高中导数经典知识点及例题讲解(最新整理)
高中 导数的概念、运算及应用知识点+例题+练习 含答案

教学过程【例3】(2013·新课标全国Ⅰ卷改编)设函数f(x)=e x(ax+b)-x2-4x,曲线y=f(x)在点(0,f(0))处的切线方程为y=4x+4.求a,b的值.规律方法已知曲线在某点处的切线方程求参数,是利用导数的几何意义求曲线的切线方程的逆用,解题的关键是这个点不仅在曲线上也在切线上.【训练3】(2013·福建卷改编)设函数f(x)=x-1+ae x(a∈R,e为自然对数的底数).曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值.1.在对导数的概念进行理解时,特别要注意f′(x0)与(f(x0))′是不一样的,f′(x0)代表函数f(x)在x=x0处的导数值,不一定为0;而(f(x0))′是函数值f(x0)的导数,而函数值f(x0)是一个常量,其导数一定为0,即(f(x0))′=0.2.对于函数求导,一般要遵循先化简再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.第2讲导数的应用(一)教学效果分析【例3】(2012·重庆卷)已知函数f(x)=ax3+bx+c在点x=2处取得极值c-16.(1)求a,b的值;(2)若f(x)有极大值28,求f(x)在[-3,3]上的最小值.规律方法在解决类似的问题时,首先要注意区分函数最值与极值的区别.求解函数的最值时,要先求函数y=f(x)在[a,b]内所有使f′(x)=0的点,再计算函数y=f(x)在区间内所有使f′(x)=0的点和区间端点处的函数值,最后比较即得.【训练3】设函数f(x)=x+ax2+b ln x,曲线y=f(x)过P(1,0),且在P点处的切线斜率为2.(1)求a,b的值;(2)令g(x)=f(x)-2x+2,求g(x)在定义域上的最值.1.求极值、最值时,要求步骤规范、表格齐全,区分极值点与导数为0的点;含参数时,要讨论参数的大小.2.求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论.一个函数在其定义域内最值是唯一的,可以在区间的端点取得.。
高中数学导数知识点归纳总结材料与例题

导数考试内容:导数的背影.导数的看法.多项式函数的导数.利用导数研究函数的单调性和极值.函数的最大值和最小值.考试要求:(1)认识导数看法的某些本质背景.(2)理解导数的几何意义.( 3)掌握函数, y=c(c 为常数 )、y=xn(n ∈ N+)的导数公式,会求多项式函数的导数.( 4)理解极大值、极小值、最大值、最小值的看法,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.( 5)会利用导数求某些简单实诘责题的最大值和最小值.§14. 导数知识要点导数的看法导数的几何意义、物理意义常有函数的导数导数导数的运算导数的运算法规函数的单调性导数的应用函数的极值函数的最值1.导数(导函数的简称)的定义:设 x0是函数y f (x) 定义域的一点,若是自变量 x 在 x0处有增量x,则函数值 y也引起相应的增量y f (x0x) f (x0 ) ;比值y f ( x0x) f ( x0 ) 称为函数y f (x) 在点x0到 x0x 之间的平均变化率;若是极限x xlim y lim f ( x0x) f ( x0 ) 存在,则称函数y f (x) 在点x0处可导,并把这个极限叫做x0x x0xy f (x) 在x0处的导数,记作f'''(x0 ) = limy f ( x0x) f ( x0 ) ( x0 ) 或y|x x0,即f lim.x 0x x0x注:①x 是增量,我们也称为“改变量”,因为 x 可正,可负,但不为零 .②以知函数 y f (x) 定义域为 A ,y f'( x)的定义域为 B ,则 A 与 B 关系为 A B .2.函数 y f (x) 在点x0处连续与点x0处可导的关系:⑴函数 y f ( x) 在点x0处连续是y f (x) 在点x0处可导的必要不充分条件.可以证明,若是y f (x) 在点x0处可导,那么y f (x) 点x0处连续 .事实上,令x x0x ,则 x x0相当于x0 .于是 lim f (x) lim f ( x0x) lim [ f ( x x0 ) f (x0 ) f ( x0 )]x x0x 0x 0lim [ f (x 0 x) f ( x 0 )x f (x 0 )]lim f ( x 0x)f ( x 0 ) limlim f ( x 0 ) f '(x 0 ) 0 f ( x 0 ) f ( x 0 ).x 0xx 0xx0 x 0⑵若是 y f ( x) 点 x 0 处连续,那么 y f ( x) 在点 x 0 处可导,是不成立的 .例: f (x) | x |在点 x 00 处连续,但在点 x 0 0 处不可以导,因为 y| x | ,当 x > 0 时,x xy 1 ;当 x <0 时, y 1 ,故 lim y不存在 .x x x 0 x注:①可导的奇函数函数其导函数为偶函数 .②可导的偶函数函数其导函数为奇函数 .3. 导数的几何意义:函数 yf ( x) 在点 x 0 处的导数的几何意义就是曲线y f ( x) 在点 ( x 0 , f (x)) 处的切线的斜率,也 就 是 说 , 曲 线 y f ( x) 在 点 P ( x ,( ))f '( x ) , 切 线 方 程 为f x 处 的 切 线 的 斜 率 是y y 0f ' (x)( x x 0 ).4. 求导数的四则运算法规:(u v)'u ' v 'y f 1 (x)f 2 (x) ... f n (x)y 'f 1 ' (x) f 2' (x)... f n ' (x)( uv) 'vu ' v 'u( cv) 'c 'v cv ' cv ' ( c 为常数)'vu 'v ' uu0 )vv2( v注:① u, v 必定是可导函数 .②若两个函数可导, 则它们和、 差、积、商必可导; 若两个函数均不可以导, 则它们的和、 差、积、商不用然不可以导 .比方:设 f ( x)2sin x 2 , g (x) cos x 2,则 f (x), g( x) 在 x0 处均不可以导,但它们和x xf ( x)g( x) sin x cos x 在 x 0 处均可导 .5. 复合函数的求导法规:f x ' ( (x))f ' (u)'( x) 或 y ' xy ' u u ' x复合函数的求导法规可实行到多此中间变量的状况 .6. 函数单调性:⑴函数单调性的判断方法: 设函数 y f (x) 在某个区间内可导, 若是 f ' ( x) > 0,则 y f (x) 为增函数;若是f ' (x) <0,则 y f (x) 为减函数 .⑵常数的判断方法;若是函数 y f (x) 在区间 I 内恒有 f ' ( x) =0,则 yf ( x) 为常数 .注:① f (x)0 是 f ( x )递加的充分条件,但不是必要条件,如y2x 3 在 ( , ) 上其实不是都有 f (x) 0 ,有一个点例外即 x=0 时 f ( x ) = 0,同样 f (x)0 是 f ( x )递减的充分非必要条件 .