浙教版数学七年级下册2.2二元一次方程组.docx

合集下载

浙教版初中数学七年级下册第二单元《二元一次方程组》单元测试卷(困难)(含答案解析)

浙教版初中数学七年级下册第二单元《二元一次方程组》单元测试卷(困难)(含答案解析)

浙教版初中数学七年级下册第二单元《二元一次方程组》单元测试卷(困难)(含答案解析)考试范围:第二单元;   考试时间:120分钟;总分:120分, 学校:___________姓名:___________班级:___________考号:___________注意:本试卷包含Ⅰ、Ⅱ两卷。

第Ⅰ卷为选择题,所有答案必须用2B 铅笔涂在答题卡中相应的位置。

第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。

答案写在试卷上均无效,不予记分。

第I 卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1. 已知方程2x −3y =7,用含x 的代数式表示y 为( ) A. y =7−2x3B. y =2x−73C. x =7+3x2D. x =7−3x22. 已知x 2m−1+3y 4−2n =−7是关于x ,y 的二元一次方程,则m ,n 的值是( ) A. {m =2n =1B. {m =1n =−32C. {m =1n =52D. {m =1n =323. 若方程mx −2y =3x +4 是关于x,y 的二元一次方程,则m 满足( ) A. m ≠−2B. m ≠0C. m ≠3D. m ≠44. 已知关于x ,y 的二元一次方程组{x −y =3ax +3y =2−a ,下列结论中正确的是( )①当这个方程组的解x ,y 的值互为相反数时,a =−1; ②当x 为正数,y 为非负数时,−14<a ≤12; ③无论a 取何值,x +2y 的值始终不变.A. ①②B. ②③C. ①③D. ①②③5. 三个同学对问题“若方程组{a 1x +b 1y =c1a 2x +b 2y =c 2的解是{x =3y =4,求方程组{3a 1x +2b 1y =5c13a 2x +2b 2y =5c 2的解.”提出各自的想法.甲说:“这个题目好像条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是( )A. {x =3y =2B. {x =3y =4C. {x =5y =10D. {x =6y =86. 在解方程组{ax +5y =104x −by =−4时,由于粗心,甲看错了方程组中的a ,得到的解为{x =−3y =−1,乙看错了方程组中的b ,得到的解为{x =5y =4.则原方程组的解( ) A. {x =−2y =8B. {x =15y =8C. {x =−2y =6D. {x =−5y =87. 当实数m ,n 满足m −2n =1时,称点P(m +2,n+23)为创新点,若以关于x ,y 的方程组{2x +3y =4,2x −3y =4a的解为坐标的点Q(x,y)为创新点,则a 的值为( ) A. −25B. 25C. −23D. 238. 已知x ,y 是整数,满足x −y +3=0,ax −y −a =0,则整数a 的所有可能值有( ) A. 4个B. 5个C. 6个D. 8个9. 某商场根据市场信息,对商场中现有的两台不同型号的空调进行调价销售,其中一台空调调价后售出可获利10%(相对于进价),另一台空调调价后售出则亏本10%(相对于进价),而这两台空调调价后的售价恰好相同,那么商场把这两台空调调价后售出.( )A. 既不获利也不亏本B. 可获利1%C. 要亏本2%D. 要亏本1%10. 将两块完全相同的长方体木块先按图1的方式放置,再按图2的方式放置,测得的数据如图(单位:cm)所示.则桌子的高度ℎ=( )A. 30cmB. 35cmC. 40cmD. 45cm11. 用白铁皮做罐头盒,每张铁片可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒,现有36张白铁皮,设用x 张制盒身,y 张制盒底,恰好配套制成罐头盒,则下列方程组中符合题意的是( )A. {x +y =36y =2xB. {x +y =36x =2yC. {x +y =362×25x =40yD. {x +y =3625x =2×40y12. 三角形然幻方是锻炼思维的有趣数学问题,例:把数字1、2、3、…、9分别填入如图所示的9个圆圈内,要求△ABC 和△DEF 的每条边上三个圆圈内数字之和都等于18,则x +y +z的和是( )A. 6B. 15C. 18D. 24第II 卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 已知二元一次方程2x −y =1,用y 的代数式表示x 为______ .14. 若关于x 、y 的二元一次方程组{3x −my =52x +ny =6的解是{x =1y =2,则关于a 、b 的二元一次方程组{3(a +b )−m (a −b )=52(a +b )+n (a −b )=6的解是_____. 15. 已知关于x ,y 的方程组{3x −5y =2a,2x +7y =a −18,有下列三种说法: ①当a =8时,x ,y 互为相反数; ②x ,y 都是负整数的解只有1组; ③{x =21,y =−3是该方程组的解.其中说法正确的有 (填序号).16. 为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5:6:7,需香樟数量之比为4:3:9,并且甲、乙两山需红枫数量之比为2:3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为______.三、解答题(本大题共9小题,共72.0分。

专题2.2 二元一次方程组(提高篇)专项练习-2020-2021学年七年级数学下(浙教版)

专题2.2 二元一次方程组(提高篇)专项练习-2020-2021学年七年级数学下(浙教版)

