实数与勾股定理(修改)

合集下载

勾股定理知识点+对应类型

勾股定理知识点+对应类型

第二章勾股定理、平方根专题第_节勾股定理-、勾股定理:1、勾股定理定义:如果直角三角形的两直角边长分别为a, b,斜边长为c,那么勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边勾股定理的逆定理:如果三角形的三边长a, b, c有下面关系:a2+ b2= c2,那么这个三角形是直角三角形。

2. 勾股数:满足a2+ b2= c2的三个正整数叫做勾股数(注意:若a, b, c、为勾股数,那么ka, kb, kc同样也是勾股数组。

)* 附:常见勾股数: 3,4,5 ; 6,8,10 ; 9,12,15 ; 5,12,133. 判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形。

(经典直角三角形:勾三、股四、弦五)其他方法:(1)有一个角为90°的三角形是直角三角形。

(2)有两个角互余的三角形是直角三角形。

用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c);(2) 若c2= a2+ b2,则^ ABC是以Z C为直角的三角形;若a2 + b2v c2,则此三角形为钝角三角形(其中c为最大边);若a2 + b2> c2,则此三角形为锐角三角形(其中c为最大边)4. 注意:(1)直角三角形斜边上的中线等于斜边的一半(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的(3) 在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。

5. 勾股定理的作用:(1) 已知直角三角形的两边求第三边。

(2) 已知直角三角形的一边,求另两边的关系。

(3) 用于证明线段平方关系的问题。

(4) 利用勾股定理,作出长为际的线段二、平方根:(11——19的平方)1、平方根定义:如果一个数的平方等于a,那么这个数就叫做a的平方根。

(也称为二次方根),也就是说如果x2=a,那么x就叫做a的平方根。

勾股定理与实数 2

勾股定理与实数 2

勾股定理与实数复习【知识要点】1、勾股定理是:直角三角形两直角边的平方和等于斜边的平方,即:222cba=+2、勾股定理逆定理:如果三角形的三边长a、b、c满足222a b c+=那么这个三角形是直角三角形。

3、一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。

4、正数的立方根是正数,0的立方根是0,负数的立方根是负数。

【典型习题】1、如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()A. 2cmB. 3cmC. 4cmD. 5cm2、求下列各图字母中所代表的正方形的面积。

=AS=BS=CS=DS3、如图,一次“台风”过后,一根旗杆被台风从离地面8.2米处吹断,倒下的旗杆的顶端落在离旗杆底部6.9米处,那么这根旗杆被吹断裂前至少有多高?4、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A,B,C,D的面积之和为___________cm2。

5、某社区要在如图所示的AB所在的直线上建一图书阅览室,该社区有两所学校,所在的位置分别在点C和点D处。

CA⊥AB于A,DB⊥AB于B,已知AB=25km,CA=15km,DB=10km,试问:阅览室E建在距A点多远时,才能使它到C、D两所学校的距离相等?2.89.6A E BDC6、如图所示,MN表示一条铁路,A、B是两个城市,它们到铁路的所在直线MN的垂直距离分别AA1=20km,BB1=40km,A1B1=80km.现要在铁路A1,B1之间设一个中转站P,使两个城市到中转站的距离之和最短。

请你设计一种方案确定P点的位置,并求这个最短距离。

7、如图是一个三级台阶,它的每一级的长宽和高分别为20分米、3分米、2分米,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短的路程是多少?8、如图2—5—4所示,某市住宅社区在相邻两楼之间修建一个仿古通道,它的上方是一个半圆,下方是长方形,现有一辆卡车装满家具后,高4米,宽2.8米,请问这辆送家具的卡车能通过这个通道吗?图2—5—49、甲、乙两船同时从A港出发,甲朝北偏东60°方向行驶,乙朝南偏东30°方向行驶。

勾股定理重点知识点

勾股定理重点知识点

勾股定理重点知识点2017精选关于勾股定理重点知识点一、勾股定理与逆定理A.勾股定理在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方。