②一般地, 若是 f (x )在某区间内有限个点处为零,在其余各点均为正(或负),那么 f ( x )在该区间上仍旧是单调增加(或单调减少)的.7. 极值的鉴识方法:(极值是在x0周边所有的点,都有f (x)<f ( x0),则f (x0)是函数f ( x)的极大值,极小值同理)当函数 f (x) 在点x0处连续时,①若是在x 0周边的左侧 f ' ( x) >0,右侧f②若是在x 0周边的左侧 f ' ( x) <0,右侧f ''(x) <0,那么 f ( x0 ) 是极大值;(x) >0,那么 f ( x0 ) 是极小值 .也就是说 x 0是极值点的充分条件是x0点两侧导数异号,而不是 f '①( x) =0 .其余,函数不可导的点也可能是函数的极值点②. 自然,极值是一个局部看法,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点周边的点不同样样).注①:若点 x 0是可导函数 f (x) 的极值点,则f'(x) =0. 但反过来不用然成立. 对于可导函数,其一点 x0是极值点的必要条件是若函数在该点可导,则导数值为零.比方:函数 y f (x)x 3,x 0使 f ' ( x) =0,但x 0不是极值点.②比方:函数 y f (x)| x | ,在点 x 0 处不可以导,但点 x 0 是函数的极小值点 .8.极值与最值的差异:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较 .注:函数的极值点必定有意义 .9.几种常有的函数导数:I. C '0 ( C 为常数)(sin x) 'cos x(arcsin x) '1x 21(x n )'nx n 1(n R )(cos x) 'sin x(arccos x) '1x21 II. (ln x) '1(log a x)'1log a e(arctan x) '11 x x x2( e x) ' e x(a x ) ' a x ln a(arc cot x) '11x 2 III.求导的常有方法:①常用结论:(ln | x |)'1.②形如 y(x a)(x a)...(x a) 或 y( x a1 )( x a2 )...(x a n )两x12n( x b1 )( x b2 )...( x b n )边同取自然对数,可转变求代数和形式.③无理函数或形如 y x x这类函数,如y x x取自然对数此后可变形为ln y xln x ,对两边求导可得 y 'ln x x 1y 'y ln x y y 'x x ln x x x.y x导数中的切线问题例题 1:已知切点,求曲线的切线方程32曲线 y x3x 1在点 (1, 1) 处的切线方程为()例题 2:已知斜率,求曲线的切线方程与直线 2 x y 4 0 的平行的抛物线y x2的切线方程是()注意:此题所给的曲线是抛物线,故也可利用法加以解决,即设切线方程为y 2 x b ,代入 y x2,得 x2 2 x b 0 ,又因为0 ,得 b 1 ,应选D.例题 3:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法.求过曲线 y x3 2 x 上的点 (1, 1) 的切线方程.例题 4:已知过曲线外一点,求切线方程1 相切的直线方程.求过点 (2,0) 且与曲线 yx练习题:已知函数y x33x ,过点 A(0,16) 作曲线 y f (x) 的切线,求此切线方程.看看几个高考题1.( 2009全国卷Ⅱ)曲线yx在点1,1 处的切线方程为2x12.( 2010江西卷)设函数 f ( x)g( x)x2,曲线 y g(x) 在点 (1,g (1)) 处的切线方程为y 2x1,则曲线 y f ( x) 在点 (1, f (1))处切线的斜率为3.( 2009宁夏海南卷)曲线 y xe x2x 1 在点(0,1)处的切线方程为。
高中数学导数知识点归纳总结与例题

资料收集于网络,如有侵权请联系网站删除导数考试内容:导数的背影.导数的概念.多项式函数的导数.利用导数研究函数的单调性和极值.函数的最大值和最小值.考试要求:(1)了解导数概念的某些实际背景.(2)理解导数的几何意义.(3)掌握函数,y=c(c为常数)、y=xn(n∈N+)的导数公式,会求多项式函数的导数.(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.(5)会利用导数求某些简单实际问题的最大值和最小值.§14. 导数知识要点导数的概念导数的几何意义、物理意义常见函数的导数导导数的运算数导数的运算法则函数的单调性导数的应用函数的极值函数的最值1. 导数(导函数的简称)的定义:设是函数定义域的一点,如果自变量在处xx)y?f(x x00有增量,则函数值也引起相应的增量;比值x?y)(x?x)?f?y?f(x?00f(x??x)?f(x)y?00称为函数在点到之间的平均变化率;如果极限x x?x?)xy?f(?00?x?xf(x??x)?f(x)?y00存在,则称函数在点处可导,并把这个极限叫做x)?f(xy?limlim0xx??0?x?x?0?f(x??x)?f(x)?y'''00. =在记作处的导数,或,即)(xff)(xx)(xy?f|y?limlim000x?x?x?x00??x?0x?注:①是增量,我们也称为“改变量”,因为可正,可负,但不为零.x?x?'的定义域为,则与关系为②以知函数定义域为,. )fx(y?B?A)(xy?fBABA2. 函数在点处连续与点处可导的关系:)xf(?y xx00⑴函数在点处连续是在点处可导的必要不充分条件. )f(xy?xx)fy?(x00可以证明,如果在点处可导,那么点处连续. xx)fy?xy?f()(x00事实上,令,则相当于.0x??x?xx??x?x00于是)]xf(?()(fx?x?fx)[?x?xf?xflim()lim(?)lim0000x?x?x?0?x?00只供学习与交流.资料收集于网络,如有侵权请联系网站删除f(x??x)?f(x)f(x??x)?f(x)'0000(x)?0?f(x)?f(x).?lim[f??x?f(x)]?lim?lim?limf(x)?00000x??x0?0?x?0??x?x?0?x. 处可导,是不成立的处连续,那么在点⑵如果点xx)xf(y?y?f(x)00y?|x|?时,例:在点处连续,但在点处不可导,因为0,当>0?xx?0|x?|f(x)x??00 x??xy??y?y,故;当. <0时,不存在x?lim1?1??xx??x?0??x.②可导的偶函数函数其导函数为奇函数注:①可导的奇函数函数其导函数为偶函数. 导数的几何意义:3.处的切线的斜率,在点函数在点处的导数的几何意义就是曲线x))f(xf()xy?f(x)(x,y?00'为程切线的斜率是方,处也就是说,曲线在点P的切线)fx())fxy?f(x),(x(00').?x?fx()(xy?y00 4. 求导数的四则运算法则:'''''''vu(u?v)??)??...fx(x)?f((x)f?y?f(x)?(x)?...?f(x)?y?f n2211n'''''''cvv?cvu?(cv)??(uv)c?vuv?(为常数)c'''u?vuvu???)