3.5 标准正交基
第二节标准正交基

中的两组标准正交基,它们之间的过渡矩阵是
a11 a12 a1n a21 a22 a2 n (1 , 2 , , n ) ( 1 , 2 , , n ) . a a a n2 nn n1 因为 1 , 2 , … , n 是标准正交基,所以
(a3 ,b1 ) (a3 ,b2 ) b3 a3 b1 b2 (b1 , b1 ) (b2 , b2 )
4 1 1 1 1 5 1 2 1 2 0 . 0 3 1 3 1 1
3. 正交基的定义
定义 6 在 n 维欧氏空间中,由 n பைடு நூலகம்向量组成
由单位向量组成的正交 的正交向量组称为正交基;
基称为标准正交基. 对一组正交基进行单位化就得到一组标准正交
基.
4. 正交基的性质
性质 1 设 1 , 2 , … , n 是一组标准正交基,
则
1, ( i , j ) 0,
再把它们单位化, 取
1 b1 1 e1 2 , | b1 | 6 1
1 b2 1 e2 1 , | b2 | 3 1
1 b3 1 e3 0 . | b3 | 2 1
则 e1 , e2 , e3 即为所求.
性质 正交向量组是线性无关的. 证明 设 1 , 2 , … , m 是一正交向量组,
k1 , k2 , … , km 是 m 个实数,且有
k1 1 + k2 2 + … + kmm = 0 . 用 i 与等式两边作内积,得
ki ( i , i ) = 0 . 由 i 0,有 (i , i ) > 0 ,从而
第三章 内积空间,正规矩阵,Hermite矩阵

复矩阵(向量)的4个一元运算()∀A=(a ij )∈C m ×n ,复矩阵(向量)的一元运算的性质11221122k A k A k A k A +=+ ;TT T A k A k A k A k 22112211)(+=+方阵A=(a ij )∈C n ×n 的迹定义为其所有对角元之和:行列式的性质方阵乘积的行列式公式重要特殊矩阵A=(a ij )∈C n ×n 称为对角矩阵,如果∀i ≠j,a ij =0;A称为上(下)三角矩阵,如果∀i>(<)j,a =0.特征值,特征向量λ∈C称为A=(aij)∈C n×n的一个特征值,如果存在0≠x∈C n,使得Ax=λx.此时,x称为A的特征向量.特征值、特征向量续三角矩阵A的所有对角元组成A的谱:σ(A)={a,…,a}.线性相关与线性无关定义1.1.3 (p.5): F上线性空间V中的向量组{α,…,α}是线性相关的充要条件是:在数域F线性映射与线性变换关于线性映射与线性变换的定义,请看教本第24页§3.1: 欧式空间,酉空间§3.2: 标准正交基,Schmidt方法第三章内积空间,正规矩阵,Hermite矩阵§3.1: 欧式空间,酉空间从解析几何知二平面向量内积的概念定义3.1.1:设V是实数域R 上的n维线性空间,对V 中的任意两个向量α,β,按照某一确定法则对应着欧式空间的概念例3.1.1:∀α=(a 1,…,a n )T ,β=(b 1,…,b n )T ∈R n ,定义标准内积:(α,β)=a b +…+a b ,欧氏空间例1例3.1.2:∀α=(a 1,a 2)T ,β=(b 1,b 2)T ∈R 2,定义内积(R 2×R 2到R的映射):欧氏空间例2在R 2中至少可定义两个不同的内积.今后讨论R n 时都用例3.1.1中定义的内积.关于例1和例2的注例3.1.3:R m ×n ={(a ij )|a ij ∈R,i=1,…m,j=1,…,n}中任取A,B,定义内积:(A,B)=tr(A T B)=ΣΣa b .欧氏空间例3定义3.1.1:设V是复数域C 上的n维线性空间,对V 中的任意两个向量α,β,按照某一确定法则对应着酉空间的概念欧氏空间是酉空间的特例.关于欧式空间和酉空间的注酉空间例1例3.1.6:∀α=(a 1,…,a n )T ,β=(b 1,…,b n )T ∈C n ,酉空间例2例3.1.7:C m ×n ={(a ij )|a ij ∈C,i=1,…,m,j=1,…,n}§3.2: 标准正交基,Schmidt 方法欧氏空间中的C-S不等式推出:-1 ≤(α,β)/‖α‖‖β‖≤1正交的概念(,)1αβαβ≤§3.3: 酉变换,正交变换§3.6: 正规矩阵,Schur引理§3.8: Hermite矩阵,Hermite二次齐式§3.9: 正定二次齐式,正定Hermite矩阵证:设A∈H n×n,A(i1,…,ik)为A的第i1,…,ik行,列组成的k阶主子矩阵,易见:A(i,…,i)∈H n×n.