实验2 离散系统的差分方程、单位脉冲响应和卷积分析

合集下载

xjtu数字信号处理“实验报告”

xjtu数字信号处理“实验报告”

数字信号处理实验报告实验1 常见离散信号的MATLAB产生和图形显示【实验目的】加深对常用离散信号的理解;【实验内容】(1)单位抽样序列(取100个点)程序设计:N=100;x=[1 zeros(1,N-1)];stem(0:N-1,x)结果(2)单位阶跃序列(取100个点)程序设计:N=100;x=ones(1,N);stem(0:99,x);axis([0 100 0 2])结果102030405060708090100(3) 正弦序列(取100个点) 程序设计: N=100; n=0:99; f=100; Fs=1000; fai=0.2*pi; A=2;x=A*sin(2*pi*f*n/Fs+fai); stem(n,x); grid 结果0102030405060708090100(4)复正弦序列(取100个点)程序设计:N=100;n=0:99;w=0.2*pi;x=exp(j*w*n);stem(n,x);结果(5)复指数序列(取41个点)程序设计:>> n=0:40;>> c=-0.02+0.2*pi*i;>> x=exp(c*n);>> subplot(2,1,1);>> stem(n,real(x));>> subplot(2,1,2);>> stem(n,imag(x));结果05101520253035400510152025303540(上部为实部,下部为虚部)(6)指数序列(取100个点)程序设计:>> n=0:99;>> a=0.5;>> x=a.^n;>> stem(n,x);结果:【实验要求】讨论复指数序列的性质。

由(5)的图形结果可以看出,复指数序列实部和虚部均为按指数衰减(上升)的序列,两者的均是震荡的,实部震荡周期与指数的实部有关,虚部震荡周期与指数的实虚部有关。

武汉工程大学数字信号处理实验二时域离散系统及系统响应

武汉工程大学数字信号处理实验二时域离散系统及系统响应

实验二时域离散系统及系统响应一、实验目的1、掌握求解离散时间系统冲激响应和阶跃响应的方法;2、进一步理解卷积定理,掌握应用线性卷积求解离散时间系统响应的基本方法;3、掌握离散系统的响应特点。

二、实验内容1、请分别用impz 和dstep函数求解下面离散时间系统的冲激响应和阶跃响应。

(1)系统的差分方程为:)ynnny-=(n-+y+x)2.0866)((8.064()1.0a=[1,-0.8,0.64];b=[0.866,0,0];n=20;hn=impz(b,a,n); %冲激响应gn=dstep(b,a,n); %阶跃响应subplot(2,1,1),stem(hn,'filled'); %显示冲激响应曲线title('系统的单位冲激响应');ylabel('h(n)');xlabel('n');axis([0,n,1.1*min(hn),1.1*max(hn)]);subplot(2,1,2),stem(gn,'filled'); %显示阶跃响应曲线title('系统的单位阶跃响应'); ylabel('g(n)');xlabel('n');axis([0,n,1.1*min(gn),1.1*max(gn)]);2468101214161820-0.4-0.200.20.40.60.8系统的单位冲激响应h (n )n246810121416182011.21.41.6系统的单位阶跃响应g (n )n(2)系统的系统函数为:21115.01)(---+--=zz z z H a=[1,-1,1]; b=[1,-0.5,0]; n=20;hn=impz(b,a,n); %冲激响应 gn=dstep(b,a,n); %阶跃响应subplot(2,1,1),stem(hn,'filled'); %显示冲激响应曲线 title('系统的单位冲激响应'); ylabel('h(n)');xlabel('n');axis([0,n,1.1*min(hn),1.1*max(hn)]);subplot(2,1,2),stem(gn,'filled'); %显示阶跃响应曲线 title('系统的单位阶跃响应'); ylabel('g(n)');xlabel('n');axis([0,n,1.1*min(gn),1.1*max(gn)]);2468101214161820-1-0.500.51系统的单位冲激响应h (n )n2468101214161820-0.500.511.5系统的单位阶跃响应g (n )n2、运行例题2.3,理解卷积过程和程序中每一句的意义。