(v?0??2vv??.必须是可导函数注:①v,u差、则它们的和、差、积、商必可导;若两个函数均不可导,②若两个函数可导,则它们和、.积、商不一定不可导22处均不可导,但它们和在例如:设,,则)(xf(x),g0x??)?cosx2sinx?(gx?f(x) xx.在处均可导0?x?)g(xf(x)?xx?cossin''''''??或5. 复合函数的求导法则:u??yy)f((u)f(x(x))?xxux. 复合函数的求导法则可推广到多个中间变量的情形 6. 函数单调性:'为则如果>0,⑴函数单调性的判定方法:设函数在某个区间内可导,)fx()?f(y?fx)(xy'. 为减函数<0,则增函数;如果)(xf)(xy?f ⑵常数的判定方法;'.=0,则如果函数在区间内恒有为常数)fx()y?f(?fx)(xyI3上并不是(x)递增的充分条件,但不是必要条件,如在是注:①f x?2y)??,xf() 0??()递减的充分非必f,同样(x是f,有一个点例外即x 都有=0时(x)= 00) xf()0 f(x.要条件)()(在其余各点均为正(或负),那么如果②一般地,fx在某区间内有限个点处为零,fx 只供学习与交流.请联系网站删除资料收集于网络,如有侵权. 在该区间上仍旧是单调增加(或单调减少)的是函数,则(极值是在附近所有的点,都有<7. 极值的判别方法:x)(x)f(x)xff(f(x)000的极大值,极小值同理)在点处连续时,当函数x)(xf0''是极大值;<0附近的左侧①如果在,那么>0,右侧))(ffx(xx)xf(00''.是极小值>0②如果在附近的左侧,那么<0,右侧)(xff)(xx)xf(00'①此外,函数不=0点两侧导数异号,而不是. 也就是说是极值点的充分条件是)fx(xx00 ②当然,极值是一个局部概念,极值点的大小关系是不确可导的点也可能是函数的极值点..定的,即有可能极大值比极小值小(函数在某一点附近的点不同)'对于可导函. =0. 但反过来不一定成立注①:若点是可导函数的极值点,则)(xfx)xf(0. 是极值点的必要条件是若函数在该点可导,则导数值为零数,其一点x0'3.不是极值点=0例如:函数,但,使)(xfx?(x)y?f0x?0x?.,在点②例如:函数处不可导,但点是函数的极小值点0x?0?x|y|xx)??f(极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进8.. 行比较.注:函数的极值点一定有意义9. 几种常见的函数导数:1''xcos(sinx)?'?)(arcsinxI.(为常数)C0C?2x?111n?n'''nx(x?)x)sin??(cosx?)?(arccosx ()R?n2x1?111'(arctanx)?''II. e?(logx?)log)(lnx aa2x?1xx1x'xx'x'e)(e?aaa)ln?(??x)(arccot 21x?求导的常见方法:III.(x?a)(x?a)...(x?a)1n12'.①常用结论:②形如或两?y)ax?a)...(x?(y?x?a)(?|)(ln|x n12(x?b)(x?b)...(x?b)x n12边同取自然对数,可转化求代数和形式.xx取自然对数之后可变形为这类函数,如③无理函数或形如,对两边xyy?x?xlny?xln'y1''xx x?xlnxyyxy?xx?ln??y?ln???.导数中的切线问题求导可得yx只供学习与交流.资料收集于网络,如有侵权请联系网站删除例题1:已知切点,求曲线的切线方程32在点处的切线方程为(曲线)1x?y?x?31)?(1,例题2:已知斜率,求曲线的切线方程2的切线方程是(的平行的抛物线与直线)x?y04?x?y?2注意:此题所给的曲线是抛物线,故也可利用法加以解决,即设切线方程为,bx?y?2?22,又因为,得,得,故选D.代入xy?0??2x?bx1????0b例题3:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法.3上的点的切线方程.求过曲线x?x?2y1)?(1,例题4:已知过曲线外一点,求切线方程1求过点且与曲线相切的直线方程.0)(2,?y x3,过点已知函数作曲线的切线,求此切线方程.练习题:xy??x3)xf,A(016)y?( 只供学习与交流.资料收集于网络,如有侵权请联系网站删除看看几个高考题x??1,1?y处的切线方程为在点(2009全国卷Ⅱ)曲线1.2x?12f(x)?g(x)?xy?g(x)(1,g(1))处的切线方程为,曲线2010江西卷)设函数在点2.(y?2x?1y?f(x)(1,f(1))处切线的斜率为,则曲线在点x1?2xy?xe?。
直击2024年高考——高三数学导数考点精讲(全国版)

导数考点精讲1.导数的概念一般地,函数()y f x =在0x x =处的瞬时变化率是0000.()()limlim x x f x x f x yx x ∆→∆→+∆−∆=∆∆,称它为函数()y f x =在0x x =处的导数,记作0()f x '或0x x y =',即00000.()()()limlim x x f x x f x yf x x x∆→∆→+∆−∆'==∆∆.2.导函数从求函数()f x 在0x x =处导数的过程可以看出,当0x x =时,0()f x '是一个确定的数.这样,当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数(简称导数).()y f x =的导函数有时也记作y ',即0()()()lim x f x x f x f x y x∆→+∆−''==∆.3.基本初等函数的导数公式(1)若()f x c =(c 为常数),则()0f x '=;(2)若*()()f x x αα=∈Q ,则1()f x x αα−'=; (3)若()sin f x x =,则()cos f x x '=; (4)若()cos f x x =,则()sin f x x '=−;(5)若()x f x a =,则()ln x f x a a '=; (6)若()e x f x =,则()e x f x '=; (7)若()log a f x x =,则1()ln f x x a'=; (8)若()ln f x x =,则1()f x x'=.4.导数运算法则(1)[()()]()()f x g x f x g x '''±=±.(2)[()()]()()()()f x g x f x g x f x g x '''⋅=+.(3)2()()()()()(()0)()[()]f x f x g x f x g x g x g x g x '''⎡⎤−=≠⎢⎥⎣⎦. 5.复合函数的导数一般地,对于两个函数()y f u =和()u g x =,如果通过变量u y ,可以表示成x 的函数,那么称这个函数为函数()y f u =和()u g x =的复合函数,记作(())y f g x =.复合函数(())y f g x =的导数和函数()()y f u u g x ==,的导数间的关系为xu x y y u '''=⋅,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.6.