∴△ADE ≌△ABF (SAS ); (2)∵BC=12,∴AD=12, 在Rt △ADE 中,DE=5,AD=12, ∴AE==13,(勾股定理)∵△ABF 可以由△ADE 绕旋转中心 A 点,按顺时针方向旋转90°得到, ∴AE=AF ,∠EAF=90°,∴△AEF 的面积=12AE 2=12×169=84.5. 【点睛】本题主要考查正方形的性质和全等三角形的判定与性质及旋转的性质,熟练掌握正方形的性质和全等三角形的判定与性质是解题的关键.33.(1)BM DN MN +=;(2)猜想:BM DN MN +=,详见解析;(3)DN BM MN -=,详见解析.【解析】【分析】(1)连接AC,交MN于点G,则可知AC垂直平分MN,结合∠MAN=45°,可证明△ABM≌△AGM,可得到BM=MG,同理可得到NG=DN,可得出结论;(2)在MB的延长线上,截取BE=DN,连接AE,则可证明△ABE≌△ADN,可得到AE=AN,进一步可证明△AEM≌△ANM,可得结论BM+DN=MN;(3)在DC上截取DF=BM,连接AF,可先证明△ABM≌△ADF,进一步可证明△MAN≌△FAN,可得到MN=NF,从而可得到DN﹣BM=MN.【详解】(1)如图1,连接AC,交MN于点G.∵四边形ABCD为正方形,∴BC=CD,且BM=DN,∴CM=CN,且AC平分∠BCD,∴AC⊥MN,且MG=GN,∴AM=AN.∵AG⊥MN,∴∠MAG=∠NAG.∵∠BAC=∠MAN=45°,即∠BAM+∠GAM=∠GAM+∠GAN,∴∠BAM=∠GAN=∠GAM.在△ABM和△AGM中,∵90B AGMBAM GAMAM AM∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ABM≌△AGM(AAS),∴BM=MG,同理可得GN=DN,∴BM+DN=MG+GN=MN.故答案为:BM+DN=MN;(2)猜想:BM+DN=MN,证明如下:如图2,在MB的延长线上,截取BE=DN,连接AE.在△ABE和△ADN中,∵AB ADABE DBE DN=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ADN(SAS),∴AE=AN,∠EAB=∠NAD.∵∠BAD=90°,∠MAN=45°,∴∠BAM+∠DAN=45°,∴∠EAB+∠BAM=45°,∴∠EAM=∠NAM.在△AEM和△ANM中,∵AE ANEAM NAMAM AM=⎧⎪∠=∠⎨⎪=⎩,∴△AEM≌△ANM(SAS),∴ME=MN,又ME=BE+BM=BM+DN,∴BM+DN=MN;(3)DN﹣BM=MN.证明如下:如图3,在DC上截取DF=BM,连接AF.△ABM和△ADF中,∵AB ADABM DBM DF=⎧⎪∠=∠⎨⎪=⎩,∴△ABM≌△ADF(SAS),∴AM=AF,∠BAM=∠DAF,∴∠BAM+∠BAF=∠BAF+∠DAF=90°,即∠MAF=∠BAD=90°.∵∠MAN=45°,∴∠MAN=∠F AN=45°.在△MAN和△F AN中,∵AM AFMAN FANAN AN=⎧⎪∠=∠⎨⎪=⎩,∴△MAN≌△F AN(SAS),∴MN=NF,∴MN=DN﹣DF=DN﹣BM,∴DN﹣BM=MN.【点睛】本题为四边形的综合应用,涉及知识点有正方形的性质、全等三角形的判定和性质、垂直平分线的判定和性质等.在(1)中证得AM=AN是解题的关键,在(2)、(3)中构造三角形全等是解题的关键.本题考查了知识点不多,但三角形全等的构造难度较大.34.(1)证明见解析;(2)∠BED=45°.【解析】试题分析:(1)由等边三角形的性质知∠BAC=60°,AB=AC,由旋转的性质知∠DAE=60°,AE=AD,从而得∠EAB=∠DAC,再证△EAB≌△DAC可得答案;(2)由∠DAE=60°,AE=AD知△EAD为等边三角形,即∠AED=60°,继而由∠AEB=∠ADC=105°可得.