数字信号处理 实验作业:离散LSI系统的时域分析

数字信号处理 实验作业:离散LSI系统的时域分析

实验2 离散LSI 系统的时域分析一、.实验目的:1、加深对离散系统的差分方程、单位脉冲响应、单位阶跃响应和卷积分析方法的理解。

2、初步了解用MA TLAB 语言进行离散时间系统时域分析的基本方法。

3、掌握求解离散时间系统的单位脉冲响应、单位阶跃响应、线性卷积以及差分方程的程序的编写方法,了解常用子函数的调用格式。

二、实验原理:1、离散LSI 系统的响应与激励由离散时间系统的时域分析方法可知,一个离散LSI 系统的响应与激励可以用如下框图表示:其输入、输出关系可用以下差分方程描述:[][]NMkk k k ay n k b x n m ==-=-∑∑2、用函数impz 和dstep 求解离散系统的单位脉冲响应和单位阶跃响应。

例2-1 已知描述某因果系统的差分方程为6y(n)+2y(n-2)=x(n)+3x(n-1)+3x(n-2)+x(n-3) 满足初始条件y(-1)=0,x(-1)=0,求系统的单位脉冲响应和单位阶跃响应。

解: 将y(n)项的系数a 0进行归一化,得到y(n)+1/3y(n-2)=1/6x(n)+1/2x(n-1)+1/2x(n-2)+1/6x(n-3)分析上式可知,这是一个3阶系统,列出其b k 和a k 系数: a 0=1, a ,1=0, a ,2=1/3, a ,3=0 b 0=1/6,b ,1=1/2, b ,2=1/2, b ,3=1/6程序清单如下: a=[1,0,1/3,0]; b=[1/6,1/2,1/2,1/6]; N=32; n=0:N-1; hn=impz(b,a,n); gn=dstep(b,a,n);subplot(1,2,1);stem(n,hn,'k');课程名称 数字信号处理 实验成绩 指导教师 ***实 验 报 告院系 班级学号 姓名 日期title('系统的单位序列响应'); ylabel('h(n)');xlabel('n');axis([0,N,1.1*min(hn),1.1*max(hn)]); subplot(1,2,2);stem(n,gn,'k'); title('系统的单位阶跃响应'); ylabel('g(n)');xlabel('n');axis([0,N,1.1*min(gn),1.1*max(gn)]); 程序运行结果如图2-1所示:102030系统的单位序列响应h (n )n1020300.20.30.40.50.60.70.80.911.11.2系统的单位阶跃响应g (n )n图2-13、用函数filtic 和filter 求解离散系统的单位序列响应和单位阶跃响应。

实验二、离散系统分析报告

实验二、离散系统分析报告

本科学生验证性实验报告学号104090459 静学院物电学院专业、班级10电子实验课程名称数字信号处理实验教师及职称卫平教授开课学期2013 至2013 学年下学期填报时间2013 年 5 月23 日师大学教务处编印(1).为了省时间以及编译的方便性,程序应该在Blank M-File 中输入,而不应该在Command Window 中直接运行;(2).在使用MA TLAB 时应注意中英输入法的切换,在中文输入法输入程序时得到的程序是错误的;(3). MATLAB 中两个信号相乘表示为x.*u,中间有个‘.’,同样两个信号相除也是如此,也就是在实验中要注意乘和点乘的区别。

二.实验容1.实验现象与结果1..已知某LTI 系统的差分方程为: (1)初始状态 ,输入计算系统的完全响应。

(2)当以下三个信号分别通过系统时,分别计算离散系统的零状态响应:(3)该系统具有什么特性?(1)a=[1,-1.143,0.412];b=[0.0675,0.1349,0.0675];N=100;x=ones(1,N);zi=filtic(b,a,[1,2]);y=filter(b,a,x,zi)stem(y);(2)a=[1,-1.143,0.412];b=[0.0675,0.1349,0.0675];N=100;k=1:N;x1=cos(pi/10*k);y1=filter(b,a,x1)stem(y1);]2[0675.0]1[1349.0][0675.0]2[412.0]1[143.1][-+-+=-+--k x k x k x k y k y k y 2]2[,1]1[=-=-y y ][][k u k x =][)107cos(][];[)5cos(][];[)10cos(][321k u k k x k u k k x k u k k x πππ===x2=cos(pi/5*k);y2=filter(b,a,x2) stem(y2);x3=cos(7*pi/10*k); y3=filter(b,a,x3)stem(y3);4.已知某离散系统的输入输出序列。