(半)正定矩阵的任何主子矩阵仍为(半)正定证:因为(半)正定矩阵A的任何主子式都是(0或)正的定理:A ∈H n ×n 为正定⇔A的n个顺序主子式全为正:用主子式刻画(半)正定矩阵命题:A ∈H n ×n 为负定⇔-A为正定定理3.9.1:对任意A ∈H n ×n ,下列各条相互等价:定理3.9.3:对任意A ∈H n ×n ,下列各条相互等价:(1) A半正定:∀x ∈C n ,x *Ax ≥0半正定矩阵的基本定理命题:A ∈H n ×n 为半正定⇔∀ε>0,A+εE 为正定半正定矩阵是正定矩阵序列的极限命题:对任意A ∈H n ×n ,下列两条相互等价:半正定矩阵是正定矩阵序列的极限(续)(1) A ∈C n ×n 为(半)正定(半)正定矩阵的补充结果定理(3.9.4):每个(半)正定Hermite矩阵A都有唯下证唯一性.如果还有正定矩阵M=Wdiag(µ,…,µ)W *,使∀i,j,(√λi v ij )=(√λj v ij ) 每个(半)正定矩阵有唯一(半)正定平方根续再证与A可交换的矩阵X(XA=AX)必与B可交换.若XUdiag(λ,…,λ)U *=Udiag(λ,…,λ)U *X 每个(半)正定矩阵有唯一(半)正定平方根续试证:A,B ∈H n ×n 且A为正定⇒AB的特征值全为实数.应用举例例3.9.1:若A,B为同阶正定Hermite矩阵,应用举例命题:A,B ∈H n ×n 且B正定,则det(λB-A)=0的根全为实数.证明: B正定⇒有可逆矩阵P使P *BP=E;定理3.10.1:若A,B ∈H n ×n 且B为正定,则有T ∈C n n ×n 使二矩阵经复相合变换同时对角化易见: µ1,…,µn 是det(λE-T 1*AT 1)=0的根.二矩阵经复相合变换同时对角化定理3.10.4:若A,B ∈H n ×n 且B为正定,则有行列式等二矩阵经复相合变换同时对角化续定义3.11.1:由Hermite矩阵A定义的从C n –{0}到R 的下列函数:R(x)=x *Ax/x *x 称为矩阵A的Rayleigh商.§3.11: Rayleigh商(1)R(x)为x的齐次函数:∀0≠k ∈R ,R(kx)=R(x)(3)min x ≠0R(x)=λ1=min{λ1, …,λn };max R(x)=λ=max{λ, …,λ}.注:由(1)和(3)推出min x ≠0R(x)=min ‖x‖=1x *Ax,Rayleigh 商性质的注设M ∈H n ×n ,用λmin ,λmax 分别记M的最小,大特征值,则λ=min x *Ax,λ=max x *Ax.一个推论。
第3.5节向量空间正交向量组量

2
= 2
-
[ 2 [1
, 1] , 1]
1
3
=
3
-
[3 [1
, 1] , 1]
1
-
[3 [2
, 2] , 2]
2
……
s
=
s
-
[ s [1
, ,
1] 1]
1
-
[ s [2
, ,
2] 2]
2
-
-
[s , s-1] [s-1, s-1]
s-1
向量组1,2,,s是正交向量组,并且与向量
组1,2,, s可以相互线性表示。
a11
a21
a12
a22
a1n a11 a2n a12
a21
a22
an1 an2
=E
an1 an2 ann a1n a2n ann
1
2
T 1
,
T 2
,,
T n
=E
1 n
T
1
1
T 2
1
T n
2
T 1
2
T 2
2
T n
=
E
n
T 1
n
T 2
n
T n
2
2
1 = 1 2 = 2 - 11
11
1 = 1
上式两边与 1 做内积, 注意 [1, 2] = 0 得
从而
1
=
[1 , 2 ] [1, 2 ]
2
=
2
-
[1 , 2 ] [1, 1]
1
我们已求得 1, 2 已正交, 再求构造 3
3 = 3 - 11 - 22 (1)
标准正交基

ki R 待定.