专题2.2 二元一次方程组(提高篇)专项练习一、单选题1.方程(m-2 016)x|m|-2 015+(n+4)y|n|-3=2 018是关于x、y的二元一次方程,则() A.m=±2 016;n=±4B.m=2 016,n=4C.m=-2 016,n=-4D.m=-2 016,n=42.若二元一次方程3x-y=7,2x+3y=1,y=kx-9有公共解,则k的取值为().A.3B.-3C.-4D.43.一片牧场上的草长得一样快,已知60头牛24天可将草吃完,而30头牛60天可将草吃完.那么,若在120天里将草吃完,则需要几头牛()A.16B.18C.20D.224.若关于x,y的方程组10,20x aybx y a++=⎧⎨-+=⎩没有实数解,则()A.ab=-2B.ab=-2且a≠1C.ab≠-2D.ab=-2且a≠25.如图,10块相同的小长方形墙砖拼成一个长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则依题意列方程正确的是( )A.2753x yy x+=⎧⎨=⎩B.2753x yx y+=⎧⎨=⎩C.2753x yy x+=⎧⎨=⎩D.2753x yx y+=⎧⎨=⎩6.三元一次方程组156x yy zz x+=⎧⎪+=⎨⎪+=⎩的解是A.15xyz=⎧⎪=⎨⎪=⎩B.124xyz=⎧⎪=⎨⎪=⎩C.14xyz=⎧⎪=⎨⎪=⎩D.41xyz=⎧⎪=⎨⎪=⎩7.关于x、y的方程组51x ayy x+=⎧⎨-=⎩有正整数解,则正整数为( ).A.2、5B.1、2C.1、5D.1、2、58.根据图中提供的信息,可知每个杯子的价格是()A.51元B.35元C.8元D.7.5元9.一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团15人准备同时租用这三种客房共5间,如果每个房间都住满,租房方案有()A.4种B.3种C.2种D.1种10.已知实数a、m满足a>m,若方程组325x y ax y a-=+⎧⎨+=⎩的解x、y满足x>y时,有a>-3,则m的取值范围是()A.m>-3B.m≥-3C.m≤-3D.m<-3二、填空题11.一个大正方形和四个全等的小正方形按图①、①两种方式摆放,则图①的大正方形中未被小正方形覆盖部分的面积是__________(用a、b的代数式表示).12.已知x、y满足方程组2524x yx y+=⎧⎨+=⎩,则x y-的值为___.13.对于实数a,b,定义运算“①”:a①b=a bab a b≥⎪⎩,<,例如4①3,因为4>3.所以.若x,y满足方程组48229x yx y-=⎧⎨+=⎩,则x①y=_____________.14.若关于x、y的二元一次方程组316215x myx ny+=⎧⎨+=⎩的解是73xy=⎧⎨=⎩,则关于x、y的二元一次方程组3()()162()()15x y m x yx y n x y++-=⎧⎨++-=⎩的解是__.15.若(2x﹣3y+5)2+|x+y﹣2|=0,则x=_____,y=_____.16.某人步行5小时,先沿平坦道路走,然后上山,再沿来的路线返回,若在平坦道路上每小时走4千米,上山每小时走3千米,下山每小时走6千米,那么这5小时共走了路程____________千米.17.如图所示的各图表示由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n(n >1)盆花,每个图案花盆的总数为s.按此规律推断,以s,n为未知数的二元一次方程为______.18.当x=1,-1,2时,y=ax2+bx+c的值分别为1,3,3,则当x=-2时,y的值为____.19.如果二元一次方程组3{9x y ax y a+=-=的解是二元一次方程2x-3y+12=0的一个解,那么a的值是_________.20.对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(241)=_________,F(635)=___________ ;(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:()()F skF t=,当F(s)+F(t)=18时,则k的最大值是___.三、解答题21.解方程(1)2931x yy x+=⎧⎨-=⎩(代入法)(2)4143314312x yx y+=⎧⎪--⎨-=⎪⎩22.解三元一次方程组2314 2?7 3211 x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩23.若二元一次方程组37231x yx y-=⎧⎨+=⎩的解也适合于二元一次方程y=kx+9,求(k+1)2的值.24.甲、乙两人共同解方程组51542ax yx by+=⎧⎨-=-⎩①②.解题时由于甲看错了方程①中的a,得到方程组的解为31xy=-⎧⎨=-⎩;乙看错了方程①中的b,得到方程组的54xy=⎧⎨=⎩,试计算a2017+(110-b)2018的值.25.阅读探索知识累计解方程组()()()()12262126a b a b ⎧-++=⎪⎨-++=⎪⎩解:设a ﹣1=x ,b+2=y ,原方程组可变为2626x y x y +=⎧⎨+=⎩解方程组得:22x y =⎧⎨=⎩即1222a b -=⎧⎨+=⎩所以30a b =⎧⎨=⎩此种解方程组的方法叫换元法.(1)拓展提高运用上述方法解下列方程组:122435212535a b a b ⎧⎛⎫⎛⎫-++= ⎪ ⎪⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪-++= ⎪ ⎪⎪⎝⎭⎝⎭⎩ (2)能力运用已知关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为53x y =⎧⎨=⎩,直接写出关于m 、n 的方程组()()()()11112253325332a m b n c a m b n c ⎧++-=⎪⎨++-=⎪⎩的解为_____________.26.阅读下列材料:《张丘建算经》是一部数学问题集,其内容、范围与《九章算术》相仿.