如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2。

1、勾股定理应用的前提条件是在直角三角形中。

2、勾股定理公式a2+b2=c2 的变形有:a2= c2—b2,b2=c2-a2及c2=a2+b2。

3、由于a2+b2=c2>a2 ,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边。

B.勾股定理的逆定理如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形。

说明:①勾股定理的逆定理验证利用了三角形的全等。

②勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形。

必须满足较小两边平方的和等于最大边的平方才能做出判断。

(2)运用勾股定理的逆定理解决问题的实质就是判断一个角是不是直角。

然后进一步结合其他已知条件来解决问题。

注意:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是。

面积分割法、构造直角三角形二、实数与数轴1、实数与数轴上的点是一一对应关系。

任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数。

数轴上的任一点表示的数,不是有理数,就是无理数。

2、在数轴上,表示相反数的两个点在原点的两旁,并且两点到原点的距离相等,实数a的绝对值就是在数轴上这个数对应的点与原点的距离。

3、利用数轴可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小。

三、矩形的性质1、矩形的定义:有一个角是直角的平行四边形是矩形。

2、矩形的性质①平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形。

实数知识点总结及练习题

实数知识点总结及练习题

)(无限不循环小数负有理数正有理数无理数⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧--⎩⎨⎧---)()32,21()32,21()()3,2,1()3,2,1,0(无限循环小数有限小数整数负分数正分数小数分数负整数自然数整数有理数、、 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧实数第一章 勾股定理姓名 座号 班级一、勾股定理:直角三角形两直角边的平方和等于斜边c 的平方,即222c b a =+二、勾股定理的逆定理:如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。

三、勾股数:满足222c b a =+的三个正整数,称为勾股数。

常见的勾股数组有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(6,8,10);(9,12,15);(这些勾股数组的倍数仍是勾股数)第二章 实数一、实数的概念及分类1、实数的分类2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;二、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。

特别地,0的算术平方根是0。

表示方法:记作“a ”,读作根号a 。

性质:正数和零的算术平方根都只有一个,零的算术平方根是零。

2、平方根:一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(或二次方根)。

表示方法:正数a 的平方根记做“a ±”,读作“正、负根号a ”。

性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

开平方:求一个数a 的平方根的运算,叫做开平方。

0≥a注意a 的双重非负性:a ≥03、立方根一般地,如果一个数x 的立方等于a ,即x 3=a 那么这个数x 就叫做a 的立方根(或三次方根)。

勾股定理知识点总结

勾股定理知识点总结

17.1勾股定理考点一:勾股定理直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

(即:a 2+b 2=c 2) 技巧归纳:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-)(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题考点二:勾股定理的证明一般是通过剪拼,借助面积进行证明。

其中的依据是图形经过割补拼接后,只要没有重叠,没有空隙,面积不变。

图1是由4个全等三角形拼成的,得到一个以a+b 为边长的大正方形和以直角三角形斜边c 为边长的小正方形。

则大正方形的面积可表示为(a+b)2,又可表示为12ab ·4+c 2,所以(a+b)2=12ab ·4+c 2,整理得a 2+b 2=c 2在图2的另一种拼法中,以c 为边长的正方形的面积可表示成四个全等的直角三角形与边长为(b-a)的正方形的面积的和,所以12ab ·4+(b-a)2=c 2,整理得a 2+b 2=c 2.考点三:勾股定理的应用(1)勾股定理的应用条件勾股定理只适用于直角三角形,所以常作辅助线——高,构造直角三角形。

(2)勾股定理的实际应用勾股定理反映了直角三角形3条边之间的关系,利用勾股定理,可以解决直角三角形的有关计算和证明.例如:已知直角三角形的两条直角边可求斜边;已知直角三角形的斜边和一条直角边,可求另一条直角边。

勾股定理还可以解决生产生活中的一些实际问题。

在解决问题的过程中,往往利用勾股定理列方程(组),将实际问题转化成直角三角形的模型来解决。

(3)利用勾股定理作长为 n (n 为大于1的整数)的线段实数与数轴上的点是一一对应的,有理数在数轴上较易找到与它对应的点,而若要在数轴上直接标出无理数对应的点则较难。