§2 标准正交基
从正交向量组的性质知
( i , m1 ) ( , i ) ki ( i , i ),
于是取
( , i ) ki , ( i , i )
i 1,2, , m .
i 1,2, , m ,
可得 ( i , m 1 ) 0 ,
( i , j ) 1 i j, 0 i j
i , j 1,2,, n
(1)
③ n 维欧氏空间V中的一组基 1 , , n 为标准正交基 当且仅当其度量矩阵 A ( i , j ) En . ④ n 维欧氏空间V中标准正交基的作用: 设 1 , , n为V的一组标准正交基,则
§2 标准正交基
例2. 在 R[ x ]4 中定义内积为
( f , g ) f ( x ) g( x )dx
1 1
求 R[ x ]4 的一组标准正交基. (由基 1, x , x 2 , x 3 出发作正交化)
2 3 1, x , x , x 解: 取 1 2 3 4
§2 标准正交基
3
3 x i y j z k , x i y j z k R 设 1 1 1 2 2 2 ① 从 ( , i ) x1 , ( , j ) y1 , ( , k ) z1 得 ( , i ) i ( , j ) j ( , k ) k
2 再单位化得标准正交向量组 1 ,2 ,,m .
i
1 | i |
i , i 1,2,, m
§2 标准正交基
例1. 把 1 (1,1,0,0), 2 (1,0,1,0),
线性空间的基本内容

(3)线性变换将线性相关的向量组变为线性相关的向量组
注意:线性无关的向量组经过线性变换后可能会变成线性相关的向量组,如零变换
3、线性变换的矩阵
(1) 定义 教材P133定义3.11
(2) 求线性变换一组基下的矩阵 教材P134例8---例11。
(2) 正交基与标准正交基 教材P145定义3.17
对一组正交基进行单位化,就得到一组标准正交基
(3) 在标准正交基下,向量坐标可用内积简单表示:见教材P145 定理3.11
在标准正交基下,内积也有特别简单的表达式:设 ,在 的标准正交基 下,有 , ,则
(4)第二章中施密特正交化方法可以推广到一般的欧氏空间 教材P146定理3.12
② 两个等价的线性无关的向量组一定含有相同个数的向量。
(4)基 教材P122定义3.5
(5)坐标 教材P122定义3.6
注意:
① 若是 为 维线性空间 的一组基,则它们线性无关,并且对于任意 , 线性相关。
② 向量在一组基下的坐标唯一。
4、基变换与坐标变换 教材P125定理 3.4
本章小结
线性空间是线性代数最基本的概念之一,也是我们碰到的第一个抽象的概念。在线性空间中,元素之间的联系是通过映射来实现的,而通常将线性空间到自身的映射称为变换。线性变换是其中最基本也是最重要的变换,它是线性代数的主要研究对象之一。本章重点介绍了两方面的内容:线性空间的概念、性质,线性空间的基与坐标;线性变换的定义,线性变换的矩阵。最后简要介绍了欧氏空间。
(3) 线性变换的像 与 的坐标之间的关系 教材P137定理3.7
4、线性变换与矩阵的一一对应关系
线性代数(第二版)第六节Rn 的标准正交基

可以得到将 Rn 中的非零向量化为
单位向量,称为将向量标准化的方法:
若 0 ,则
1
为单位向量或标准化向量.
事实上, 1 1 1 1.
例 如 设 = (1, 1, 1, 1)T , = (1, -2, 0, -1)T , 则
下的坐标,记作 ( a1 , a2 , … , an ) .
例 1 分别求向量 = (d1 , d2 , … , dn)T Rn,
在标准基 1 , 2 , … , n 和基 1 = (1, 0, …, 0)T ,
2 = (1, 1, …, 0)T , … , n = (1, 1, …, 1)T 下的坐标.
2
即 与 相互垂直.
2. 正交向量组的性质
定理 2.15 设 1 , 2 , … , s 是一个正交向量
组,则 1 , 2 , … , s 线性无关.