导数的几何意义函数()f x 在0x x =处的导数就是曲线()y f x =在00(())x f x ,处的切线PT 的斜率k ,即0000.()()lim()x f x x f x k f x x∆→+∆−'==∆.7. 求在某点处的切线方程(1)求出函数()f x 在0x x =处的导数,即曲线()y f x =在00(())x f x ,处切线的斜率;(2)在已知切点坐标和切线斜率的条件下,求得切线方程为000()+'()()y f x f x x x =− 8. 求过某点处的切线方程 (1)设出切点坐标00(())x f x ,;(2)利用切点坐标写出切线方程:000()+'()()y f x f x x x =−;(3)将已知调价代入(2)中的切线方程求解.9.函数单调性的判断一般地,函数的单调性与其导函数的正负有如下关系:在某个区间()a b ,内,如果()0f x '>,那么函数()y f x =在这个区间内单调递增;如果()0f x '<,那么函数()y f x =在这个区间内单调递减. 10.求函数单调区间的步骤(1)确定()y f x =的定义域.(2)求导数()f x ',求出()0f x '=的根.(3)函数的无定义点和()0f x '=的根将()f x 的定义域分成若干区间,列表确定这若干区间内()f x '的符号.(4)由()f x '的符号确定()f x 的单调区间.11.在区间单调与存在单调区间问题(1)若函数f (x )在(a ,b )上单调递增,则x ∈(a ,b )时,f ′(x )≥0恒成立;若函数f (x )在(a ,b )上单调递减,则x ∈(a ,b )时,f ′(x )≤0恒成立.(2)若函数f (x )在(a ,b )上存在单调递增区间,则x ∈(a ,b )时,f ′(x )>0有解;若函数f (x )在(a ,b )上存在单调递减区间,则x ∈(a ,b )时,f ′(x )<0有解. 12.极值的相关概念如图,函数()y f x =在点x a =的函数值()f a 比它在点x a =附近其他点的函数值都小,()0f a '=;而且在点x a =附近的左侧()0f x '<,右侧()0f x '>.类似地,函数()y f x =在点x b =的函数值()f b 比它在点x b =附近其他点的函数值都大,()0f b '=;而且在点x b =附近的左侧()0f x '>,右侧()0f x '<.我们把点a 叫做函数()y f x =的极小值点,()f a 叫做函数()y f x =的极小值;点b 叫做函数()y f x =的极大值点,()f b 叫做函数()y f x =的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值. 13.最大值和最小值的存在性一般地,如果在区间[]a b ,上函数()y f x =的图象是一条连续不断的曲线,那么它必有最大值和最小值. 14.求函数()y f x =在[]a b ,上的最大(小)值的步骤(1)求函数()y f x =在()a b ,内的极值.(2)将函数()y f x =的各极值与端点处的函数值()()f a f b ,比较,其中最大的一个是最大值,最小的一个是最小值.。
导数知识点总结及例题

导数知识点总结及例题一、导数的定义1.1 函数的变化率在生活中,我们经常会遇到函数随着自变量的变化而发生变化的情况,比如一辆汽车的速度随着时间的变化而变化、货物的销售量随着价格的变化而变化等。
这种情况下,我们就需要考虑函数在某一点处的变化率,也就是导数。
对于函数y=f(x),在点x处的变化率可以用函数的增量Δy和自变量的增量Δx的比值来表示:f'(x) = lim(Δx→0) (Δy/Δx)其中f'(x)表示函数f(x)在点x处的导数。
利用导数的定义,我们可以计算得到函数在某一点处的变化率。
1.2 导数的几何意义导数还有一个重要的几何意义,它表示了函数曲线在某一点处的切线的斜率。
例如,对于函数y=x^2,在点(1,1)处的导数就代表了曲线在这一点处的切线斜率。
这也意味着,导数可以帮助我们理解函数曲线在不同点处的形状和走向。
1.3 导数存在的条件对于一个函数f(x),它在某一点处的导数存在的条件是:在这一点处函数曲线的切线存在且唯一。
也就是说,如果函数在某一点处导数存在,那么这个点就是函数的可导点。
二、导数的性质2.1 导数与函数的关系导数是函数的一个重要属性,它可以帮助我们理解函数的性质。
例如,导数可以表示函数在某一点处的斜率,可以告诉我们函数曲线的凹凸性,还可以帮助我们找到函数的极值点等。
2.2 导数与导函数当一个函数在某一点处的导数存在时,我们可以使用导数的定义来求出函数在该点处的导数。
我们把这个过程称为求导,求出的导数称为导函数。
导函数的值就是原函数在对应点处的导数值。
2.3 导数的性质导数具有一些重要的性质,比如导数存在的条件、可导函数的和、差、积、商的导数求法则等。
这些性质是我们求解导数的问题时的重要依据,也是我们理解函数性质的基础。
三、求导法则3.1 基本求导法则基本求导法则是求解导数问题的基础,它包括常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数等函数的导数求法。
(完整版)导数知识点归纳及应用

导数知识点归纳及应用●知识点归纳一、相关概念1.导数的概念函数y=f(x),如果自变量x 在x 处有增量,那么函数y 相应地有增量=f (x +0x ∆y ∆0)-f (x ),比值叫做函数y=f (x )在x 到x +之间的平均变化率,即x ∆0xy∆∆00x ∆=。
如果当时,有极限,我们就说函数y=f(x)在点x x y ∆∆xx f x x f ∆-∆+)()(000→∆x x y ∆∆处可导,并把这个极限叫做f (x )在点x 处的导数,记作f’(x )或y’|。
000x x =即f (x )==。
00lim →∆x x y∆∆0lim →∆x xx f x x f ∆-∆+)()(00说明:(1)函数f (x )在点x 处可导,是指时,有极限。
如果不存在极限,00→∆x x y ∆∆xy∆∆就说函数在点x 处不可导,或说无导数。
0(2)是自变量x 在x 处的改变量,时,而是函数值的改变量,可以是x ∆00≠∆x y ∆零。
由导数的定义可知,求函数y=f (x )在点x 处的导数的步骤:0① 求函数的增量=f (x +)-f (x );y ∆0x ∆0② 求平均变化率=;x y ∆∆xx f x x f ∆-∆+)()(00③ 取极限,得导数f’(x )=。
0xyx ∆∆→∆lim 例:设f(x)= x|x|, 则f ′( 0)= .[解析]:∵ ∴f ′( 0)=00||lim ||lim )(lim )0()0(lim0000=∆=∆∆∆=∆∆=∆-∆+→∆→∆→∆→∆x xxx x x f x f x f x x x x 2.导数的几何意义函数y=f (x )在点x 处的导数的几何意义是曲线y=f (x )在点p (x ,f (x ))000处的切线的斜率。
也就是说,曲线y=f (x )在点p (x ,f (x ))处的切线的斜率00是f’(x )。
0相应地,切线方程为y -y =f /(x )(x -x )。