其中提出并解决了一个在数学史上非常著名的不定方程问题,通常称为“百鸡问题”:“今有鸡翁一值钱五,鸡母一值钱三,鸡雏三值钱一.凡百钱买鸡百只,问鸡翁、母、雏各几何.”译文:每一只公鸡值五文钱,每一只母鸡值三文钱,每三只小鸡值一文钱.现在用一百文钱买一百只鸡,问这一百只鸡中,公鸡、母鸡、小鸡各有多少只? 结合你学过的知识,解决下列问题: (1)若设母鸡有x 只,公鸡有y 只,① 小鸡有__________只,买小鸡一共花费__________文钱;(用含x ,y 的式子表示) ①根据题意,列出一个含有x ,y 的方程:__________________;(2)若对“百鸡问题”增加一个条件:母鸡数量是公鸡数量的4倍多2只,求此时公鸡、母鸡、小鸡各有多少只?(3)除了问题(2)中的解之外,请你再直接写出两组..符合“百鸡问题”的解.27.在平面直角坐标系中,点O是坐标原点,点A的坐标是(-a,a),点B的坐标是(c,b),满足3+28{24a b ca b c-=--=-.(1)若x=2是3x-a<0的一个解,试判断点A在第几象限,并说明理由;(2)若①AOB的面积是4,求点B的坐标;(3)若两个动点E( e ,2e + 1) 、F( f ,-2f +3) ,请你探索是否存在以两个动点E、F为端点的线段EF①AB,且EF=AB.若存在,求出E、F两点的坐标;若不存在,请说明理由.参考答案1.D 【解析】【分析】根据二元一次方程的定义可得m -2016≠0,n+4≠0,|m|-2015=1,|n|-3=1,解不等式及方程即可得.【详解】①()()20153201642018m n m xn y---++=是关于x 、y 的二元一次方程,①m -2016≠0,n+4≠0,|m|-2015=1,|n|-3=1, 解得:m=-2016,n=4, 故选D .【点拨】本题考查了二元一次方程定义的应用,明确含有未知数的项的系数不能为0,次数为1是解题的关键.2.D 【分析】先利用方程3x -y=7和2x+3y=1组成方程组,求出x 、y ,再代入y=kx -9求出k 值. 解:由题意,得:37,23 1.x y x y -=⎧⎨+=⎩解得:2,1.x y =⎧⎨=-⎩将21x y =⎧⎨=-⎩代入y=kx -9中,得:-1=2k -9,解得:k=4. 故选D.【点拨】本题考查二元一次方程组和三元一次方程组的解法,有加减法和代入法两种,一般选用加减法解二元一次方程组较简单. 3.C 【解析】【分析】设草一天增加量是a ,每头牛每天吃的草的量是b ,原有草的量是c .根据60头牛24天可将草吃完,而30头牛60天可将草吃完,列方程组,用其中一个未知数表示另一个未知数即可求解. 【详解】设草一天增加量是a ,每头牛每天吃的草的量是b ,原有草的量是c .根据题意,得602424306060b c a b c a ⨯⎧⎨⨯⎩=+,=+,解得10,1200.a b c b =⎧⎨=⎩则若在120天里将草吃完,则需要牛的头数是120120c ab+=20.故选C.【点拨】考查了二元一次方程组的应用,解题关键是能够把题目中的未知量用一个字母表示.注:牛在吃草的同时,草也在长. 4.A 【解析】 【分析】把①变形,用y 表示出x 的值,再代入①得到关于y 的方程,令y 的系数等于0即可求出ab 的值. 【详解】1020x ay bx y a =①=②++⎧⎨-+⎩, 由①得,x=-1-ay ,代入①得,b (-1-ay )-2y+a=0, 即(-ab -2)y=b -a ,因为此方程组没有实数根,所以-ab -2=0,ab=-2. 故选:A . 【点拨】考查的是解二元一次方程组,解答此类问题时要熟知解二元一次方程组的代入消元法和加减消元法. 5.B 【解析】 【分析】根据图示可得:矩形的宽可以表示为x +2y ,宽又是75厘米,故x +2y =75,矩的长可以表示为2x,或x+3y,故2x=3y+x,整理得x=3y,联立两个方程即可.【详解】解:根据图示可得,2753x yx y+=⎧⎨=⎩故选B.【点拨】本题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.6.A【详解】观察方程组的特点,可以让三个方程相加,得到x+y+z=6.然后将该方程与方程组中的各方程分别相减,可求得15xyz=⎧⎪=⎨⎪=⎩.故选A.7.B【分析】先解含a的二元一次方程组,再根据x,y为正整数求出a的取值.【详解】解x、y的方程组51x ayy x+=⎧⎨-=⎩得61161xaya⎧=-⎪⎪+⎨⎪=⎪+⎩①x,y,a为正整数①a+1=3或2,解得a=2或1,故选B【点拨】此题主要考查二元一次方程组的求解,解题的关键是熟知加减消元法进行求解.8.C【解析】试题分析:要求一个杯子的价格,就要先设出一个未知数,然后根据题中的等量关系列方程求解.题中的等量关系是:一杯+壶=43元;二杯二壶+一杯=94.解:设一杯为x,一杯一壶为43元,则右图为三杯两壶,即二杯二壶+一杯,即:43×2+x=94解得:x=8(元)故选C.9.C【解析】解:设二人间x间,三人间y间,四人间(5﹣x﹣y)间.根据题意得:2x+3y+4(5﹣x﹣y)=15,整理得:2x+y=5.当y=1时,x=2,5﹣x﹣y=5﹣2﹣1=2;当y=3时,x=1,5﹣x﹣y=5﹣1﹣3=1;当y=5时,x=0,5﹣x﹣y=5﹣0﹣5=0.因为同时租用这三种客房共5间,则x>0,y>0,所以有二种租房方案:①租二人间2间、三人间1间、四人间2间;①租二人间1间,三人间3间,四人间1间.故选C.点拨:本题是二元一次方程的应用,此题难度较大,解题的关键是理解题意,根据题意列方程,然后根据x,y是整数求解,注意分类讨论思想的应用,另外本题也可以列三元一次方程组.10.C【解析】解:325x y ax y a-=+⎧⎨+=⎩①②,①+①得,3x=6a+3,得到:x=2a+1①,把①代入①得,2a+1-y=a+3,解得y=a﹣2,所以,方程组的解是212x ay a=+⎧⎨=-⎩,①x>y,①2a+1>a﹣2,解得a>﹣3.①a>-3,a>m,①m≤-3,故选C.