ADS信号完整性与电源完整性的仿真分析与设计
ADS信号完全性设计

ADS信号完全性设计首先,ADS信号的源头设计是信号完整性设计的基础。
在设计源头时,需要考虑信号的生成方式、传输方式以及引脚布局等。
其中,生成方式可以通过模拟电路设计或数字信号处理来实现,需要确保生成的信号稳定可靠。
传输方式可以选择有线传输或无线传输,根据实际需求来确定。
引脚布局需要遵循电路设计原则,确保信号通路的简洁和分离,减少电磁干扰。
其次,传输路径的设计是ADS信号完整性设计的关键。
传输路径可以包括线缆、连接器、传输线等。
在设计路径时,需要考虑信号的频率、功率以及传输距离等因素。
对于高频信号,需要选择低损耗的线缆和传输线,以减小信号衰减和失真。
对于高功率信号,需要选择能够承受高电流和高温的连接器和线缆。
传输距离较长的情况下,需要选择带有驱动器和接收器的信号放大器,以增强信号的幅度和稳定性。
最后,接收端的处理是ADS信号完整性设计的重要部分。
接收端的处理可以包括信号放大、滤波、采样和解码等。
信号放大可以通过放大器来实现,提高信号的幅度和稳定性。
滤波可以通过低通滤波器来实现,去除噪声和干扰信号。
采样可以通过模数转换器来实现,将连续信号转换为离散信号。
解码可以通过数字信号处理算法来实现,将采样信号恢复为原始信号。
为确保ADS信号的完整性,还需要进行信号的测试和验证。
测试可以通过示波器、频谱分析仪和网络分析仪等设备来实现,对信号的频谱、幅度和时域进行分析。
验证可以通过实际应用场景来实现,检测信号在实际环境中的性能和可靠性。
综上所述,ADS信号的完整性设计涉及信号源头设计、传输路径设计和接收端处理等多个方面。
合理设计和选择信号源、传输路径和接收端处理方式,可以确保ADS信号的完整性和可靠性。
通过信号的测试和验证,可以对设计方案进行检测和改进,提高信号的性能和稳定性。
ADS 的设计系统克服信号和电源完整性的10种方法

是德科技ADS 克服信号和电源完整性挑战的10 种方法技术概述Keysight EEsof EDA 的先进设计系统(ADS)软件是全球闻名的电子设计自动化软件,是射频、微波和高速数字应用的理想选择。
为了提高效率,ADS 采用了一系列新技术,其中包括两个电磁(EM)软件解决方案,专门用于帮助信号和电源完整性工程师提高 PCB 设计中的高速链路性能。
以下列出了 ADS 帮助工程师克服信号和电源完整性挑战的 10 种方法。
1. ADS 为您的 SI EM 表征提供出色的速度和准确性.....................................................第 2 页2. ADS 简化部件 S 参数文件的使用................................................................................第 4 页3. ADS 提供先进的通道仿真器技术................................................................................第 6 页4. ADS 立身于技术(如 PAM-4)潮头 .............................................................................第 9 页5. ADS 加速 DDR4 仿真方法 ...........................................................................................第 12 页6. ADS 将电源交到设计人员(PI 分析)手中 ...................................................................第 15 页7. ADS 可实现平坦的 PDN 阻抗响应 ..............................................................................