高中数学《导数的四则运算法则》知识点讲解及重点练习

5.2.2 导数的四则运算法则 学习目标 1.理解函数的和、差、积、商的求导法则.2.理解求导法则的证明过程,能够综合运用导数公式和导数运算法则求函数的导数.知识点 导数的运算法则已知f (x ),g (x )为可导函数,且g (x )≠0.(1)[f (x )±g (x )]′=f ′(x )±g ′(x ).(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ),特别地,[cf (x )]′=cf ′(x ).(3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2.1.⎝⎛⎭⎫e x +cos π4′=e x .( √ ) 2.函数f (x )=x e x 的导数是f ′(x )=e x (x +1).( √ )3.当g (x )≠0时,⎣⎡⎦⎤1g (x )′=-g ′(x )g 2(x ).( √ )一、利用运算法则求函数的导数例1 求下列函数的导数:(1)y =15x 5+43x 3; (2)y =3x 2+x cos x ;(3)y =x 1+x; (4)y =lg x -e x ;(5)y =(x +1)⎝⎛⎭⎫1x -1. 解 (1)y ′=⎝⎛⎭⎫15x 5+43x 3′=⎝⎛⎭⎫15x 5′+⎝⎛⎭⎫43x 3′=x 4+4x 2. (2)y ′=(3x 2+x cos x )′=(3x 2)′+(x cos x )′=6x +x ′cos x +x (cos x )′=6x +cos x -x sin x .(3)y ′=⎝ ⎛⎭⎪⎫x 1+x ′=x ′(1+x )-x (1+x )′(1+x )2=1+x -x (1+x )2=1(1+x )2. (4)y ′=(lg x -e x )′=(lg x )′-(e x )′=1x ln 10-e x . (5)y ′=⎣⎡⎦⎤(x +1)⎝⎛⎭⎫1x -1′ =⎝⎛⎭⎫1x -x ′1122=x x '-⎛⎫- ⎪⎝⎭1131222211=22x 'x 'x x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭---=--- =-12x ⎝⎛⎭⎫1+1x . 反思感悟 利用导数运算法则的策略(1)分析待求导式子符合哪种求导法则,每一部分式子是由哪种基本初等函数组合成的,确定所需的求导法则和基本公式.(2)如果求导式比较复杂,则需要对式子先变形再求导,常用的变形有乘积式展开变为和式求导,商式变乘积式求导,三角函数恒等变换后求导等.(3)利用导数运算法则求导的原则是尽可能化为和、差,能利用和差的求导法则求导的,尽量少用积、商的求导法则求导.跟踪训练1 求下列函数的导数:(1)y =x 2+x ln x ;(2)y =ln x x 2; (3)y =e xx; (4)y =(2x 2-1)(3x +1).解 (1)y ′=(x 2+x ln x )′=(x 2)′+(x ln x )′=2x +(x )′ln x +x (ln x )′=2x +ln x +x ·1x=2x +ln x +1.(2)y ′=⎝⎛⎭⎫ln x x 2′=(ln x )′·x 2-ln x (x 2)′x 4 =1x ·x 2-2x ln x x 4=1-2ln x x 3. (3)y ′=⎝⎛⎭⎫e x x ′=(e x )′x -e x (x )′x 2=e x ·x -e xx 2. (4)方法一 y ′=[(2x 2-1)(3x +1)]′=(2x 2-1)′(3x +1)+(2x 2-1)(3x +1)′=4x (3x +1)+(2x 2-1)×3=12x 2+4x +6x 2-3=18x 2+4x -3.方法二 ∵y =(2x 2-1)(3x +1)=6x 3+2x 2-3x -1,∴y ′=(6x 3+2x 2-3x -1)′=(6x 3)′+(2x 2)′-(3x )′-(1)′=18x 2+4x -3.二、利用运算法则求曲线的切线例2 (1)曲线y =sin x sin x +cos x -12在点M ⎝⎛⎭⎫π4,0处的切线的斜率为( ) A .-12 B.12 C .-22 D.22答案 B解析 y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=1(sin x +cos x )2,故π=4|x y'=12, ∴曲线在点M ⎝⎛⎭⎫π4,0处的切线的斜率为12. (2)已知曲线f (x )=x 3+ax +b 在点P (2,-6)处的切线方程是13x -y -32=0.①求a ,b 的值;②如果曲线y =f (x )的切线与直线y =-14x +3垂直,求切线的方程. 解 ①f (x )=x 3+ax +b 的导数f ′(x )=3x 2+a ,由题意可得f ′(2)=12+a =13,f (2)=8+2a +b =-6,解得a =1,b =-16.②∵切线与直线y =-x 4+3垂直,∴切线的斜率k =4. 设切点的坐标为(x 0,y 0),则f ′(x 0)=3x 20+1=4,∴x 0=±1.由f (x )=x 3+x -16,可得y 0=1+1-16=-14或y 0=-1-1-16=-18,则切线方程为y =4(x -1)-14或y =4(x +1)-18,即y =4x -18或y =4x -14.反思感悟 (1)此类问题往往涉及切点、切点处的导数、切线方程三个主要元素,其他的条件可以进行转化,从而转化为这三个要素间的关系.(2)准确利用求导法则求出导函数是解决此类问题的第一步,也是解题的关键,务必做到准确.(3)分清已知点是否在曲线上,若不在曲线上,则要设出切点,这是解题时的易错点. 跟踪训练2 (1)曲线y =x 3-4x 2+4在点(1,1)处的切线方程为( )A .y =-x +2B .y =5x -4C .y =-5x +6D .y =x -1答案 C解析 由y =x 3-4x 2+4,得y ′=3x 2-8x ,y ′|x =1=3-8=-5,所以曲线y =x 3-4x 2+4在点(1,1)处的切线方程为y -1=-5(x -1),即y =-5x +6.(2)已知函数f (x )=a ln x x +1+b x,曲线y =f (x )在点A (1,f (1))处的切线方程为x +2y -3=0,则a ,b 的值分别为________.答案 1,1 解析 f ′(x )=a ⎝ ⎛⎭⎪⎫x +1x -ln x (x +1)2-b x 2. 由于直线x +2y -3=0的斜率为-12,且过点(1,1), 故⎩⎪⎨⎪⎧ f (1)=1,f ′(1)=-12,即⎩⎪⎨⎪⎧ b =1,a 2-b =-12,解得⎩⎪⎨⎪⎧a =1,b =1.三、与切线有关的综合问题例3 (1)曲线y =x ln x 上的点到直线x -y -2=0的最短距离是( ) A. 2 B.22C .1D .2 答案 B解析 设曲线y =x ln x 在点(x 0,y 0)处的切线与直线x -y -2=0平行.∵y ′=ln x +1,∴0=|x x y'=ln x 0+1=1,解得x 0=1,∴y 0=0,即切点坐标为(1,0).