实验 离散系统的差分方程单位脉冲响应和卷积分析

实验 离散系统的差分方程单位脉冲响应和卷积分析

实验2 离散系统的差分方程、单位脉冲响应和卷积分析一、 实验目的1、 熟悉并掌握离散系统的差分方程表示法;2、 加深对单位脉冲响应和卷积分析方法的理解。

二、 实验原理(一),1. 单位采样序列⎩⎨⎧=01)(n δ 00≠=n n 在MATLAB 中可以利用zeros()函数实现。

;1)1();,1(==x N zeros x 如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即:⎩⎨⎧=-01)(k n δ 0≠=n k n2.单位阶跃序列1()=0u n ⎧⎨⎩ 00<≥n n 在MATLAB 中可以利用ones()函数实现。

);,1(N ones x =3.正弦序列 )/2sin()(ϕπ+=Fs fn A n x在MATLAB 中)/***2sin(*1:0fai Fs n f pi A x N n +=-=4.复指数序列 n j e n x ϖ=)(在MATLAB 中)**exp(1:0n w j x N n =-= 5.实指数序列n a n x =)(在MATLAB 中na x N n .^1:0=-= (二)在时域中,离散时间系统对输入信号或者延迟信号进行运算处理,生成具有所需特性的输出信号,具体框图如下:其输入、输出关系可用以下差分方程描述:00()()N Mi ii i a y n i b x n i ==-=-∑∑ 输入信号分解为单位采样序列的移位加权和,即:()()()m x n x m n m δ∞=-∞=-∑ 记系统单位脉冲响应()()n h n δ→则系统响应为如下的卷积计算式:()()()()()m y n x n h n x m h n m ∞=-∞=*=-∑ 当0,1,2,...i a i N ==时,h(n)是有限长度的(n :[0,M]),称系统为FIR 系统;反之,称系统为IIR 系统。

三、 预习要求(1) 在MATLAB 中,熟悉利用函数y=filter(b,a,x)实现差分方程的仿真;(2) 在MATLAB 中,熟悉用函数 y=conv(x,h)计算卷积,用y=impz(b,a,N)求系统单位脉冲响应的过程。

实验二差分方程的求解和离散系统频率响应的描述

实验二差分方程的求解和离散系统频率响应的描述

实验二 差分方程的求解和离散系统频率响应的描述一、 实验目的1、掌握用MATLAB 求解差分方程的方法。

2、掌握绘制系统的零极点分布图和系统的频率响应特性曲线的方法。

3、 观察给定系统的冲激响应、阶跃相应以及系统的幅频特性和相频特性二、 实验内容1、已知描述离散新天地差分方程为:y(n+2)-0,25y(n+1)+0.5y(n)=x(n)+x(n-1),且知该系统输入序列为)()2/1()(n u n x n =,试用MATLAB 实现下列分析过程:画出输入序列的时序波形;求出系统零状态响应在0~20区间的样值;画出系统的零状态响应波形图。

2、一离散时间系统的系统函数:5731053)(2323-+-+-=z z z zz z z H ,试用MA TLAB 求出系统的零极点;绘出系统的零极点分布图;绘出响应的单位阶跃响应波形。