实数勾股定理

实数勾股定理
101001000100001,― ,―0.35, 3.14159265, 0.8282282228…, , , .
2、要做一个面积为 的正方形,它的边长的整数部分是
三、1.化简计算:
(1)、 (2)、
(3)、 (4)、
(5)、 (7)、
2、如图,每个小正方形的边长是1,在图中画出①一个面积是2的直角三角形;②一个面积是2的正方形。
教 学 过 程
◆ 知识要点概述
第一章勾股定理
1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;即 。
2.勾股定理的证明:用三个正方形的面积关系进行证明(两种方法)。
3.勾股定理逆定理:如果三角形的三边长 , , 满足 ,那么这个三角形是直角三角形。满足 的三个正整数称为勾股数。
第二章实数
1.平方根和算术平方根的概念及其性质:
A、25海里B、30海里C、35海里D、40海里
3、直角三角形的两直角边分别为5厘米、12厘米,则斜边上的高是( )
A、6厘米 B、8厘米 C、 厘米 D、 厘米
4、若等腰三角形腰长为10cm,底边长为16 cm,那么它的面积为 ( )
A.48 cm2B.36 cm2C.24 cm2D.12 cm2
2、如图,从电线杆离地面3米处向地面拉一条长为5米的拉线,这条拉线在地面的固定点距离电线杆底部有米。
3.如图,长方体的长为15 cm,宽为10 cm,高为20 cm,点B离点C 5 cm,
一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?
4.如图正方形网格中的△ABC,若小方格边长为1,请你根据所学的知识
5.算术平方根的运算律: ( ≥0, ≥0);( ≥0, >0)。
第一章《勾股定理》

勾股定理

勾股定理

一、勾股定理基础知识点:1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c=⨯+=+ 大正方形面积为222()2S a b a a b b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在A B C ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a cb =-②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c为三边的三角形是锐角三角形;cba HG FEDCBAbacbac cabcab a bcc baED CBA②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:ABC30°D C BA ADB C10、互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。

八年级数学上册第4章实数专题训练10实数与勾股定理习题课件新版苏科版

八年级数学上册第4章实数专题训练10实数与勾股定理习题课件新版苏科版
(1)求证:∠ BAC =90°;
1
2
3
4
5
6
7
8
(1)证明:∵ AD ⊥ BC ,∴∠ ADC =∠ ADB =90°.在
Rt△ ACD 中, CD =1, AD =2,∴ AC = +
= + = .在Rt△ ABD 中, BD =4, AD =2,
∴ AB = + = + = .∵ AC2+ AB2
1
2
3
4
5
6
7
8
类型2
实数与网格
4. 【母题教材P113复习题T14】图中每个小方格的边长
均为1.
1
2
3
4
5
6
7
8
(1)在图①中画一个三角形,使它的三边长分别为1,
, ,并求出它的面积;
解:(1)如图①,△ ABC 即为所求. Nhomakorabea
△ ABC 的面积= ×1×1= .


1
2
3
4
5
6
7
8
(2)在图①中,试比较 +1与 的大小,并说明理由;
CP = AC = .②当 AC = AP 时,如图①,∵ AC =
AP , AD ⊥ CP ,∴ CP =2 CD =2;③当 PA = PC 时,
如图②,∵ PA = PC ,∴∠ C =∠ PAC . ∵∠ C +∠ B
=90°,∠ PAC +∠ PAB =90°,∴∠ B =∠ PAB ,
径分别为 A → B → M 、 A → C → M 、 A → D → M ,且三
只蚂蚁都按最短路径爬行,通过计算说明哪只蚂蚁最先到
达,哪只蚂蚁最后到达.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实数与勾股定理1.下列说法正确的是( )A .无限小数都是无理数。