试题解析:(1)∵△ABC是等边三角形,∴∠BAC=60°,AB=AC.∵线段AD绕点A顺时针旋转60°,得到线段AE,∴∠DAE=60°,AE=AD.∴∠BAD+∠EAB=∠BAD+∠DAC.∴∠EAB=∠DAC.在△EAB和△DAC中,==,=∴△EAB≌△DAC.∴∠AEB=∠ADC.(2)如图,∵∠DAE=60°,AE=AD,∴△EAD为等边三角形.∴∠AED=60°,又∵∠AEB=∠ADC=105°.∴∠BED=45°.35.(1)证明见解析;(2)FC=3.【解析】试题分析:(1)由旋转可得DE=DM,∠EDM为直角,可得出∠EDF+∠MDF=90°,由∠EDF=45°,得到∠MDF为45°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF;(2)由第一问的全等得到AE=CM=2,正方形的边长为6,用AB-AE求出EB的长,再由BC+CM求出BM的长,设EF=MF=x,可得出BF=BM-FM=BM-EF=8-x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为EF的长.(1)证明:∵△DAE逆时针旋转90°得到△DCM,∴∠FCM=∠FCD+∠DCM=180°,∴F、C、M三点共线,∴DE=DM,∠EDM=90°,∴∠EDF+∠FDM=90°,∵∠EDF=45°,∴∠FDM=∠EDF=45°,∴△DEF≌△DMF(SAS),∴EF=MF;(2)解:设EF=MF=x,∵AE=CM=2,且BC=6,∴BM=BC+CM=6+2=8,∴BF=BM﹣MF=BM﹣EF=8﹣x,∵EB=AB﹣AE=6﹣2=4,在Rt△EBF中,由勾股定理得EB2+BF2=EF2,即42+(8﹣x)2=x2,解得:x=5,则EF=5.点睛:熟练掌握旋转的性质,正方形的四个角都是直角,四条边相等,勾股定理,全等三角形的判定(SAS),全等三角形的性质是解答本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

②如图②中,由△ ADB≌ △ AOB,得到∠ BAD=∠ BAO,
又在矩形 AOBC 中,OA∥ BC,
∴ ∠ CBA=∠ OAB,
∴ ∠ BAD=∠ CBA,
∴ BH=AH,设 AH=BH=m,则 HC=BC-BH=5-m,
在 Rt△ AHC 中,∵ AH2=HC2+AC2,
∴ m2=32+(5-m)2,
(4)分类讨论:①如图 5 中,当 α=90°时,半圆与 AC 相切,②如图 6 中,当
α=90°+∠ ACB 时,半圆与 BC 相切,分别求出 BD 即可.
试题解析:(1)解:①如图 1 中,当 α=0 时,连接 DE,则
∠ CDE=90°.∵ ∠ CDE=∠ B=90°,∴ DE∥ AB,∴ CE CD = 1 .∵ BC=n,∴ CD= 1 n .故答
【答案】(1)BE=CD.理由见解析;(2)△ CHQ 是等腰三角形;(3)2 - x. 【解析】 试题分析:(1)根据等边三角形的性质可得 AB=BC,CD=CE,∠ ACB=∠ ECD=60°,然后求 出∠ ACD=∠ BCE,再利用“边角边”证明△ ACD 和△ BCE 全等,根据全等三角形对应边相等证 明即可; (2)求出∠ ACF=30°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出 ∠ CHQ=30°,从而得到∠ ACF=∠ CHQ,判断出△ CHQ 是等腰三角形; (3)求出∠ CGP=90°,然后利用∠ ACF 的余弦表示出 CG,再根据等腰三角形的性质表示出 CH,然后根据 GH=CG-CH 整理即可得解. 试题解析:(1)BE=CD. 理由如下:∵ △ ABC 与△ CDE 是等边三角形, ∴ AC=BC,CE=CD,∠ ACB=∠ ECD=60°. ∴ ∠ ACB-∠ ACE=∠ ECD-∠ ACE, 即∠ BCE=∠ ACD. 在△ ACD 和△ BCE 中,