第 18 页8. ADS 提供电热仿真 .......................................................................................................第 21 页9. ADS 有一个互连工具箱(Via Designer 和 CILD)..............................................................第 22 页10. ADS 传递是德科技理念:人力资源、硬件和软件资源的结合,开启测量新视野..................................................第23 页1. ADS 为您的 SI EM 表征提供出色的速度和准确性在精确表征高速通道的损耗和耦合时,通常会使用电磁(EM)技术。
信号完整性与电源完整性的研究与仿真的开题报告

信号完整性与电源完整性的研究与仿真的开题报告一、选题背景及意义信号完整性和电源完整性感性地理解,即不同的信号和电源是否能够在电路中保持其原始状态。
在高速PCB设计中,信号完整性问题和电源完整性问题是非常普遍的,它们会产生各种各样的电路干扰,如噪音、电磁干扰等等,从而导致电路性能的下降或者系统功能的失效。
因此,实现信号完整性和电源完整性对于保证电路性能和系统可靠性是至关重要的。
然而,在高速PCB设计中,对于信号完整性和电源完整性的研究与仿真是一个非常重要的环节。
二、研究目标本研究的主要目标是探讨信号完整性和电源完整性在高速PCB设计中的关键问题,例如信号的传输和噪声的抑制、电源的供电质量和稳定性等等。
通过对实验和仿真的比较,分析影响信号完整性和电源完整性的因素,并提供相应的设计方法和方案。
三、研究内容与步骤1、了解信号完整性和电源完整性相关的理论知识。
2、分析信号完整性和电源完整性的影响因素。
3、研究现有的信号完整性和电源完整性仿真方法,并结合实验进行对比分析。
4、验证设计方案,通过仿真分析和实验验证,确定最优解决方案。
5、总结研究成果,提出针对信号完整性和电源完整性研究的未来发展方向。
四、预期成果与创新点预计本研究将通过实验和仿真,提供了解信号完整性和电源完整性在高速PCB设计中的关键问题的详细分析,为保证电路性能和系统可靠性提供设计方案和方法,并为相关领域的研究提供创新点。
五、研究方法本研究采用实验和仿真相结合的方法,通过实验验证仿真结果的准确性,并通过仿真得到更多有价值的信息。
在实验方面,将借助现有的测试设备进行测试,如信号发生器、示波器等。
在仿真方面,将采用相应的仿真软件工具,如Altium Designer 等进行仿真。
六、研究难点1、信号完整性和电源完整性影响因素的综合分析。
2、如何针对信号完整性和电源完整性的问题提供最优解决方案。
3、通过仿真和实验得到准确的结果和分析。
七、时间安排本研究计划在2021年9月至2022年6月期间完成。
《信号完整性与电源完整性的仿真分析与设计》

信号完整性与电源完整性的仿真分析与设计1简介信号完整性是指信号在通过一定距离的传输路径后在特定接收端口相对指定发送端口信号的还原程度。
在讨论信号完整性设计性能时,如指定不同的收发参考端口,则对信号还原程度会用不同的指标来描述。
通常指定的收发参考端口是发送芯片输出处及接收芯片输入处的波形可测点,此时对信号还原程度主要依靠上升/下降及保持时间等指标来进行描述。
而如果指定的参考收发端口是在信道编码器输入端及解码器输出端时,对信号还原程度的描述将会依靠误码率来描述。
电源完整性是指系统供电电源在经过一定的传输网络后在指定器件端口相对该器件对工作电源要求的符合程度。
同样,对于同一系统中同一个器件的正常工作条件而言,如果指定的端口不同,其工作电源要求也不同(在随后的例子中将会直观地看到这一点)。