点拨:本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.11.ab【详解】设大正方形的边长为x1,小正方形的边长为x2,由图①和①列出方程组得,12122{2x x a x x b+=-= 解得,122{4a bx a b x +=-= ①的大正方形中未被小正方形覆盖部分的面积=(2a b +)2-4×(4a b -)2=ab . 故答案为ab.12.1【分析】首先根据方程组的解的定义正确求出方程组的解,然后计算出x -y 或直接让两个方程相减求解.【详解】方法一:解方程组2524x y x y +=⎧⎨+=⎩, 解得:21x y =⎧⎨=⎩, ①x -y=1;方法二:两个方程相减,得.x -y=1,故答案为1.【点拨】本题考查了解二元一次方程组,熟练掌握解二元一次方程组的基本方法是解题的关键,同时注意此题中的整体思想.13.60【解析】分析:根据二元一次方程组的解法以及新定义运算法则即可求出答案.详解:由题意可知:48229x y x y -=⎧⎨+=⎩, 解得:512x y =⎧⎨=⎩.①x <y ,①原式=5×12=60.故答案为60.点拨:本题考查了二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法以及正确理解新定义运算法则,本题属于基础题型.14.52x y =⎧⎨=⎩【解析】分析:令x +y =a ,x -y =b ,根据已知,比较后得出a ,b 的值,从而得出结论..详解:令x +y =a ,x -y =b ,则关于x 、y 的二元一次方程组316215x y m x y x y n x y ++-=⎧⎨++-=⎩()()()()变为:316215a mb a nb +=⎧⎨+=⎩.①二元一次方程组316215x my x ny +=⎧⎨+=⎩的解是73x y =⎧⎨=⎩,①73a b =⎧⎨=⎩,①73x y x y +=⎧⎨-=⎩,解得:52x y =⎧⎨=⎩. 点拨:本题主要考查二元一次方程组的解法,关键是熟练掌握二元一次方程组的解法即代入消元法和加减消元法,本题要注意整体思想的运用.15.15 95【解析】分析:本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出x 、y 的值.详解:①(2x −3y +5)2+|x +y −2|=0,①235020x y x y -+=⎧⎨+-=⎩, 解得19,.55x y ==故答案为19,.55点拨:考查非负数的性质,掌握两个非负数相加,和为0,这两个非负数的值都为0是解题的关键.16.20【解析】【分析】设平路有x 千米,上坡路有y 千米,根据平路用时+上坡用时+下坡用时+平路用时=5,即可得解.注意求得x+y 的值即为总路程.【详解】设平路有x 千米,上坡路有y 千米,根据题意,得: 4x +3y +6y +4x =5,即2x +2y =5,则x +y =10(千米), 这5小时共走的路程=2×10=20(千米).故答案是:20.【点拨】考查了二元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.注意可以通过间接方式得解.17.s=3(n -1)【分析】根据图片可知:第一图:有花盆3个,每条边有花盆2个,那么s=3×2-3;第二图:有花盆6个,每条边有花盆3个,那么s=3×3-3;第三图:有花盆9个,每条边有花盆4个,那么s=3×4-3;…由此可知以s ,n 为未知数的二元一次方程为s=3n -3.【详解】根据图案组成的是三角形的形状,则其周长等于边长的3倍,但由于每个顶点重复了一次.所以s=3n -3=3(n ﹣1).故答案为3(n ﹣1)【点拨】本题要注意给出的图片中所包含的规律,然后根据规律列出方程.18.7【解析】【分析】根据函数图象上的点的坐标,利用待定系数法即可求出二次函数的解析式,将x=-2代入函数解析式中即可求出y值.【详解】由已知,得1,3,342,a b ca b ca b c=++⎧⎪=-+⎨⎪=++⎩解得1,1,1,abc=⎧⎪=-⎨⎪=⎩①y=x2-x+1.当x=-2时,y=(-2)2-(-2)+1=7.故答案是:7.【点拨】考查了待定系数法求函数解析式以及二次函数图象上点的坐标特征,解题的关键是利用待定系数法求出二次函数的解析式.本题属于基础题,难度不大,解决该题型题目时,利用待定系数法求出函数解析式是关键.19.4 7 -【解析】解:39x y ax y a+=⎧⎨-=⎩①②,①+①得:x=6a,把x=6a代入①得:y=-3a.把x=6a,y=-3a代入2x-3y+12=0得:12a+9a+12=0,解得:47x=-.故答案为:47-.20.7 14 5 4【解析】分析:(1)根据F(n)的定义式,分别将n=241和n=635代入F(n)中,即可求出结论;(2)由s=100x+32、t=150+y结合F(s)+F(t)=18,即可得出关于x、y的二元一次方程,解之即可得出x、y的值,再根据“相异数”的定义结合F(n)的定义式,即可求出F(s)、F(t)的值,将其代入k=()()F sF t中,找出最大值即可.详解::(1)F(241)=(421+142+214)÷111=7;F(635)=(365+536+653)÷111=14.(2)①s,t都是“相异数”,s=100x+32,t=150+y,①F(s)=(302+10x+230+x+100x+23)÷111=x+5,F(t)=(510+y+100y+51+105+10y)÷111=y+6.①F(t)+F(s)=18,①x+5+y+6=x+y+11=18,①x+y=7.①1≤x≤9,1≤y≤9,且x,y都是正整数,①16xy=⎧⎨=⎩或25xy=⎧⎨=⎩或34xy=⎧⎨=⎩或43xy=⎧⎨=⎩或52xy=⎧⎨=⎩或61xy=⎧⎨=⎩.①s是“相异数”,①x≠2,x≠3.①y≠1,y≠5.①16xy=⎧⎨=⎩或43xy=⎧⎨=⎩或52xy=⎧⎨=⎩,①()()612F sF t⎧=⎪⎨=⎪⎩或()()99F sF t⎧=⎪⎨=⎪⎩或()()108F sF t⎧=⎪⎨=⎪⎩,①k=()()F sF t=12或k=()()F sF t=1或k=()()F sF t=54,①k的最大值为54.