证 明 设 有 k1 , k2 , … , ks 使
k1 1 + k2 2 + … + ks s = 0 ,
以 1T 左 乘 上 式 两 端 , 得
定义 2.17 设 1 , 2 , … , n 为 Rn 的一组基,
则对于任意 Rn, 可以表为 1 , 2 , … , n 的线
性组合,且表示法唯一, 即存在 a1 , a2 , … , an R , 使
= a11 + a22 + … + ann
则称组合系数 a1 , a2 , … , an 为 在基1 , 2 , … , n
可知,一个向量组线性无关,
是其成为正交向量组的必要条件. 下面我们将介绍
标准正交基

标准正交基一、标准正交基的定义及相关概念1、欧几里得空间:设V 实数域R 上一线性空间,在V 上定义了一个二元实函数,称为内积,记作(βα,),它具有以下性质: (1)(βα,)=(αβ,); (2)(k βα,)=k(βα,);(3)(γβα,+)=(γα,)+(γβ,);(4)(αα,)>=0,当且仅当α=0时,(αα,)=0;这里,γβα,,是V 中任意的向量,k 是任意实数,这样的线性空间V 称为欧几里得空间,简称欧氏空间。
2、正交向量组:欧式空间V 中一组非零的向量,如果它们两两正交,就称为一正交向量组。
3、标准正交基:在n 维欧氏空间中,由n 个向量组成的正交向量组称为正交基,由单位向量组成的正交基称为标准正交基。
二、标准正交基的相关性质1、正交向量组的性质:(1)正交向量组是线性无关的。
证明:设m ααα,...,,21是一正交向量组,m k k k ,...,,21是m 个实数,且有: 0...2211=+++m m k k k ααα用i α与等式两边作内积,得:0),(=i i i k αα由0≠i α,有0),(>i i αα,从而:0=i k ),...,2,1(m i = 命题得证。
(2)单个非零向量组成的向量组是正交向量组。
(3)在n 维欧氏空间中,两两正交的非零向量不超过n 个。
(如:在平面上找不到三个两两垂直的非零向量,在空间中找不到四个两两垂直的非零向量。
)2、标准正交基的性质:(1)若n εεε,...,21是一组标准正交基,则:⎩⎨⎧≠==.,0;,1),(j i j i j i εε 证明:j i =时,由单位向量定义:1),(=j i εε,1),(=∴j i εεj i ≠时,由正交向量定义:0),(=j i εε 命题得证。
(2)对一组正交基单位化就得到一组标准正交基。
例如:⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=212100,212100,002121,0021214321e e e e由于⎪⎩⎪⎨⎧====≠=).4,3,2,1,;(,1),(),4,3,2,1,;(,0),(j i j i e e j i j i e e ji j i所以4321,,,e e e e 是4R 的一组标准正交基。
《高等代数课后答案》(邱著)

《高等代数课后答案》(邱著)高等代数之后的答案(秋微写的)《高等代数》的内容由浅入深,循序渐进,符合当前两位学生的教学实践。
可作为高校数学与应用数学、信息与计算科学专业的教材,也可作为相关专业的教师、学生和自学者的参考。
以下是阳光网编著的《高等代数》答案(邱著)阅读地址。
希望你喜欢!点击进入:高等代数课后答案地址(邱执笔)高等代数(秋微著)目录前言(一)第一章决定因素(1)1.1一些预备知识(1)1.2二阶和三阶行列式(3)1.3n n阶行列式(7)1.4行列式的计算(18)1.5克莱姆法则(28)1.6行列式的一些应用(31)练习1(A)(35)练习1(B)(38)第二章矩阵(41)2.1矩阵的概念(41)2.2矩阵运算(44)2.3初等变换和初等矩阵(54)2.4可逆矩阵(67)2.5矩阵的秩(76)2.6分块矩阵及其应用(79)练习2(A)(90)练习2(B)(93)第三章线性空间(95)3.1矢量(96)3.2向量的线性相关性(98)3.3向量组的秩(103)3.4矩阵的行秩和列秩(106)3.5线性空间(111)3.6基础、尺寸和坐标(114)3.7基变换和转移矩阵(118)3.8子空间(122)3.9同构(131)3.10线性方程(135)练习3(A)(147)练习3(B)(150)第四章线性变换(152)4.1线性变换及其运算(152)4.2线性变换矩阵(156)4.3线性变换的范围和核心(165)4.4不变子空间(169)练习4(A)(173)练习4(B)(175)第五章多项式(176)5.1一元多项式(176)5.2多项式可整除(178)5.3倍大公因数(181)5.4因式分解定理(186)5.5重因子(189)5.6多项式函数(191)5.7复系数和实系数多项式的因式分解(195) 