(3)如图 4 中,当 α=∠ ACB 时.在 Rt△ ABC 中,∵ AC=10,BC=8,
∴ AB= AC2 BC2 =6.在 Rt△ ABE 中,∵ AB=6,BE=BC﹣CE=3,
∴ AE=
AB2 BE2 =
62 32 =3
5 ,由(2)可知△ ACE∽ △ BCD,∴ BD BC , AE AC

17
m=

5
∴ BH= 17 , 5
∴ H( 17 ,3). 5
(3)如图③中,当点 D 在线段 BK 上时,△ DEK 的面积最小,最小值= 1 •DE•DK= 1 ×3×
2
2
(5- 34 )= 30 3 34 ,
2
4
当点 D 在 BA 的延长线上时,△ D′E′K 的面积最大,最大面积= 1 ×D′E′×KD′= 1 ×3×
【答案】(1)DF=BE 且 DF⊥BE,证明见解析;(2)数量关系改变,位置关系不变,即 DF=kBE,DF⊥BE;(3)不改变.DF=kBE,β=180°-α 【解析】 【分析】 (1)根据旋转的过程中线段的长度不变,得到 AF=AE,又∠ BAE 与∠ DAF 都与∠ BAF 互
余,所以∠ BAE=∠ DAF,所以△ FAD≌ △ EAB,因此 BE 与 DF 相等,延长 DF 交 BE 于 G, 根据全等三角形的对应角相等和四边形的内角和等于 360°求出∠ EGF=90°,所以 DF⊥BE; (2)等同(1)的方法,因为矩形的邻边不相等,但根据题意,可以得到对应边成比例, 所以△ FAD∽ △ EAB,所以 DF=kBE,同理,根据相似三角形的对应角相等和四边形的内角 和等于 360°求出∠ EHF=90°,所以 DF⊥BE; (3)与(2)的证明方法相同,但根据相似三角形的对应角相等和四边形的内角和等于 360°求出∠ EAF+∠ EHF=180°,所以 DF 与 BE 的夹角 β=180°﹣α. 【详解】 (1)DF 与 BE 互相垂直且相等. 证明:延长 DF 分别交 AB、BE 于点 P、G
②如图 6 中,当 α=90°+∠ ACB 时,半圆与 BC 相切,作 EM⊥AB 于
M.∵ ∠ M=∠ CBM=∠ BCE=90°,∴ 四边形 BCEM 是矩形,∴ BM EC 3,ME 4 2 ,
∴ AM=5,AE=
AM 2 ME2 =
57 ,由(2)可知 DB = 2 2 ,∴ BD= 2 114 .
(1)当 α=0°时,连接 DE,则∠ CDE=
°,CD=

(2)试判断:旋转过程中 BD 的大小有无变化?请仅就图 2 的情形给出证明; AE
(3)若 m=10,n=8,当 α=∠ ACB 时,求线段 BD 的长;
(4)若 m=6,n=4 2 ,当半圆 O 旋转至与△ ABC 的边相切时,直接写出线段 BD 的
AE 3
3
故答案为 2 10 或 2 114 . 3
点睛:本题考查了圆的有关知识,相似三角形的判定和性质、勾股定理等知识,正确画出 图形是解决问题的关键,学会分类讨论的思想,本题综合性比较强,属于中考压轴题.
4.如图 1,是边长分别为 6 和 4 的两个等边三角形纸片 ABC 和 CD1E1 叠放在一起.
(1)操作:固定△ ABC,将△ CD1E1 绕点 C 顺时针旋转得到△ CDE,连接 AD、BE,如图 2.探究:在图 2 中,线段 BE 与 AD 之间有怎样的大小关系?并请说明理由; (2)操作:固定△ ABC,若将△ CD1E1 绕点 C 顺时针旋转 30°得到△ CDE,连接 AD、BE,CE 的延长线交 AB 于点 F,在线段 CF 上沿着 CF 方向平移,(点 F 与点 P 重合即停止平移)平 移后的△ CDE 设为△ PQR,如图 3. 探究:在图 3 中,除三角形 ABC 和 CDE 外,还有哪个三角形是等腰三角形?写出你的结论 (不必说明理由); (3)探究:如图 3,在(2)的条件下,设 CQ=x,用 x 代数式表示出 GH 的长.