点拨: 本题考查了二元一次方程的应用,解题的关键是:(1)根据F(n)的定义式,求出F (241)、F(635)的值;(2)根据s=100x+32、t=150+y结合F(s)+F(t)=18,找出关于x、y的二元一次方程.21.(1)14xy=⎧⎨=⎩(2)3114xy=⎧⎪⎨=⎪⎩【解析】试题分析:(1)、将①-①×2求出x的值,然后代入①求出y的值,从而得出方程组的解;(2)、首先将①进行化简,然后利用加减消元法求出x的值,代入x的值求出y的值,从而得出方程组的解.试题解析:(1)、29? 31?x y y x ①②+=⎧⎨-=⎩, ①×2可得:2y -6x=2 ①, ①-①可得:7x=7, 解得:x=1, 将x=1代入①可得:1+2y=9,解得:y=4①原方程组的解为:14x y =⎧⎨=⎩. (2)、414? 331 4312x y x y +=⎧⎪⎨---=⎪⎩①②,将①化简可得:3x -4y=-2 ①, ①+①可得:4x=12,解得:x=3,将x=3代入①可得:3+4y=14,解得:y=114,①原方程组的解为:3114x y =⎧⎪⎨=⎪⎩. 22.123x y z =⎧⎪=⎨⎪=⎩【解析】分析:根据解三元一次方程组的方法解方程即可,详解:231427?3211x y z x y z x y z ①②③++=⎧⎪++=⎨⎪++=⎩①-①×2得:30,x z -+=①-①×2得:58,x z --=-联立方程3058,x z x z -+=⎧⎨--=-⎩解得:13,x z =⎧⎨=⎩把13x z =⎧⎨=⎩代入①得,12914,y ++= 解得:2,y =原方程组的解为:123 xyz=⎧⎪=⎨⎪=⎩点拨:考查三元一次方程组的加法,牢记加减消元法是解题的关键.23.16.【解析】【分析】先利用加减消元法解得x,y的值,然后代入方程即可求得k的值,再代入所求式子求解即可.【详解】解:37? 231x yx y①②-=⎧⎨+=⎩,①×3+①,得11x=22,解得x=2.将x=2代入①,得6-y=7,解得y=-1,①方程组37231x yx y-=⎧⎨+=⎩的解为21xy=⎧⎨=-⎩,将21xy=⎧⎨=-⎩代入y=kx+9,得k=-5,则当k=-5时,(k+1)2=16.【点拨】本题主要考查解二元一次方程组,解此题的关键在于正确求得二元一次方程组的解. 24.0【解析】分析: 把甲的结果代入①求出b的值,把乙的结果代入①求出a的值,代入原式计算即可得到结果.详解:根据题意,将31x y =-⎧⎨=-⎩代入①,将54x y =⎧⎨=⎩代入①得: 12252015b a -+=-⎧⎨+=⎩ 解得:110a b =-⎧⎨=⎩, 则原式=(-1)2017+(110-×10)2018=-1+1=0. 点拨: 此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.25.(1)95a b =⎧⎨=-⎩ (2)23m n =-⎧⎨=⎩ 【分析】(1)利用换元法把13a - ,+25b 分别看成一个整体把原方程组进行变形求出,继而在求出a 和b(2)利用换元法把5(m+3),3(n -2)分别看成一个整体把原方程组变形,可得一个新的含有m 、n 的二元一次方程组,然后求解即可得所求【详解】解: (1)拓展提高 设3a −1=x ,5b +2=y , 方程组变形得:24{25x y x y +=+= ,解得:21x y =⎧⎨=⎩ ,即123{215a b -=+= , 解得:9{5a b ==- ;(2)能力运用设53){3(2)m x n y+=-=( , 可得53)5{3(2)3m n +=-=( , 解得:2{3m n =-= , 故答案为2{3m n =-= 【点拨】二元一次方程组解法的拓展是本题的考点,熟练掌握基础知识进行换元是解题的关键. 26.解:(1)①100x y --, 1(100)3x y --;①74100x y +=;(2)母鸡有18只,公鸡有4只,小鸡有78只.(3)以下三组答案,写出其中任意两组即可:①公鸡有12只,母鸡有4只,小鸡有84只;①公鸡有8只,母鸡有11只,小鸡有81只;①公鸡有0只,母鸡有25只,小鸡有75只.【解析】试题分析:(1)设母鸡有x 只,公鸡有y 只,根据一百文钱买一百只鸡,表示出小鸡的数量和价钱,然后列出方程;(2)设母鸡有x 只,公鸡有y 只,根据根据一百文钱买一百只鸡,母鸡数量是公鸡数量的4倍多2只,列方程求解即可;(3)解不定方程即可.试题解析:解:(1)①100x y --, 11003x y --();①74100x y +=;(2)设母鸡有x 只,公鸡有y 只,根据题意,得: 7410042x y x y +=⎧⎨=+⎩,,解得184x y =⎧⎨=⎩,,10078x y --=(只), 答:母鸡有18只,公鸡有4只,小鸡有78只.(3)以下三组答案,写出其中任意两组即可:①公鸡有12只,母鸡有4只,小鸡有84只;①公鸡有8只,母鸡有11只,小鸡有81只;①公鸡有0只,母鸡有25只,小鸡有75只.27.(1)点A 在第二象限 (2)()()2,26,2B -或(3)35,2,,222E F ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭【解析】试题解析:(1)根据题意,求出a 的取值范围,从而确定点A 的位置;(2)先解方程组,得{4b ac a ==-,再利用三角形的面积求出a 的值即可解决问题;(3)根据线段EF 平行于线段AB 且等于线段AB ,得出4f e -=,2123e f +=-+求解即可.(1)点A 在第二象限理由:把x =2代入3x -a<0得a>6①-a<0,a>0①点A 在第二象限(2)由方程组解得{4b ac a ==-()4,B a a ∴-①A(-a ,a ),S △OAB =4①AB =41442a ∴⋅= 2a ∴=±()()2,26,2B ∴-或(3)①EF ①AB ,且EF =AB4{2123f e e f -=∴+=-+ 解得: 32{52e f =-= 35,2,,222E F ⎛⎫⎛⎫∴--- ⎪ ⎪⎝⎭⎝⎭【点拨】本题考查了坐标与图形性质:利用点的坐标计算线段的长和判断线段与坐标轴的位置关系.也考查了三角形的面积公式.21。