B .带根号的数都是无理数。

C .开方开不尽的数是无理数。

D .π是无理数,故无理数也可能是有限小数。

2.下列说法中,正确的是( )A .一个有理数的平方根有两个,它们互为相反数。

B .一个有理数的立方根,不是正数就是负数。

C .负数没有立方根。

D .如果一个数的立方根是这个数本身,那么这个数一定是-1,0,1。

3.下列六种说法正确的是○1无限小数都是无理 ○2正数、负数统称有理数 ○3无理数的相反数还是无理数 ○4无理数与无理数的和一 定还是无理数 ○5无理数与有理数的和一定是无理数 ○6 无理数与有理数的积一定仍是无理数4.在实数中,其中无理数的个数为( ) A .1 B .2 C .3 D .45. 设,,,,则a b c d ,,,按由小到大的顺序排列正确的是( )A .B .C .D .6.已知a =2,b =4,c =-2,且aacb b x 242-+-=,则x 的值为 ;7.已知a 、b 、c 是的三边,且满足222244a cbc a b -=-,则△ABC 的形状是 ( )A .直角三角形 B. 等腰三角形C .等腰直角三角形D .等腰三角形或直角三角形8.如图,把长方形纸片ABCD 折叠,B 、C 两点恰好重合落在AD 边上的点P 处.已知∠MPN=90°,且PM=3,PN=4,那么长方形纸片ABCD 的面积为__________.70107.081221.03、、、、- 。

π02a =2(3)b =-39c =-11()2d -=c a d b <<<b d a c <<<a c d b <<<b c a d <<<第8题图9.如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要_____cm;如果从点A开始经过4个侧面缠绕n圈到达点B,那么所用细线最短需要______cm.9.如图,在△ABC中,∠CAB=90°,AC=AB,点P在△ABC内,且PC=3,PB=1,PA=2,则∠APB的度数为。

11.已知m、n是有理数,且(5+2)m+(3-25)n+7=0,则m、n分别为.12.如果a是2的小数部分,b是3的小数部分,则()()51312--++ba的值为13.已知121222++++-=xxxxy,则y的最小值为 .14.若0< a <1 ,且16aa+=,则的值aa1-为。