通常指定的器件参考端口是芯片电源及地连接引脚处的可测点,此时该芯片的产品手册应给出该端口处的相应指标,常用纹波大小或者电压最大偏离范围来表征。
图一是一个典型背板信号传输的系统示意图。
本文中“系统”一词包含信号传输所需的所有相关硬件及软件,包括芯片、封装与PCB板的物理结构,电源及电源传输网络,所有相关电路实现以及信号通信所需的协议等。
从设计目的而言,需要硬件提供可制作的支撑及电信号有源/无源互联结构;需要软件提供信号传递的传输协议以及数据内容。
图1 背板信号传输的系统示意图在本文的以下内容中,将会看到由于这些支撑与互联结构对电信号的传输呈现出一定的频率选择性衰减,从而会使设计者产生对信号完整性及电源完整性的担忧。
而不同传输协议及不同数据内容的表达方式对相同传输环境具备不同适应能力,使得设计者需要进一步根据实际的传输环境来选择或优化可行的传输协议及数据内容表达方式。
为描述方便起见以下用“完整性设计与分析”来指代“信号完整性与电源完整性设计与分析”。
2 版图完整性问题、分析与设计上述背板系统中的硬件支撑及无源互联结构基本上都在一种层叠平板结构上实现。
集成电路中电源完整性与信号完整性分析

集成电路中电源完整性与信号完整性分析哎呀,说起集成电路中的电源完整性和信号完整性分析,这可真是个让人又爱又恨的“家伙”。
就拿我之前经历的一件事儿来说吧。
有一次,我参与了一个小型电子设备的研发项目。
那时候,我们团队满心欢喜地设计好了整个集成电路的架构,觉得大功告成。
可谁知道,在实际测试的时候,问题接二连三地冒了出来。
先是电源方面,设备运行没多久,就出现了电压不稳定的情况。
这就好比你正在跑步,突然有人给你使绊子,让你的脚步变得踉踉跄跄。
我们开始仔细排查,发现是电源布线不合理,导致电流在传输过程中出现了损耗和波动。
再说说信号完整性。
明明发送出去的是清晰准确的信号,可接收端却总是出现误码和失真。
这感觉就像是你给朋友精心准备了一份礼物,结果快递给你弄破了包装,里面的东西也坏了。
那咱们先来说说电源完整性。
电源完整性简单来说,就是要确保集成电路中的电源供应稳定、干净,没有杂波和干扰。
这就像我们家里的电,如果电压一会儿高一会儿低,那电器能正常工作吗?肯定不行!在集成电路里也是一样,如果电源不稳定,那各个元器件就像失去了主心骨,没法好好干活。
比如说,在多层电路板的设计中,如果电源层和地层的间距不合理,就会产生寄生电容和电感。
这就好比在一条马路上,突然多了一些障碍物,让电流的通行变得不顺畅。
还有,电源分配网络的设计也至关重要。
如果电阻过大,电流就会遇到“堵车”,导致电压下降。
再讲讲信号完整性。
信号在集成电路中传播,就像是一场旅行。
如果路径不好,信号就会“迷路”或者“受伤”。
比如说,高速信号在传输线上传播时,如果传输线的特征阻抗不匹配,就会发生反射,这就像声音在空旷的山谷中回荡,影响了信号的质量。
还有串扰问题。
相邻的信号线就像住在隔壁的邻居,如果靠得太近,彼此之间就会互相干扰。
想象一下,你正在专心看书,旁边有人大声吵闹,你能静下心来吗?信号也是一样,被干扰了就没法准确传达信息。
为了保证电源完整性和信号完整性,我们在设计的时候要特别小心。
ADS信号完整性射频仿真技术研讨会

ADS信号完整性射频仿真技术研讨会编者注:本轮研讨会我们将分别走进上海、北京、深圳和成都四大城市。
欢迎大家来相聚。
请注意,在报名的时候,一定要选择好是哪一场。
信号完整性专场简介随着数据速率的增加,信号完整性问题的影响变得越来越显著,在设计过程的早期解决这些问题非常关键。
通过信号完整性仿真,工程师可以在电路设计早期发现问题,减少昂贵的重新设计或产品召回的风险。
并且优化电路的性能,提高最终产品的总体质量和可靠性。
信号完整性问题可能来自各种因素,包括阻抗不匹配、寄生电容和电感、串扰和其他噪声和干扰源等等。
这些问题可能会影响电路中信号的质量和可靠性,导致错误或失真,对系统性能产生重要影响。
是德科技的PathWave ADS信号完整性(SI)和电源完整性(PI)工具利用时域和频域分析来快速解决高速数字设计的潜在问题。