5.8有理系数多项式(198)5.9多元多项式(202)5.10对称多项式(206)练习5(A)(211)练习5(B)(213)第六章特征值(216)6.1特征值和特征向量(216)6.2特征多项式(221)6.3对角化(225)练习6(A)(231)练习6(B)(232)第七章-矩阵(234)7.1-矩阵及其初等变换(234)7.2-矩阵的标准型(238)7.3不变因子(242)7.4矩阵相似性的确定(245)7.5基本因素(247)7.6乔丹范式(251)7.7x小多项式(256)练习7(A)(259)第八章二次型(261)8.1二次型及其矩阵表示(261)8.2将二次型转化为标准型(264)8.3惯性定理(271)8.4正定二次型(274)练习8(A)(279)练习8(B)(280)第九章欧几里得空间(282)9.1欧氏空间的定义和基本性质(282) 9.2标准正交基(285)9.3正交子空间(291)9.4正交变换和对称变换(293)9.5实对称方阵的正交相似性(297)练习9(A)(303)练习9(B)(306)练习答案(308)参考文献312。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、内积的定义及性质
定义1 设有n 维向量
x1
y1
x
x2
,
y
y2
,
xn
yn
令 x, y x1 y1 x2 y2 xn yn
称x, y为向量 x与 y的内积 .
2/30
说明
1 nn 4 维向量的内积是3维向量数量积
的推广,但是没有3维向量直观的几何意义.
2 正交向量组的概念 若一非零向量组中的向量两两正交,则称该向
量组为正交向量组.
7/30
3 正交向量组的性质
定理1
若n维向量 1, 2,
,
是一组
r
两两正交的
非零向量,则1,2, ,r线性无关.
8/30
4 向量空间的正交基
若1, 2 , , r是向量空间V的一个基,且1, 2 ,
,
是两两
r
正交的
非零向量组,
的一个规范正交基,就是要找一组两两正交的单
位向量e1 ,e2 , ,er ,使e1 ,e2 , ,er与1 , 2 , , r等
价,这样一个问题,称为 把1,2 , ,r 这个基规
范正交化 .
若a1 ,a2 , ,ar为向量空间V的一个基,
(1)正交化,取 b1 a1 ,
b2
a2
b1 , a2 b1 , b1
1 A1 AT ; 2 AAT E; 3 A的列向量是两两正交的单位向量; 4 A的行向量是两两正交的单位向量.
28/30
(2)单位化,取
e1
b1 b1
,
e2
b2 b2
,
, er
br br
,
那么 e1 ,e2 , ,er为V的一个规范正交基 .
15/30
上述由线性无关向量组a1 , ,ar构造出正交 向量组b1 , ,br的过程,称为施密特正交化过程 . 例2 用施密特正交化方法,将向量组
a1 (1,1,1,1),a2 (1,1,0,4),a3 (3,5,1,1) 正交规范化.
称A为 正交矩阵 . 定理 A为正交矩阵的充要条件是 A的列向量都 是单位向量且两两正交.
22/30
定义5 若 P为正交阵,则线性变换 y Px 称为正
交变换.
性质 正交变换保持向量的长度不变.
证明 设y Px为正交变换,
则有 y yT y xT PT Px xT x x .
例5 判别下列矩阵是否为正交阵.
所以它不是正交矩阵.
25/30
2
1
9 8
8 9 1
4
9 4
9 9 9
由于
4 9
4 9
7 9
1
9 8
8 9 1
4
9 4
1 9
8
8 9 1
4
9 4
T
1 0
0 1
0 0
9 9
4 9
4 9
9 7 9
9 4
9
9 4
9
9 7
0
0
1
9
所以它是正交矩阵.
26/30
例6 验证矩阵
则
称
1
,
2
,
,
是
r
向量空间V的正交基.
9/30
5 标准正交基
定义3 设n维向量 e1, e2 ,L , er是向量空间 V (V Rn )的一个基,如果e1, e2 ,L , er两两正交且都是单位 向量,则称e1, e2 ,L , er是 V的一个标准正交基.
例如
1 2 1 2 0 0
e1
1
0 0
2 ,e2
1 0 0
2 ,e3
1
0 2 ,e4
1
0 2
.
1 2
1 2
11/30
1 2 1 2 0 0
e1
1
0 0
2
, e2
1 0 0
2 ,e3
1
0 2 ,e4
1
0 2
.