15.计算:()()201320142323-⨯+=BA3cm1cm6cm第9题图第10题16我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图(1)).图(2)由 弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积 分别为S 1、S 2、S 3 . 若正方形EFGH 的边长为2,则S 1+S 2+S 3=________.17.动手操作:将矩形纸片ABCD (如图①,AD >CD )沿过A 点的直线折叠,使得B 点落在AD 边上的点F 处,折痕为AE (如图②);再沿过D 点的直线折叠,使得C 点落在DA 边上的点N 处,E 点落在AE 边上的点M 处,折痕为DG(如图③).如果第二次折叠后,M 点正好在∠NDG 的平分线上,如果AB=a.那么BC 可以用含a 的式子表示为 .18.几何模型:条件:如下左图,A 、B 是直线l 同旁的两个定点.问题:在直线l 上确定一点P ,使PA +PB 的值最小.方法:作点A 关于直线l 的对称点A ',连接A 'B 交l 于点P ,则PA +PB =A 'B 的值最小(不必证明).模型应用:⑴如图1,正方形ABCD 的边长为2,E 为AB 的中点,P 是AC 上一动点.连接BD ,由正方形对称性可知,B 与D 关于直线AC 对称.连接ED 交AC 于P ,则PB +PE 的最小值是__________;(2)如图2,∠AOB =45°,P 是∠AOB 内一点,PO =10,Q 、R 分别是OA 、OB 上的动点,求△PQR 周长的最小值. ABCDABCDEF①②ABC DEG M N ③ 第17题图BE 第16题图19.已知P 为△ABC 边BC 上一点,且PC=2PB ,∠ABC=45︒,∠APC=60︒,则∠ACB 的度数为 .20. 任何实数a ,可用[]a 表示不超过a 的最大整数,如[]44=,31⎡⎤=⎣⎦,现对72进行如下操作: ,这样对72只需进行3次操作后变为1,类似地,①、对81只需进行 次操作后变为1;②、只需进行3次操作后变为1的所有正整数中,最大的是 ;21.若∆ABC 的三边长a 、b 、c 满足条件:338262410222-++=++c b a c b a ,则∆ABC 的形状形状为 .22.如图,C 为线段BD 上一动点,分别过点B 、D 作AB ⊥BD ,ED ⊥BD ,连接AC 、EC .已知AB =5,DE =1,BD =8,设CD =x. (1)用含x 的代数式表示AC +CE 的长; (2)请问点C 满足什么条件时,AC +CE 的值最小?(3)根据(2)中的规律和结论,请构图求出代数式9)12(422+-++x x 的最小值.第19题图ED C B A第22题图21⎡=⎣72⎡=⎣8⎡=⎣23.问题背景:在△ABC 中,AB 、BC 、AC 三边的长分别为5、10、13,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网络(每个小正方形的边长为1),再在网格中画出格点△ABC (即△ABC 三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC 的高,而借用网格就能计算出它的面积. ⑴请你将△ABC 的面积直接填写在横线上______; 思维拓展:⑵我们把上述求△ABC 面积的方法叫做构图法....若△ABC 三边的长分别为5a 、22a 、17a (a >0),请利用图2的正方形网格(每个小正方形的边长为a )画出相应的△ABC ,并求出它的面积; 探索创新:⑶若△ABC 三边的长分别为2216m n +、2294m n +、222m n +(m >0,n >0,且m ≠n ),试运用构图..法.求出这三角形的面积.第23题图24.矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2.动点M、N分别从点D、B同时出发,沿线段DA、线段BA向点A的方向运动,当动点M运动到点A时,M、N两点同时停止运动.连接FM、FN.设点M、N的运动速度都是1个单位/秒,M、N运动的时间为x秒,问:当x为多少时,FM⊥FN?25. 如图,有一块塑料矩形模块ABCD,长为10cm,宽为4cm,将你手中足够大的直角三角板PHF的直角顶点P落在AD边上(不与A,D重合),在AD上适当移动三角板顶点P:(1)能否使你的三角板两直角边分别通过点B与点C?若能,请你求出这时AP的长;若不能,请说明理由.(5分)(2)再次移动三角板位置,使三角板顶点P在AD上移动,直角边PH始终通过点B,另一直角边PF与DC的延长线交于点Q,与BC交于点E,能否使CE=2cm?若能,请你求出这时AP的长;若不能,请你说明理由.(7分)26.如图,在△ABC中,∠BAC=900,AB=AC,D是BC边的中点,点E、F分别在AB、AC上,∠EDF=900,连结AD.①求证:△ADE≌△CDF;②若BE=12,CF=5,求EF的长;③设AB=6,点E、F在AB、AC上移动,且保持∠EDF=900,设AE=x,当从1开始逐渐变到5(每次增加1)时,写出EF的长度,并猜想点E移到何位置时EF最短.DABHCPFEDABHCPF第25题图第24题27.一道结论性探索题的类比延伸:通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的。

下面是一个案例,请补充完整。

原题:如图1,点E 、F 分别在正方形ABCD 的边BC 、CD 上,45EAF ∠=︒,连接EF , 则EF BE DF =+,试说明理由。

(1)思路梳理 ∵AB CD =,∴把ABE ∆绕点A 逆时针旋转90︒至ADG ∆,可使AB 与AD 重合。

∵90ADC B ∠=∠=︒; ∴180FDG ∠=︒,点F 、D 、G 共线。

根据 ,易证AFG ∆≌AFE ∆,得EF BE DF =+。

(2)类比引申如图2,四边形ABCD 中,AB AD =,90BAD ∠=︒,点E 、F 分别在边BC 、CD 上,45EAF ∠=︒。

若B ∠、D ∠都不是直角,则当B ∠与D ∠满足关系 时,GA BCDEFC仍有EF BE DF =+。

(3)联想拓展如图3,在ABC ∆中,90BAC ∠=︒,AB AC =,点D 、E 均在边BC 上,且45DAE ∠=︒。

猜想BD 、DE 、EC 应满足的等量关系,并写出推理过程。

28.如图,P 是等边三角形ABC 内的一点,连结PA PB PC ,,,以BP 为边作60PBQ ∠=,且BQ BP =,连结CQ .(1)观察并猜想AP 与CQ 之间的大小关系,并证明你的结论.(2)若::3:4:5PA PB PC =,连结PQ ,试判断PQC △的形状,并说明理由.Q CPAB第28题图。

相关文档
最新文档