PathWave ADS提供综合的原理图、版图和数据分析环境,并具有多个仿真器(包括IBIS-AMI 通道、瞬态、S参数、EM等等),以确保设计符合要求。
此外,在印刷电路板(PCB)设计过程中,瓶颈通常出现在最终性能验证阶段。
2023年,是德科技推出了高效的的工具EP-Scan,用来避免设计瓶颈并最大化提高PCB设计和分析效率。
EP-Scan可以帮助硬件工程师和Layout工程师在最终验证前进行一键式高效分析,以及早发现并解决信号完整性相关问题。
本次研讨会将为您详解是德科技高速数字电路信号完整性以及电源完整性仿真工具,助力您更高效的完成高速数字电路的设计和实现。
本次活动适合:硬件工程师、信号完整性工程师、电源完整性工程师、电源工程师、Layout工程师、存储设计工程师,SERDES高速接口设计工程师、EMC工程师参加等等。
活动日程时间主题13:30-14:10 PathWave ADS 2023信号完整性解决方案概览14:10-14:40 使用EP- Scan一键完成整板PCB信号完整性分析14:40-15:10 Memory Designer 新增功能介绍及案例分享15:10-15:30 茶歇15:30-16:00 详解最新的SERDES 仿真技术和案例16:00-16:30 电源完整性仿真演讲人立即注册SI专场射频专场简介随着电子产品复杂度的上升,仿真发挥的作用也越来越大。
五款信号完整性仿真分析工具

五款信号完整性仿真分析工具1. HyperLynx Signal Integrity (SI) - HyperLynx SI是一款强大的信号完整性仿真工具,可用于设计和分析高速电路板中的信号完整性问题。
它可以对电路板进行仿真,包括信号传输、阻抗匹配、信号的波形、抖动、时钟信号和纹波等方面的分析。
HyperLynx SI还具有强大的分析和优化功能,可以帮助用户更好地理解和解决信号完整性问题。
2. Cadence Sigrity PowerSI - Cadence Sigrity PowerSI是一款专注于高速电路板的信号完整性仿真分析工具。
它可以对电路板中的电源和接地网络进行建模和仿真,以帮助设计人员识别和解决电源噪声和接地回路问题。
PowerSI还可以对信号传输线进行建模和仿真,以分析信号的波形、纹波和抖动等方面的问题。
3. Keysight Advanced Design System (ADS) - ADS是一套综合性的电子设计自动化(EDA)工具,其中包含了强大的信号完整性仿真分析功能。
ADS可以对高速电路板进行信号传输线建模和仿真分析,包括传输线的传输特性、阻抗匹配、波形纹波和互连信号完整性等方面。
它还提供了多种信号完整性分析工具,帮助用户进行电路设计和优化。
4. Ansys SIwave - Ansys SIwave是一款专注于电路板和芯片封装的信号完整性仿真工具。
它可以对高速信号传输线进行建模和仿真,包括分析信号的波形、纹波、抖动和互连信号完整性等方面的问题。
SIwave 还具备电源和地线分析功能,以帮助设计人员解决电源噪声和接地回路问题。
5. Mentor Graphics HyperLynx DRC - HyperLynx DRC是一款专注于检测和解决高速电路板信号完整性问题的仿真工具。
它可以对电路板进行布线规则检查,并自动识别和修复可能引起信号完整性问题的布线错误。
HyperLynx DRC还可以进行交叉耦合分析、时钟分析和时域电压纹波分析等方面的仿真。
ADS信号完整性设计

ADS信号完整性设计ADS信号完整性设计(Analog-to-Digital Signal Integrity Design)是一种为了保证模拟信号在数字化过程中的准确性和稳定性而进行的工程设计。
它在各种领域中都有广泛的应用,如通信系统、数据采集、音视频处理等。
首先,需要对信号源进行优化设计。
信号源的质量和稳定性对信号完整性至关重要。
设计者需要选择高精度、低噪声、高稳定性的信号源来确保模拟信号的准确性。