浙教版七年级下册数学第二章 二元一次方程组含答案

浙教版七年级下册数学第二章 二元一次方程组含答案

浙教版七年级下册数学第二章二元一次方程组含答案一、单选题(共15题,共计45分)1、在学校组织的游艺晚会上,掷飞标游艺区游戏区规则如下,如图掷到A区和B区的得分不同,A区为小圆内部分,B区为大圆内小圆外部分(掷中一次记一个点)现统计小华、小明和小芳掷中与得分情况,如图所示,依此方法计算小芳的得分为()A.76B.74C.72D.702、如表,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.则每一行的和是()3 4 x﹣2 y a2y﹣x c bC.5D.43、已知∠1与∠2互补,并且∠1比∠2的3倍还大20°,若设∠1=x°,∠2=y°,则x、y满足的方程组为()A. B. C. D.4、若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为()A. B. C.﹣ D.﹣5、甲仓库乙仓库共存粮450吨,现从甲仓库运出存粮的60%,从乙仓库运出存粮的40%.结果乙仓库所余的粮食比甲仓库所余的粮食多30吨.若设甲仓库原来存粮x吨,乙仓库原来存粮y吨,则有()A. B. C.D.6、如图,在长为15,宽为12的矩形中,有形状、大小完全相同的5个小矩形,则图中阴影部分的面积为()A.35B.45C.55D.657、方程组的解是( )A. B. C. D.8、若方程组中x与y的值相等,则k等于()A.1或-1B.1C.5D.-59、我国古代数学名著《孙子算经》中记载了一道数学趣题:一百马,一百瓦,大马一个拖三个,小马三个拖一个.大意是:100匹马恰好拉了100片瓦,已知一匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A. B. C. D.10、下列方程中是二元一次方程的是()A. B. C. D.11、某校春季运动会比赛中,七年级六班和七班的实力相当,关于比赛结果,甲同学说:六班与七班的得分比为4:3,乙同学说:六班比七班的得分2倍少40分,若设六班得x分,七班得y分,则根据题意可列方程组()A. B. C. D.12、有3堆硬币,每枚硬币的面值相同.小李从第1堆取出和第2堆一样多的硬币放入第2堆;又从第2堆中取出和第3堆一样多的硬币放人第3堆;最后从第3堆中取出和现存的第1堆一样多的硬币放人第1堆,这样每堆有16枚硬币,则原来第1堆有硬币多少枚()A.22B.16C.14D.1213、一只笼子装有鸡和兔共有10个头,34只脚,每只鸡有两只脚,每只兔有四只脚.设鸡有x只,兔有y只,则可列二元一次方程组()A. B. C. D.14、有下列说法:①在同一平面内,过直线外一点有且只有一条直线与已知直线平行;②无论k取任何实数,多项式x2﹣ky2总能分解成两个一次因式积的形式;③若(t﹣3)3﹣2t=1,则t可以取的值有3个;④关于x,y的方程组为,将此方程组的两个方程左右两边分别对应相加,得到一个新的方程,当a每取一个值时,就有一个确定的方程,而这些方程总有一个公共解,则这个公共解是.其中正确的说法是()A.①④B.①③④C.②③D.①②15、扬州某中学七年级一班40名同学第二次为四川灾区捐款,共捐款2000元,捐款情况如下表:捐款(元) 20 40 50 100人数 10 8表格中捐款40元和50元的人数不小心被墨水污染已看不清楚、若设捐款40元的有x名同学,捐款50元的有y名同学,根据题意,可得方程组()A. B. C.D.二、填空题(共10题,共计30分)16、如果,则=________.17、已知已知是方程组的解,则(m﹣n)2=________.18、已知关于x,y的方程组的解满足x+y>0,则a的取值范围是________19、二元一次方程组的解为________。

七年级数学下册第2章二元一次方程组2

七年级数学下册第2章二元一次方程组2
(2)当接收方收到一组密码2,8,11时,则发送方发 出的密码是多少? 发送方发出的密码是3,4,7.
12 某服装厂专门安排210名工人进行手工衬衣的缝制,每 件衬衣由2个衣袖、1个衣身、1个衣领组成,如果每人 每天能够缝制衣袖10个,或衣身15个,或衣领12个, 那么应该安排多少名工人缝制衣袖,多少名工人缝制 衣身,多少名工人缝制衣领,才能使每天缝制出的衣 袖、衣身、衣领正好配套?
所以三元一次方程组的解为yx==3530,, z=-12.
所以三个“○”里的数之和为 71,三个“○”里应填入的
数按先上后下,先左后右的顺序依次为 50,33,-12.
14 阅读理解:已知实数 x,y 满足32xx-+y3=y=5①7②,,求 x-4y 和 7x+5y 的值.仔细观察两个方程未知数的系数之间的 关系,本题可以通过适当变形整体求得代数式的值,如 由①-②可得 x-4y=-2,由①+②×2 可得 7x+5y=19. 这样的解题思想就是通常所说的“整体思想”.利用“整体 思想”,解决下列问题:
x=-152, 所以原方程组的解为y=-2,
z=153.
【点拨】 解三元一次方程组时,通常需在某些方程两边
同乘某常数,以便于消去同一未知数;在变形过 程中,易漏乘常数项而出现方程①变形为4x+2y+ 6z=1的错误.
9 已知x-2y+z=2x-y+z=3,且x,y,z的值中仅有一
个为0,解这个方程组. 解:原式化为x2-x-2yy++zz==33,,①② ②-①,得 x+y=0. ∵x,y,z 的值中仅有一个为 0,∴z=0. 由xx+-y2=y=0,3,解得xy==-1,1.∴原方程组的解为xyz===0-1.,1,
2x+y+3z=1,① 8 解方程组3x-2y+2z=2,②