三、 实验报告要求1、求出各部分的理论计算值, 并与实验结果相比较。

2、绘出实验结果波形(或曲线),并进行分析。

3、写出实验心得。

附录:本实验中所要用到的MATLAB 命令1、系统函数H(z)在MATLAB 中可调用函数zplane (),画出零极点分布图。

调用格式为: zplane (b,a ) 其中a 为H (z )分母的系数矩阵,b 为H(z)分子的系数矩阵。

例2-1:一个因果系统:y (n )-0.8y(n -1)=x(n)由差分方程可求系统函数 8.0,8.011)(1>-=-z z z H零极点分布图程序:b=[1,0];a=[1,-0.8];zplane(b,a)2、求解差分方程在MA TLAB中,已知差分方程的系数、输入、初始条件,调用filter()函数解差分方程。

调用filter()函数的格式为:y=filtier(b,a,x,xic),参数x为输入向量(序列),b,a分别为(1-30)式中的差分方程系数,xic是等效初始状态输入数组(序列)。

确定等效初始状态输入数组xic(n),可使用Signal Processing toolbox中的filtic()函数,调用格式为:y=filtic(b,a,y,x) 。

第二次数字信号处理实验

第二次数字信号处理实验

信息科学与工程学院2018-2019学年第一学期实验报告课程名称:数字信号处理实验实验名称:离散系统的差分方程、冲激响应和卷积分析专业班级学生学号学生姓名实验时间 2018年10月17日实验报告【实验目的】加深对离散系统的差分方程、冲激响应和卷积分析方法的理解。

【实验设备】1. 计算机;2. MATLAB软件。

【实验具体内容】实验源代码及绘图展示:○1a=[1];b=[0.25 0.25 0.25 0.25];n=0:10;x=impDT(n);h=filter(b,a,x);subplot(1,2,1)stem(n,h,'fill'),grid onxlabel('n'),title('系统单位抽样响应h(n)')y=ones(1,11);g=filter(b,a,y);subplot(1,2,2)stem(n,g),grid onxlabel('n'),title('系统单位阶跃响应g(n)')○2a=[1];b=[0.25 0.25 0.25 0.25];n=0:10;x=impDT(n);h=filter(b,a,x);subplot(1,2,1)stem(n,h,'fill'),grid onxlabel('n'),title('系统单位抽样响应h(n)') y=ones(1,11);g=filter(b,a,y);subplot(1,2,2)stem(n,g),grid onxlabel('n'),title('系统单位阶跃响应g(n)')山东大学·数字信号处理·实验报告【实验心得】初识MATLAB基础知识的记忆很重要,基本的最常规的代码用法和格式需要记忆,熟能生巧,需要在以后的实验中动脑子并且多做。

西安交通大学数字信号处理实验报告

西安交通大学数字信号处理实验报告

数字信号处理实验报告班级:硕姓名:学号:实验1 常见离散信号的MATLAB 产生和图形显示实验目的:加深对常用离散信号的理解;实验内容:(1)单位抽样序列clc;x=zeros(1,11); x(1)=1; n=0:1:10;stem(n,x, 'fill'); title('单位抽样序列'); xlabel('n'); ylabel('x[n]')延迟5个单位:clc;x=zeros(1,11); x(6)=1; n=0:1:10;stem(n,x, 'fill'); title('单位抽样序列'); xlabel('n'); ylabel('x[n]')nx [n ](2)单位阶跃序列clc;x=[zeros(1,5),ones(1,6)]; n=-5:1:5;stem(n,x,'fill'); title('单位阶跃序列'); xlabel('n'); ylabel('x[n]');nx [n ](3)正弦序列clc; N=50; n=0:1:N-1; A=1; f=1; Fs=50; fai=pi;x=A*sin(2*pi*f*n/Fs+fai); stem(n,x,'fill'); title('正弦序列'); xlabel('n'); ylabel('x[n]'); axis([0 50 -1 1]);nx [n ](4)复正弦序列clc; N=50; n=0:1:N-1; w=2*pi/50; x=exp(j*w*n); subplot(2,1,1); stem(n,real(x)); title('复正弦序列实部'); xlabel('n');ylabel('real(x[n])'); axis([0 50 -1 1]); subplot(2,1,2); stem(n,imag(x)); title('复正弦序列虚部'); xlabel('n');ylabel('imag(x[n])'); axis([0 50 -1 1]);nx [n ](5)指数序列clc; N=10; n=0:1:N-1; a=0.5; x=a.^n;stem(n,x,'fill'); title('指数序列'); xlabel('n'); ylabel('x[n]'); axis([0 10 0 1]);nr e a l (x [n ])ni m a g (x [n ])(6)复指数序列性质讨论:0(j )()enx n σω+=将复指数表示成实部与虚部为00()e cos j sin n n x n n e n σσωω=+1.当σ=0时,它的实部和虚部都是正弦序列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验2 离散系统的差分方程、单位脉冲响应和卷积分析
一、 实验目的
1、 熟悉并掌握离散系统的差分方程表示法;
2、 加深对单位脉冲响应和卷积分析方法的理解。