此外,还需要在信号源和转换器之间加入合适的缓冲电路,以避免信号源的输出阻抗对信号转换的影响。
其次,需要合理设计传输线路。
传输线路是信号传输的媒介,对信号完整性起着重要的作用。
为了减小传输线路的损耗和干扰,需要选择高质量的传输线材料和合适的线路结构。
此外,还需要进行恰当的阻抗匹配和屏蔽设计,以避免信号反射和干扰。
同时,对于ADS信号的接收端,也需要进行设计优化。
在接收端,模拟信号经过转换器转化为数字信号。
为了保证信号完整性,需要选择高性能的模拟-数字转换器(ADC)和适当的采样率。
此外,还需要进行恰当的滤波和信号处理,以滤除噪声和干扰。
除了上述设计之外,还需要进行严格的信号控制和管理。
信号完整性设计需要考虑到信号的走线、接地和供电等问题。
合理的走线布局和接地设计可以减小信号回耦和共模噪声的影响。
同时,供电系统的设计也需要尽量减小对信号的噪声和干扰。
在ADS信号完整性设计中,还需要考虑设备的热量管理。
高功率设备的工作会产生大量的热量,当热量达到一定程度时,可能会对信号完整性产生影响。
因此,需要合理设计散热系统,以保持设备的良好工作状态。
总之,ADS信号完整性设计是一项综合性的工程设计,需要考虑信号源、传输线路和接收端等各个环节。
通过合理的设计和优化,可以最大程度地减小信号的失真和干扰,从而保证模拟信号在数字化过程中的准确性和稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号完整性与电源完整性的仿真分析与设计李荔博士leo_le@安捷伦科技1简介信号完整性是指信号在通过一定距离的传输路径后在特定接收端口相对指定发送端口信号的还原程度。
在讨论信号完整性设计性能时,如指定不同的收发参考端口,则对信号还原程度会用不同的指标来描述。
通常指定的收发参考端口是发送芯片输出处及接收芯片输入处的波形可测点,此时对信号还原程度主要依靠上升/下降及保持时间等指标来进行描述。
而如果指定的参考收发端口是在信道编码器输入端及解码器输出端时,对信号还原程度的描述将会依靠误码率来描述。
电源完整性是指系统供电电源在经过一定的传输网络后在指定器件端口相对该器件对工作电源要求的符合程度。
同样,对于同一系统中同一个器件的正常工作条件而言,如果指定的端口不同,其工作电源要求也不同(在随后的例子中将会直观地看到这一点)。
通常指定的器件参考端口是芯片电源及地连接引脚处的可测点,此时该芯片的产品手册应给出该端口处的相应指标,常用纹波大小或者电压最大偏离范围来表征。
图一是一个典型背板信号传输的系统示意图。
本文中“系统”一词包含信号传输所需的所有相关硬件及软件,包括芯片、封装与PCB板的物理结构,电源及电源传输网络,所有相关电路实现以及信号通信所需的协议等。
从设计目的而言,需要硬件提供可制作的支撑及电信号有源/无源互联结构;需要软件提供信号传递的传输协议以及数据内容。
1001010…图1 背板信号传输的系统示意图在本文的以下内容中,将会看到由于这些支撑与互联结构对电信号的传输呈现出一定的频率选择性衰减,从而会使设计者产生对信号完整性及电源完整性的担忧。
而不同传输协议及不同数据内容的表达方式对相同传输环境具备不同适应能力,使得设计者需要进一步根据实际的传输环境来选择或优化可行的传输协议及数据内容表达方式。
为描述方便起见以下用“完整性设计与分析”来指代“信号完整性与电源完整性设计与分析”。
2 版图完整性问题、分析与设计上述背板系统中的硬件支撑及无源互联结构基本上都在一种层叠平板结构上实现。
这种层叠平板结构可以由三类元素组成:正片结构、负片结构及通孔。
正片结构是指该层上的走线大多为不同逻辑连接的信号线或离散的电源线,由于在制版光刻中所有的走线都会以相同图形的方式出现,所以被称为正片结构,有时也被称为信号层;负片结构则是指该层上基本上是相同逻辑连接的一个或少数几个连接(通常是电源连接或地连接),通常会以大面积敷铜的方式来实现,此时光刻工艺中用相反图形来表征更加容易,所以被称为负片结构,有时也称为平面层(细分为电源平面层和地平面层);而通孔用来进行不同层之间的物理连接。