1 2 1 2
由于
[ei ,e j ] 0, [ei ,e j ] 1,
b1
,
14/30
b3
a3
[b1 ,a3 [b1 ,b1
] ]
b1
[b2 [b2
, ,
a3 b2
] ]
b2
br
ar
[b1 [b1
,ar , b1
] ]
b1
[b2 [b2
, ,
ar b2
] ]
b2
[br1 ,ar ] [br1 ,br1 ]
br
1
那么b1 , ,br两两正交,且b1 , ,br与a1 , ar等价.
单位向量及n维向量间的夹角
1 当 x 1时,称 x为 单位向量.
2当 x 0, y 0时, arccos x, y
xy 称为n维向量x与y的夹角 .
例 求向量 1,2,2,3与 3,1,5,1的夹角.
解
cos
18 2 3 26 2
.
4
6/30
三、标准正交基
1 正交的概念 当[ x, y] 0时, 称向量x与y 正交. 由定义知,若 x 0,则 x 与任何向量都正交.
4
14
再单位化,得规范正交向量组如下
e1
b1 b1
1 2
1,1,1,1
1 2
,
1 2
,
1 2
,
1 2
e2
b2 b2
1 0,2,1,3
14
0,
2 , 14
1 , 14
3 14
e3
b3 b3
1 6
1,1,2,0
1, 6
1 6
,
2 6
,0
17/30
1 1 4
例3
设
a
1
1
1 1
2
1 2 1
1 3 1 2,
1 3 1 2 1
1 8 4
2
9 8
9 1
9 4
.
9 9 9
4 9
4 9
7 9
24/30
解
1
1 1
2
1 2 1 3 1 1 2
1 3 1 2 1
考察矩阵的第一列和第二列,
由于
1 1 1 1 1 1 0, 2 2 3 2
i j且i, j 1,2,3,4. i j且i, j 1,2,3,4.
所以 e1 ,e2 ,e3 ,e4为R4的一个规范正交基.
12/30
同理可知
1 0 0 0
1
00,
2
10,
3
10,
4
0 0
.
0
0
0
1
也为R4的一个规范正交基.
13/30
6 求标准正交基的方法
设1 , 2 , , r是向量空间V的一个基,要求V
解 先正交化,取
b1 a1 1,1,1,1
b2
a2
b1,a2 b1 , b1
b1
1,1,0,4
1
1
4
1,1,1,1 0,2,1,3
1111
16/30
b3
a3
[b1 ,a3 [b1 ,b1
] ]
b1
[b2 [b2
,a3 , b2
] ]
b2
3,5,1,1 8 1,1,1,1 140,2,1,3 1,1,2,0
1 1 1 1
2 1
22 1 1
2 1
P
2 1
2
0
2 1 2
0
2 0 1
2 0
是正交矩阵.
1
2 2
解 P的每个列向量都是单位向量,且两两正交,
所以P是正交矩阵.
27/30
五、小结
1.将一组基规范正交化的方法: 先用施密特正交化方法将基正交化,然后再将
其单位化. 2. A为正交矩阵的充要条件是下列条件之一成立:
2
,a2
3
,
a
3
1
,
试用施密1源自 1 0 特正交化过程把这组向量规范正交化.
解
取 b1 b2
a1;
a2
[a2
,
b1]
2
b1
b1
1 3 1
4
6
1 2 1
5
3
1 1 ; 1
b3
a3
[a3
,
b1]
2
b1
[a3
,
b2]
2
b2
b1
b2
18/30
4 1 0
4/30
二、向量的长度及性质
定义2 令
x x, x x12 x22 xn2 , 称 x 为n维向量 x的长度或范数 .
向量的长度具有下述性质: 1. 非负性 当 x 0时, x 0;当 x 0时, x 0;
2. 齐次性 x x ;
3. 三角不等式 x y x y .
5/30
1
3
1 2 1
5
3
1 1 1
1 2 0.
1
再把它们单位化,取
e1
b1 b1
1 6
1 2 , 1
e2
b2 b2
1 3
1 1 , 1
e3 b3 b3
1 2
1 0 1
.
e1,e2 ,e3即为所求.
19/30
四、正交矩阵与正交变换
定义4 若n阶方阵A满足 AT A E 即A1 AT ,则
2 内积是向量的一种运算,如果x, y都是列 向量,内积可用矩阵记号表示为 :