∴切点(1,0)到直线x -y -2=0的距离为d =|1-0-2|1+1=22, 即曲线y =x ln x 上的点到直线x -y -2=0的最短距离是22. (2)设曲线 y =a (x -1)e x 在点(1,0)处的切线与直线 x +2y +1=0垂直,则实数a =________.答案 2e解析 令y =f (x ),则曲线y =a (x -1)e x 在点(1,0)处的切线的斜率为f ′(1),又切线与直线x +2y +1=0垂直,所以f ′(1)=2.因为f (x )=a (x -1)e x ,所以f ′(x )=a e x +a (x -1)e x =ax e x ,所以f ′(1)=a e ,故a =2e. 反思感悟 本题正确的求出函数的导数是前提,审题时注意所给点是否是切点,挖掘题目隐含条件,求出参数,解决已知经过一定点的切线问题,寻求切点是解决问题的关键.跟踪训练3 求曲线y =2e(x -1)e x 在点(1,0)处的切线与坐标轴围成的面积. 解 由题意可知,y ′=2ex ·e x ,y ′|x =1=2, ∴切线方程为y =2(x -1),即2x -y -2=0.令x =0得y =-2;令y =0得x =1.∴曲线y =2e (x -1)e x 在点(1,0)处的切线与坐标轴围成的面积为S =12×2×1=1.1.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值是( )A.193B.163C.133D.103答案 D解析 ∵f ′(x )=3ax 2+6x ,∴f ′(-1)=3a -6=4,∴a =103. 2.设函数y =-2e x sin x ,则y ′等于( )A .-2e x cos xB .-2e x sin xC .2e x sin xD .-2e x (sin x +cos x )答案 D解析 y ′=-2(e x sin x +e x cos x )=-2e x (sin x +cos x ).3.若函数f (x )=12f ′(-1)x 2-2x +3,则f ′(-1)的值为( ) A .-1 B .0 C .1 D .2答案 A解析 因为f (x )=12f ′(-1)x 2-2x +3, 所以f ′(x )=f ′(-1)x -2.所以f ′(-1)=f ′(-1)×(-1)-2,所以f ′(-1)=-1.4.已知f (x )=ln x x,则f ′(1)=________. 答案 1解析 f ′(x )=(ln x )′·x -ln x ·(x )′x 2=1x ·x -ln x x 2 =1-ln x x 2, 所以f ′(1)=1.5.已知函数f (x )=f ′⎝⎛⎭⎫π4cos x +sin x ,则f ⎝⎛⎭⎫π4的值为________. 答案 1解析 ∵f ′(x )=-f ′⎝⎛⎭⎫π4sin x +cos x ,∴f ′⎝⎛⎭⎫π4=-f ′⎝⎛⎭⎫π4×22+22,得f ′⎝⎛⎭⎫π4=2-1. ∴f (x )=(2-1)cos x +sin x ,∴f ⎝⎛⎭⎫π4=1.1.知识清单:(1)导数的运算法则.(2)综合运用导数公式和导数运算法则求函数的导数.2.方法归纳:转化法.3.常见误区:对于函数求导,一般要遵循先化简、再求导的基本原则.1.(多选)下列运算中正确的是( )A .(ax 2+bx +c )′=a (x 2)′+b (x )′B .(sin x -2x 2)′=(sin x )′-2′(x 2)′C.⎝⎛⎭⎫sin x x 2′=(sin x )′-(x 2)′x 2D .(cos x ·sin x )′=(cos x )′sin x +cos x (sin x )′答案 AD解析 A 项中,(ax 2+bx +c )′=a (x 2)′+b (x )′,故正确;B 项中,(sin x -2x 2)′=(sin x )′-2(x 2)′,故错误;C 项中,⎝⎛⎭⎫sin x x 2′=(sin x )′x 2-sin x (x 2)′(x 2)2,故错误; D 项中,(cos x ·sin x )′=(cos x )′sin x +cos x (sin x )′,故正确.2.函数f (x )=e x cos x 的图象在点(0,f (0))处的切线的倾斜角为( )A .0 B.π4 C .1 D.π2答案 B解析 对函数求导得f ′(x )=e x (cos x -sin x ),∴f ′(0)=1,∴函数f (x )=e x cos x 的图象在点(0,f (0))处的切线的倾斜角为π4. 3.设f (x )=x ln x ,若f ′(x 0)=2,则x 0等于( )A .e 2B .e C.ln 22D .ln 2 答案 B解析 ∵f (x )=x ln x ,∴f ′(x )=ln x +1(x >0),由f ′(x 0)=2,得ln x 0+1=2,即ln x 0=1,解得x 0=e.4.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( )A .-1B .-2C .2D .0答案 B解析 ∵f ′(x )=4ax 3+2bx ,f ′(x )为奇函数,∴f ′(-1)=-f ′(1)=-2.5.(多选)当函数y =x 2+a 2x(a >0)在x =x 0处的导数为0时,那么x 0可以是( ) A .a B .0 C .-a D .a 2答案 AC解析 y ′=⎝ ⎛⎭⎪⎫x 2+a 2x ′=2x ·x -(x 2+a 2)x 2=x 2-a 2x 2, 由x 20-a 2=0得x 0=±a .6.已知f (x )=sin x 1+cos x,则f ′⎝⎛⎭⎫π3=________. 答案 23解析 因为f ′(x )=(sin x )′(1+cos x )-sin x (1+cos x )′(1+cos x )2=cos x (1+cos x )-sin x (-sin x )(1+cos x )2=cos x +cos 2x +sin 2x (1+cos x )2=cos x +1(1+cos x )2 =11+cos x . 所以f ′⎝⎛⎭⎫π3=11+cos π3=23. 7.已知f (x )=e x x,则f ′(1) =________,若f ′(x 0)+f (x 0)=0,则x 0=________. 答案 0 12解析 因为f ′(x )=(e x )′x -e x (x )′x 2=e x (x -1)x 2(x ≠0). 所以f ′(1)=0.由f ′(x 0)+f (x 0)=0,得()00020e 1e 0.x x x x x 0-+= 解得x 0=12. 8.已知函数f (x )=e x ·sin x ,则曲线y =f (x )在点(0,f (0))处的切线方程是____________. 答案 y =x解析 ∵f (x )=e x ·sin x ,f ′(x )=e x (sin x +cos x ),f ′(0)=1,f (0)=0,∴曲线y =f (x )在点(0,0)处的切线方程为y -0=1×(x -0),即y =x .9.若曲线y =x 2-ax +ln x 存在垂直于y 轴的切线,求实数a 的取值范围.