目前的制造工艺中,无论是芯片、封装以及PCB板大多都是在类似结构上实现。
图2 层叠结构示意图版图完整性设计的目标在于能提供给系统足够好的信号通路以及电源传递网络。
但实际的物理连接并不是理想的,以上述经由过孔的导线为例,在高频时表现出较明显的衰减。
平面层信号层过孔 (a) 版图 (b) 版图所对应的层叠结构0.51.01.52.0 2.50.03.0-0.6-0.4-0.2-0.80.0FrequencyM a g . [d B ]S21图3 互联结构在高频激励时的表现示意图电流密度分布的显示对于版图完整性设计与分析有着重要的意义。
因为通过电流密度的显示可以直观得观察到信号的寄生耦合位置以及强度,从而帮助版图调试者有针对性地采取耦合或解耦方案。
以上结果以矩量法仿真得到。
对于信号完整性而言,首要任务是保证信号通路在一定负载情况下呈现良好的匹配状况;同时避免不期望的寄生耦合改变已设计好的匹配状况。
利用电磁场仿真不但可以准确得计算实际版图结构中信号通路的匹配状况,同时也可以计算信号通路周围结构带来的寄生耦合(如果周围是信号线则通常被称为串扰),其强度可以直接表征为周围走线或平面上感应所产生的电流密度,从而可以帮助优化版图结构。
注:上图是图二结构在3GHz 激励下顶层导线电流密度的分布状况。
从左图中可以看出高频下电流在导线上的传输呈现出边缘效应。
而其传输响应在3GHz 时有大约0.7dB 的衰减端口4 freq, GHz freq, GHz d B (S (3,1))d B (S (5,1))图4 一个简单的信号完整性分析例子上图中电流密度分布的位置描述了在特定频点激励下发生串扰耦合的具体部位,而S 参数仿真结果则给出了不同频率信号激励下串扰的强度。
除改变线距外,周围其它电磁回路环境的改变同样会造成信号传输及串扰状况的不同。
一个典型的例子是利用层与层之间的屏蔽可以改善原本放在顶层的走线信号传输或串扰性能。
对于电源完整性而言,期望增加电源与地之间的容性耦合,因为可以帮助滤除电源中的交流波动。
在实际应用中,往往采取加解耦电容的方法。
对于电源完整性(b)近端串扰情况,在3GHz 处端口3串扰比端口5严重 (c)远端串扰情况,在3GHz 处端口5串扰比端口3严重设计而言,电流密度改动的动态显示可以帮助设计者直观了解到电源网络中振荡现象产生的原因。
从而帮助设计者确定加解耦电容的最佳位置。
下图模拟了一种简单的电源传递网络:电源平面和地平面是规整的矩形,这有助于定性的验证电磁场仿真结果。
工作器件与供电电源分别连接在矩形的两个对角上。
假设工作器件对于该供电网络的阻抗为20欧姆。
利用电磁场仿真可以观察电流从端口1流入经过该电源传递网络再从端口2流出的损耗状况图5 简单的电源传递网络仿真仿真结果如图所示。
可以看到上图的结构在1GHz 频段内出现三个主要谐振区域,分别在200MHz 、500MHz 以及1GHz 附近。
分别用三个谐振频点来激励端口1并动态显示电流密度分布的变化趋势,可以直观地发现:200MHz 附近的谐振主要是沿矩形的对角方向,并且相对应的特征尺寸为两倍对角线长度(因为过孔的连接);500MHz 附近的谐振主要是沿矩形的长边方向,相对应的特征尺寸为长边的长度;1GHz 附近的谐振主要是沿矩形的短边方向,相对应的特征尺寸则为短边的长度。
端口1 注:仿真中用一个过孔在电源连接处短接电源平面与地平面来模拟接上电源的情况(假设电源内阻很小可以忽略)图6 仿真结果:S 参数及电流密度分布的动态显示上述谐振区域的存在对于电源完整性的危害在于:如果工作器件(以典型的CMOS 器件为例)在谐振频点上工作,会产生同样频点的电源电流需求,然而因为谐振的关系,从供电电源端到器件电源输入端会产生明显的压降,从而可能使工作器件上实际的工作电压达不到预期值,导致性能恶化甚至无法正常工作。
解决上述问题的方法在于采用某种手段使得电源网络的谐振区远离器件的工作频率,常用的方法是加解耦电容。