浙教版七年级数学下册第二章《解二元一次方程组(第1课时)》优质课课件

浙教版七年级数学下册第二章《解二元一次方程组(第1课时)》优质课课件
说说用代入法解二元一次方程组的一般步骤吗?
①将方程组中一个方程变形,使得一个未知数能 用含有另一个未知数的代数式表示;
②用这个代数式代替另一个方程中相应的未知数, 得到一个一元一次方程,求得一个未知数的值;
③把这个未知数的值代入代数式(回代) ,求得另一 个未知数的值;
x y 35 2x 4y 94
这节课你有什么收获呢?
1.消元实质
消元
二元一次方程组
一元一次方程
代入法
2.代入法的一般步骤
即: 变形 代替 回代 写解
3.学会检验,能灵活运用适当方法解二元 一次方程组.
课题检测
• 一、选择题: 1.下列方程中,是二元一次 方程的是( ) A.3x- 2y=4z B.6xy+9=0 C.1x+4y=6 D .4x=24y
2x+10=200
①为什么可以代入?
x=95
②怎样代入?
∴y=x+10 =95+10
这1个苹果的质量 x加上10g的砝码恰好
=105
与这1个梨的质量y相
即 : 苹 果 和 梨 的 质 量 等,即x+10与y的大小
分别为95g和105g. 相等(等量代换).
代入消元法,简称代入法.
例1
解方程组
2
x
ax
b
x
by ay
11 2
的一组解是
x y
2
1

求a、b的值.
{ { x=2
x=1
3. 已知

是方程
y=5
y=10
ax+by=15的两个解,求a,b的值.
试一试
4、已知(2x+3y-4)2+∣x+3y-7∣=0, 则x= -3 ,y= — 130 .

二元一次方程组的应用(课件)七年级数学下册(浙教版)

二元一次方程组的应用(课件)七年级数学下册(浙教版)
数学(浙教版)
七年级 下册
第2章 二元一次方程组
2.4 二元一次方程组的应用
学习目标
1.根据题干所给的具体数量关系,能列出二元一次方程组,解
答简单的实际问题、几何问题、行程问题和运输问题;
2.根据所列的方程组解决实际问题,注意要符合实际情况,不
满足要求的答案要进行排除;
当堂检测
知识回顾
二元一次方程组的解法有哪些?
=6
解得:

=3
∴这个两位数为36.
讲授新课
归纳总结
解题小结:用二元一次方程组解决实际问题的步骤:
数量关系
(1)审题:弄清题意和题目中的_________;
字母
(2)设元:用___________表示题目中的未知数;
2
(3)列方程组:根据___个等量关系列出方程组;
代入消元
(4)解方程组:利用__________法或___________解出未知数的
答:甲型机器购买33台,乙型机器购买6台.
【点睛】本题考查了二元一次方程组的应用,根据题意找到等量
关系列出方程是解题关键.
讲授新课
练一练
1.商店有甲、乙两种型号的足球,已知购买2个甲型号足球和5个乙型
号足球共需500元,购买3个甲型号足球和2个乙型号足球共需310元.
(1)甲、乙型号足球的单价各是多少元?
组,解之即可得出结论;
(2)设这所学校买了m个甲型号足球,买了n个乙型号足球,根据该学
校一次性购买甲、乙型号足球共100个且共花费5900元,即可得出关于m,
n的二元一次方程组,解之即可得出结论.
讲授新课
【详解】(1)解:设甲型号足球的价格为x元,乙型号的足球的价格