解 ∵y =x 2-ax +ln x ,∴y ′=2x -a +1x, 由题意可知,存在实数x >0使得2x -a +1x=0, 即a =2x +1x成立,∴a =2x +1x ≥22(当且仅当2x =1x ,即x =22时等号成立).∴a 的取值范围是[22,+∞).10.已知函数f (x )=ax 2+bx +3(a ≠0),其导函数f ′(x )=2x -8.(1)求a ,b 的值;(2)设函数g (x )=e x sin x +f (x ),求曲线g (x )在x =0处的切线方程.解 (1)因为f (x )=ax 2+bx +3(a ≠0),所以f ′(x )=2ax +b ,又f ′(x )=2x -8,所以a =1,b =-8.(2)由(1)可知g (x )=e x sin x +x 2-8x +3,所以g ′(x )=e x sin x +e x cos x +2x -8,所以g ′(0)=e 0sin 0+e 0cos 0+2×0-8=-7,又g (0)=3,所以曲线g (x )在x =0处的切线方程为y -3=-7(x -0),即7x +y -3=0.11.已知曲线f (x )=x 2+ax +1在点(1,f (1))处切线的倾斜角为3π4,则实数a 等于( )A .1B .-1C .7D .-7答案 C解析 ∵f ′(x )=2x (x +1)-(x 2+a )(x +1)2=x 2+2x -a (x +1)2,又f ′(1)=tan 3π4=-1,∴a =7.12.已知曲线f (x )=(x +a )·ln x 在点(1,f (1))处的切线与直线2x -y =0垂直,则a 等于() A.12 B .1 C .-32 D .-1答案 C解析 因为f (x )=(x +a )·ln x ,x >0,所以f ′(x )=ln x +(x +a )·1x ,所以f ′(1)=1+a .又因为f (x )在点(1,f (1))处的切线与直线2x -y =0垂直,所以f ′(1)=-12,所以a =-32,故选C. 13.已知函数f (x )=f ′(-1)x 22-2x +3,则f (-1)的值为________. 答案 92解析 ∵f ′(x )=f ′(-1)·x -2,∴f ′(-1)=-f ′(-1)-2,解得f ′(-1)=-1.∴f (x )=-x 22-2x +3, ∴f (-1)=92. 14.已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为______________.答案 x -y -1=0解析 ∵点(0,-1)不在曲线f (x )=x ln x 上,∴设切点坐标为(x 0,y 0).又∵f ′(x )=1+ln x (x >0),∴⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴切点坐标为(1,0),∴f ′(1)=1+ln 1=1.∴直线l 的方程为y =x -1,即x -y -1=0.15.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)·…·(x -a 8),则f ′(0)=________. 答案 212解析 因为f ′(x )=(x )′·[(x -a 1)(x -a 2)·…·(x -a 8)]+[(x -a 1)·(x -a 2)·…·(x -a 8)]′·x =(x -a 1)(x -a 2)·…·(x -a 8)+[(x -a 1)·(x -a 2)·…·(x -a 8)]′·x ,所以f ′(0)=(0-a 1)(0-a 2)·…·(0-a 8)+0=a 1a 2·…·a 8.因为数列{a n }为等比数列,所以a 1a 8=a 2a 7=a 3a 6=a 4a 5=8,所以f ′(0)=84=212.16.偶函数f (x )=ax 4+bx 3+cx 2+dx +e 的图象过点P (0,1),且在x =1处的切线方程为y =x -2,求f (x )的解析式.解 ∵f (x )的图象过点P (0,1),∴e =1.又∵f (x )为偶函数,∴f (x )=f (-x ).故ax 4+bx 3+cx 2+dx +e =ax 4-bx 3+cx 2-dx +e .∴b =0,d =0.∴f (x )=ax 4+cx 2+1.∵函数f (x )在x =1处的切线方程为y =x -2,∴切点坐标为(1,-1).∴a +c +1=-1.∵f ′(1)=4a +2c ,∴4a +2c =1.∴a =52,c =-92. ∴函数f (x )的解析式为f (x )=52x 4-92x 2+1.。
(完整版)高中数学导数知识点归纳总结

高中导数知识点归纳一、基本概念1. 导数的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ∆,则函数值y 也引起相应的增量)()(00x f x x f y -∆+=∆;比值x x f x x f x y ∆-∆+=∆∆)()(00称为函数)(x f y =在点0x 到x x ∆+0之间的平均变化率;如果极限xx f x x f x y x x ∆-∆+=∆∆→∆→∆)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数。
()f x 在点0x 处的导数记作xx f x x f x f y x x x ∆-∆+='='→∆=)()(lim )(00000 2 导数的几何意义:(求函数在某点处的切线方程)函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=-3.基本常见函数的导数:①0;C '=(C 为常数) ②()1;n n x nx-'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '= ⑥()ln x x a a a '=;⑦()1ln x x '=; ⑧()1l g log a a o x e x'=. 二、导数的运算1.导数的四则运算:法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即: ()()()()f x g x f x g x '''±=±⎡⎤⎣⎦法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:()()()()()()f x g x f x g x f x g x '''⋅=+⎡⎤⎣⎦常数与函数的积的导数等于常数乘以函数的导数: ).())((''x Cf x Cf =(C 为常数)法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:()()()()()()()()()20f x f x g x f x g x g x g x g x '⎡⎤''-=≠⎢⎥⎡⎤⎣⎦⎣⎦。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解 质点在[2,2+Δt]上的平均速度为
- s2+Δt-s2 v=
Δt
[2+Δt2+1]-22+1 =
Δt
4Δt+Δt2
=
=4+Δt.
Δt
- 又 v ≤5,∴4+Δt≤5.
∴Δt≤1,又Δt>0, ∴Δt 的取值范围为(0,1].