二、 实验原理
(一),
1. 单位采样序列
⎩⎨⎧=01)(n δ 00
≠=n n
在MATLAB 中可以利用zeros()函数实现。

;1)1();
,1(==x N zeros x
如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即:
⎩⎨⎧=-01
)(k n δ 0≠=n k
n
2.单位阶跃序列
1
()=0u n ⎧⎨⎩ 00
<≥n n
在MATLAB 中可以利用ones()函数实现。

);,1(N ones x =
3.正弦序列
)/2sin()(ϕπ+=Fs fn A n x
在MATLAB 中
)/***2sin(*1
:0fai Fs n f pi A x N n +=-=
4.复指数序列
n j e n x ϖ=)( 在MATLAB 中
)**exp(1:0n w j x N n =-= 5.实指数序列
n a n x =)( 在MATLAB 中
n a x N n .^1:0=-=
(二)
在时域中,离散时间系统对输入信号或者延迟信号进行运算处理,生成具有所需特性的输出信号,具体框图如下:
其输入、输出关系可用以下差分方程描述:
00()()N M
i i
i i a y n i b x n i ==-=-∑∑ 输入信号分解为单位采样序列的移位加权和,即:
()()()m x n x m n m δ∞=-∞=
-∑
记系统单位脉冲响应
()()n h n δ→
则系统响应为如下的卷积计算式:
()()()()()m y n x n h n x m h n m ∞
=-∞=*=
-∑ 当0,1,2,...i a i N ==时,h(n)是有限长度的(n :[0,M]),称系统为FIR 系统;反之,称系统为IIR 系统。

三、 预习要求
(1) 在MATLAB 中,熟悉利用函数y=filter(b,a,x)实现差分方程的
仿真;
(2) 在MATLAB 中,熟悉用函数 y=conv(x,h)计算卷积,用
y=impz(b,a,N)求系统单位脉冲响应的过程。

四、 实验内容
1、以下程序中分别使用conv 和filter 函数计算h 和x 的卷积y 和y1,运行程序,并分析y 和y1是否有差别,为什么要使用x(n)补零后的x1来产生y1;具体分析当h(n)有i 个值,x(n)有j 个值,使用filter 完成卷积功能,需要如何补零?
% Program P2_1
clf;
h = [3 2 1 -2 1 0 -4 0 3]; % impulse response
x = [1 -2 3 -4 3 2 1]; % input sequence
y = conv(h,x);
n = 0:14;
subplot(2,1,1);
stem(n,y);
xlabel('Time index n'); ylabel('Amplitude');
title('Output Obtained by Convolution'); grid;
x1 = [x zeros(1,8)];
y1 = filter(h,1,x1);
subplot(2,1,2);
stem(n,y1);
xlabel('Time index n'); ylabel('Amplitude');
title('Output Generated by Filtering'); grid;
2、编制程序产生上述5种信号(长度可输入确定),并绘出其图形。

3、编制程序求解下列两个系统的单位脉冲响应和阶跃响应,并绘出其图形。

要求分别用 filter、conv、impz三种函数完成。

+-+-=--
y n y n y n x n x n
()0.75(1)0.125(2)()(1)
=-+-+-+-
y n x n x n x n x n
()0.25[(1)(2)(3)(4)]
给出理论计算结果和程序计算结果并讨论。

相关文档
最新文档