在正方形 ABCD 和等腰直角△ AEF 中 AD=AB,AF=AE, ∠ BAD=∠ EAF=90° ∴ ∠ FAD=∠ EAB ∴ △ FAD≌ △ EAB ∴ ∠ AFD=∠ AEB,DF=BE ∵ ∠ AFD+∠ AFG=180°, ∴ ∠ AEG+∠ AFG=180°, ∵ ∠ EAF=90°, ∴ ∠ EGF=180°﹣90°=90°, ∴ DF⊥BE (2)数量关系改变,位置关系不变.DF=kBE,DF⊥BE. 延长 DF 交 EB 于点 H,
∵ AD=kAB,AF=kAE
∴ AD k , AF k
AB
AE
∴ AD AF AB AE
∵ ∠ BAD=∠ EAF=a
∴ ∠ FAD=∠ EAB
∴ △ FAD∽ △ EAB
∴ DF AF k BE AE
∴ DF=kBE ∵ △ FAD∽ △ EAB, ∴ ∠ AFD=∠ AEB, ∵ ∠ AFD+∠ AFH=180°, ∴ ∠ AEH+∠ AFH=180°, ∵ ∠ EAF=90°, ∴ ∠ EHF=180°﹣90°=90°, ∴ DF⊥BE (3)不改变.DF=kBE,β=180°﹣a. 延长 DF 交 EB 的延长线于点 H,
∵ AD=kAB,AF=kAE
∴ AD k , AF k
AB
AE
∴ AD AF AB AE
∵ ∠ BAD=∠ EAF=a
∴ ∠ FAD=∠ EAB
∴ △ FAD∽ △ EAB
∴ DF AF k BE AE
∴ DF=kBE
由△ FAD∽ △ EAB 得∠ AFD=∠ AEB
∵ ∠ AFD+∠ AFH=180°
2
2
(5+ 34 )= 30 3 34 .
2
4
综上所述, 30 3 34 ≤S≤ 30 3 34 .
4
4
【点睛】
本题考查四边形综合题、矩形的性质、勾股定理、全等三角形的判定和性质、旋转变换等
知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决
问题.
2.如图所示, (1)正方形 ABCD 及等腰 Rt△ AEF 有公共顶点 A,∠ EAF=90°,连接 BE、DF.将 Rt△ AEF 绕点 A 旋转,在旋转过程中,BE、DF 具有怎样的数量关系和位置关系?结合图(1)给予证明; (2)将(1)中的正方形 ABCD 变为矩形 ABCD,等腰 Rt△ AEF 变为 Rt△ AEF,且 AD=kAB, AF=kAE,其他条件不变.(1)中的结论是否发生变化?结合图(2)说明理由; (3)将(2)中的矩形 ABCD 变为平行四边形 ABCD,将 Rt△ AEF 变为△ AEF,且 ∠ BAD=∠ EAF=a,其他条件不变.(2)中的结论是否发生变化?结合图(3),如果不变,直接 写出结论;如果变化,直接用 k 表示出线段 BE、DF 的数量关系,用 a 表示出直线 BE、DF 形成的锐角 β.
∴ BD = 8 ,∴ BD= 12 5 .故答案为 12 5 .
3 5 10
5
5
(4)∵ m=6,n= 4 2 ,∴ CE=3,CD=2 2 ,AB= CA2 BC2 =2,①如图 5 中,当 α=90°
时,半圆与 AC 相切.在 Rt△ DBC 中,BD= BC2 CD2 = (4 2)2 (2 2)2 =2 10 .
∴ ∠ AEB+∠ AFH=180°
∵ 四边形 AEHF 的内角和为 360°,
∴ ∠ EAF+∠ EHF=180°
∵ ∠ EAF=α,∠ EHF=β
∴ a+β=180°∴ β=180°﹣a
【点睛】
本题(1)中主要利用三角形全等的判定和性质以及正方形的性质进行证明;(2)(3)利
用相似三角形的判定和性质证明,要解决本题,证明三角形全等和三角相似是解题的关
相关文档
最新文档