通过电流密度分布的显示可以了解振荡原因,从而采取针对的方法。
针对上面这个例子,可以加一个过孔来模拟解耦电容的作用,并通过改变过孔的位置来观察到谐振模式及谐振点的变化,从而找到最佳的解耦电容放置处。
以上例子中的谐振现象甚至可以定性直观地预计到,以上所述不同特征尺寸与不同谐振频点位置的对应关系可以说明这一点,但这是因为假设的电源平面是规整形状。
实际的电源传递网络远比上面的例子要复杂,很难定性预计谐振的模式,但利用上述仿真的手段,仍然可以沿用类似的方法来确定谐振的原因并采取针对性的措施。
M a g . [d B ]S12m1freq=dB(demo_pcb_PI_plane_mom_a..S(1,2))=-34.113166.7MHzm2freq=dB(demo_pcb_PI_plane_mom_a..S(1,2))=-22.420465.3MHz(b) 激励为166.7MHz 时电流密度分布的动态显示截图,结果表明该谐振基本沿矩形对角线方向发生 (c) 激励为465.3MHz 时电流密度分布的动态显示截图,结果表明该谐振基本沿矩形长边方向发生 (d) 激励为976.9MHz 时电流密度分布的动态显示截图,结果表明该谐振基本沿矩形短边方向发生4 电路完整性设计与分析从TTL、GTL 到HSTL、SSTL以及 LVDS,目前芯片接口物理标准的演变反映了集成电路工艺的不断进步,同时也反映了高速信号传输要求的不断提高。
了解这些接口标准是完整性设计中必要的一环。
因为从版图完整性的分析过程不难看出,只有结合互联结构两端的负载特性对版图的仿真结果才具有实际意义,而负载特性是由其连接的电路特性所决定的。
随着传输速率的不断增加,翻转速率控制电路、驱动负载控制电路等措施被广泛使用,这些措施为完整性设计者提供了更多地优化空间。
在具体的完整性分析中,需要结合这些控制的实际实现方式,因为这些可能变化的控制会影响到电路的负载特性以及波形性能。
另外,芯片上解耦电容的实现也是IO电路设计者的任务之一。
图7 简化电路完整性仿真示意图以上电路仿真图中包括了芯片、封装及PCB 板信号线互联及电源互联的等效模型(当然也可以由更精确的模型所替代)。
驱动电路和接收电路采用了IBIS 模型(也可以用SPICE 模型来替代)。
利用该仿真电路我们可以“看到”一个虚拟系统工作时任一点的信号波形或电源波动状况。
对于信号完整性而言,通常关心的是时钟信号的抖动以及信号波形的上升/下降/保持时间。
上述电路进行瞬态仿真后利用ADS2005A 中内含的眼图工具自动统计出各抖动分量的值。
图8 在接收端口处的仿真结果:符合规范的眼图以及抖动的统计结果对于电源完整性而言,通常关心的是某工作器件所承受的实际电源电压波动,即图七中的Vchip 。
图9 同一时间在不同位置“看”到的电源电压波动状况102030400500.00.51.01.52.0-0.52.5time, nsec V c o r e , VV o u t , V V g p k g , V V p p k g , V 102030400500.00.51.01.52.0-0.52.5time, nsec V c o r e , VV o u t , V V g i o , V V p i o , V (a) 芯片端口的电源波动和地弹噪声 (b)封装端口的电源波动和地弹噪声上图中的结果反映了实际分析中常碰到的问题:对于系统集成设计的验证者而言,由于无法测到芯片内部的电源端口所以无法“看到”图九(a)中的波动状况;而此时,在封装外引脚处测得的电源与地是相当稳定的。
但最终决定器件正常工作的电源要求是定义在芯片端口的,如果只依靠封装端口的测量结果是不能反映出此时的电源完整性状况。
此时需要从芯片厂商处得到封装模型来“虚拟测量”(即仿真)芯片端口处的电源波动及地弹噪声。
针对上述例子,进一步地分别考虑在芯片内部、封装内部以及PCB板加一些解耦电容的效果。
下图将用分别扫描解耦电容值的仿真方法来观察对电源完整性的影响。