§ 1.1 函数的单调性与极值 1.1.2 导数的概念
自学引导
1.经历由平均变化率过渡到瞬时变化率的过程,了解导数概念建立的一些 实际背景.
2.了解瞬时变化率的含义,知道瞬时变化率就是导数. 3.掌握函数 f(x)在某一点 x0 处的导数定义,并且会用导数的定义求一些简 单函数在某一点 x0 处的导数.
4
课前热身
1.瞬时速度.
设物体的运动方程为 S=S(t),如果一个物体在时刻 t0 时位于 S(t0),在时 刻 t0+Δt 这段时间内,物体的位置增量是ΔS=S(t0+Δt)-S(t0).那么位置 增量ΔS 与时间增量Δt 的比,就是这段时间内物体的________,即v= St0+Δt-St0
=[(1+Δt)2+2(1+Δt)+3]-(12+2×1+3)
=(Δt)2+4Δt.
物体在 t=1 到 t=1+Δt 这段时间内的平均速度为
Δs Δt2+4Δt
=
=4+Δt.
Δt
Δt
变式训练 3 一质点作匀速直线运动,其位移 s 与时间 t 的关系为 s(t)=t2+1, 该质点在[2,2+Δt](Δt>0)上的平均速度不大于 5,求Δt 的取值范围.
3
32
率.
题型三 平均变化率的应用 例 3 已知一物体的运动方程为 s(t)=t2+2t+3,求物体在 t=1 到 t=1+
Δt 这段时间内的平均速度.
3
Δs 分析 由物体运动方程―→写出位移变化量Δs―→
Δt 解 物体在 t=1 到 t=1+Δt 这段时间内的位移增量
Δs=s(1+Δt)-s(1)
=.
2
π
π
-0
2
在平均变化率的意义中,f(x2)-f(x1)的值可正、可负,也可以为零.但Δx= x2-x1≠0.
1
典例剖析
题型一 求函数的平均变化率
例 1 一物体做直线运动,其路程与时间 t 的关系是 S=3t-t2.
(1)求此物体的初速度;
(2)求 t=0 到 t=1 的平均速度.
分析 t=0 时的速度即为初速度,求平均速度先求路程的改变量ΔS=S(1)
答
1.fxx22- -fx1x1
案
2.fx0+ΔΔxx-fx0
名师讲解
1.如何理解Δx,Δy 的含义
Δx 表示自变量 x 的改变量,即Δx=x2-x1;Δy 表示函数值的改变量,即Δy =f(x2)-f(x1).
2.求平均变化率的步骤
求函数 y=f(x)在[x1,x2]内的平均变化率.
(1)先计算函数的增量Δy=f(x2)-f(x1).
§ 1.1 变化率与导数 1.1.1 变化率问题
自学引导
1.通过实例分析,了解平均变化率的实际意义. 2.会求给定函数在某个区间上的平均变化率.
课前热身 Δy
1.函数 f(x)在区间[x1,x2]上的平均变化率为Δx=________. Δy
2.平均变化率另一种表示形式:设Δx=x-x0,则Δx=________,表示函 数 y=f(x)从 x0 到 x 的平均变化率.
=-(-1+Δx)2+(-1+Δx)-(-2)
=-(Δx)2+3Δx.
Δy -Δx2+3Δx
∴=
=-Δx+3
Δx
Δx
答案 D
题型二 平均变化率的快慢比较
π
ππ
例 2 求正弦函数 y=sinx 在 0 到 之间及 到 之间的平均变化率.并比
6
32
较大小.
分析 用平均变化率的定义求出两个区间上的平均变化率,再比较大小.
(2)计算自变量的增量Δx=x2-x1.
Δy fx2-fx1
(3)得平均变化率 =
.
Δx
x2-x1
对平均变化率的认识
函数的平均变化率可以表现出函数在某段区间上的变化趋势,且区间长度越
小,表现得越精确.如函数 y=sinx 在区间[0,π]上的平均变化率为 0,而在[0,
π
sin -sin0
π
2
2
]上的平均变化0
到 之间的平均变化率是 3
k1,则
k1=
π
=-
-0
3
3 .
2π
ππ
函数
y=cosx
在 到 之间的平均变化率是 32
k2,
ππ
cos -cos
2
33
则 k2=
ππ
=- . π
-
23
3
33
∵k1-k2=-2π-(-π)=2π>0,
∴k1>k2.
π
ππ
∴函数 y=cosx 在 0 到 之间的平均变化率大于在 到 之间的平均变化
ΔS -S(0),再求时间改变量Δt=1-0=1.求商 就可以得到平均速度.
Δt
S 3t-t2
解 (1)由于 v= =
=3-t.
tt
∴当 t=0 时,v0=3,即为初速度. (2)ΔS=S(1)-S(0)=3×1-12-0=2
Δt=1-0=1
ΔS 2 ∴v= = =2.
Δt 1
∴从 t=0 到 t=1 的平均速度为 2.
误区警示 本题1不要认为 t=0 时,S=0.所以初速度是零.
变式训练 1 已知函数 f(x)=-x2+x 的图像上一点(-1,-2)及邻近一点
Δy (-1+Δx,-2+Δy),则 =( )
Δx
A.3
B.3Δx-(Δx)2
C.3-(Δx)2
D.3-Δx
解析 Δy=f(-1+Δx)-f(-1)
π
=
π
>0,
∴k1>k2.
π
3 ππ
答:函数 y=sinx 在 0 到 之间的平均变化率为 ,在 到 之间的平均变
6
π 32
32- 3 3 32- 3
化率为
,且 >
.
π
π
π
π
ππ
变式训练 2 试比较余弦函数 y=cosx 在 0 到 之间和 到 之间的平均变
3
32
化率的大小.
π
cos -cos0
π
3
. Δt 当这段时间很短,即Δt 很小时,这个平均速度就接近时刻 t0 的速度.Δt
越小,v就越接近于时刻
t0
的速度,当Δt→0
时,这个平均速度的极限
v= lim Δt→0
ΔS
St0+Δt-St0
= lim Δt Δt→0
Δt
就是物体在时刻 t0 的速度即为________.
π 解 设 y=sinx 在 0 到 6 之间的变化率为 k1,则
2
π
sin -sin0
6
3
k1= π
=. π
-0
6
ππ y=sinx 在 3 到 2 之间的平均变化率为 k2,
ππ
3
sin -sin 1-
2
3
2 32- 3
则 k2=
ππ
=
=
π
π
.
-
23
6
3 32- 3 3 3-1
∵k1-k2=π-