2017-2018学年度最新浙教版七年级数学下册《二元一次方程组》单元考点练习及答案解析精品试卷

2.2 二元一次方程组一、选择题1.下列方程组中是二元一次方程组的是( )A.⎩⎪⎨⎪⎧xy =1,x +y =2B.⎩⎪⎨⎪⎧5x -2y =3,1x+y =3C.⎩⎪⎨⎪⎧2x +z =0,3x -y =15D.⎩⎪⎨⎪⎧x +y =5,x 2+y3=7 2.[2012·茂名]方程组⎩⎪⎨⎪⎧x -y =1,x +y =5 的解为( )A.⎩⎪⎨⎪⎧x =1,y =4B.⎩⎪⎨⎪⎧x =2,y =1C.⎩⎪⎨⎪⎧x =2,y =3D.⎩⎪⎨⎪⎧x =3,y =23.二元一次方程组⎩⎪⎨⎪⎧x +y =10,2x -y +4=0的解是( )A.⎩⎪⎨⎪⎧x =2,y =8 B.⎩⎪⎨⎪⎧x =143,y =163C.⎩⎪⎨⎪⎧x =8,y =2D.⎩⎪⎨⎪⎧x =7,y =3 4.一筐苹果和一筐梨共100千克,其中苹果质量比梨的质量的2倍少8千克.设苹果有x 千克,梨有y 千克,则列出的方程组是( )A.⎩⎪⎨⎪⎧x =2y +8,x +y =100B.⎩⎪⎨⎪⎧y =2x +8,x +y =100C.⎩⎪⎨⎪⎧y =2x -8,x +y =100D.⎩⎪⎨⎪⎧x =2y -8,x +y =100 5.楠溪江某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1225元,设其中有x 张成人票,y 张儿童票,根据题意,下列方程组正确的是( )A.⎩⎪⎨⎪⎧x +y =20,35x +70y =1225B.⎩⎪⎨⎪⎧x +y =20,70x +35y =1225C.⎩⎪⎨⎪⎧x +y =1225,70x +35y =20D.⎩⎪⎨⎪⎧x +y =1225,35x +70y =206.为了丰富同学们的业余生活,体育委员小强到体育用品商6.购买羽毛球拍和乒乓球拍,若购买1副羽毛球拍和1副乒乓球拍共需50元,小强一共用了320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍,若设每副羽毛球拍x 元,每副乒乓球拍y 元,可列二元一次方程组为()A.⎩⎪⎨⎪⎧x +y =50,6(x +y )=320B.⎩⎪⎨⎪⎧x +y =50,6x +10y =320C.⎩⎪⎨⎪⎧x +y =50,6x +y =320D.⎩⎪⎨⎪⎧x +y =50,10x +6y =320 二、填空题7.在①⎩⎪⎨⎪⎧x =2,y =1,②⎩⎪⎨⎪⎧x =1,y =1,③⎩⎪⎨⎪⎧x =-1,y =4,这三对数值中,__ __是方程x +y =3的解;____是方程3x +2y =5的解,__ __是方程组⎩⎪⎨⎪⎧x +y =3,3x +2y =5的解.8.请写出一个二元一次方程组_ ___,使它的解是⎩⎪⎨⎪⎧x =2,y =-1.9.若方程组⎩⎪⎨⎪⎧ax +y =3,x +by =-2的解是⎩⎪⎨⎪⎧x =1,y =-1,则a =__ __,b =__ __.10.王老师对本学期数学成绩提高多的10名同学分一等奖和二等奖进行表彰(每人只有一份奖品),需要生活委员用22元班费去买奖品,规定一等奖的奖品每件4元,二等奖的奖品每件1元,如果你是生活委员,你该如何购买这两种奖品?设购买一等奖的奖品x 件,二等奖的奖品y 件,则依题意所得方程组为__ __. 三、解答题11.将下列方程组的解和相应的方程组用线段连起来.⎩⎪⎨⎪⎧y =2x ,3x -2y =7 ⎩⎪⎨⎪⎧4x -3y =17;y =x -5 ⎩⎪⎨⎪⎧2x +y =6,2x -y =4 ⎩⎪⎨⎪⎧3x -y =5,x +y =7⎩⎪⎨⎪⎧x =52,y =1 ⎩⎪⎨⎪⎧x =-7,y =-14 ⎩⎪⎨⎪⎧x =3,y =4 ⎩⎪⎨⎪⎧x =2,y =-312.已知方程组⎩⎪⎨⎪⎧2x +y =4,x +2y =5.(1)x 分别取-1,0,1,2,填写下表:2x +y =4x +2y =5 x -1 0 1 2 x -1 0 1 2 yy(2)写出方程组的解.13.小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张,小悦买书用了1元和5元的纸币各多少张?设所用的1元的纸币为x 张,5元的纸币为y 张,根据题意,列出方程组,并用列表尝试的方法求解.14.列出二元一次方程组,并根据问题的实际意义,用列表尝试的方法求解.加工某种产品需要两道程序,第一道程序每人每天可完成900件,第二道程序每人每天可完成1200件.现有7位工人参加这两道工序,应怎样安排人力,才能使每天第一、第二道工序所完成的件数相等?15.受气候等因素的影响,今年某些农产品的价格有所上涨.张大叔在承包的10亩地里所种植的甲、乙两种蔬菜共获利13800元.其中甲种蔬菜每亩获利1200元,乙种蔬菜每亩获利1500元.则甲、乙两种蔬菜各种植了多少亩?请列出方程组,并用列表尝试的方法求解.参考答案:2.21、D,2、D,3、A ,4、D ,5、B ,6、B7、①③,②③,③,8、⎩⎪⎨⎪⎧x +y =1,x -y =3(答案不唯一) 9、4,3, 10、⎩⎪⎨⎪⎧x +y =10,4x +y =22 11、略, 12、解:(1)6,4,2,0;3,52,2,32 (2)⎩⎪⎨⎪⎧x =1,y =2.13、解:依题意得⎩⎪⎨⎪⎧x +y =12,x +5y =48,因为x ,y 必须为自然数,所以列表尝试如下:x12345678y 11 10 9 8 7 6 5 4 x +5y5652484440363228显然,只有x =3,y =9符合这个方程组,所以方程组的解为⎩⎪⎨⎪⎧x =3,y =9.14、应安排第一道工序4人,第二道工序3人.15、甲种蔬菜的种植面积为4亩,乙种蔬菜的种植面积为6亩.。

浙教版七年级下数学第二章二元一次方程组解答题

浙教版七年级下数学第二章二元一次方程组解答题精选题号一总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上请点击修改第I卷的文字说明评卷人得分解答题(共40小题)1.解方程组(1)(2).2.解方程组(1)(2).3.已知关于x,y的方程组和有相同解,求(﹣a)b值.4.如果关于x、y的二元一次方程组的解是,求关于x、y的方程组的解:(1)(2)5.已知:都是关于x、y方程y+mx=1的解,(1)若a=b=3,求m的值并直接写出c和d的关系式;(2)a+c=12,b+d=4m+4,比较b和d的大小.6.我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3,用<a>表示大于a 的最小整数.例如:<2.5>=3,<4>=5,<﹣1.5>=﹣1.解决下列问题:(1)[﹣2.6]=,<6.2>=.(2)已知x,y满足方程组,则[x]=,<y>=,x的取值范围是,y的取值范围是.7.已知关于x、y的方程组的解满足x+y=2,求k的值.8.已知代数式kx+b,当x=﹣3,x=2时,代数式的值分别是1和11,求代数式的值为﹣3时,x的值.9.在解方程组时,由于粗心,甲看错了方程组中的a,而得到解为,乙看错了方程组中的b,而得到解为.(1)求正确的a,b的值;(2)求原方程组的解.10.解方程组:11.已知和是关于x,y的二元一次方程y=kx+b的解,求k,b的值.12.已知方程组和的解相同,求代数式(4a﹣3b)2018的值.13.解方程组(1)(2)14.对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4=10.(1)求2⊗(﹣5)的值;(2)若x⊗(﹣y)=2,且2y⊗x=﹣1,求x+y的值.15.解方程组:(1)2x﹣y=x+y=3;(2).16.解关于x、y方程组可以用(1)×2+(2)消去未知数x;也可以用(1)+(2)×5消去未知数y;求m、n的值.17.已知关于x,y的方程组的解满足x+2y=2.(1)求m的值;(2)若a≥m,化简:|a+1|﹣|2﹣a|.18.(1)阅读以下内容:已知实数x,y满足x+y=2,且求k的值.三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于x,y的方程组,再求k的值.乙同学:先将方程组中的两个方程相加,再求k的值.丙同学:先解方程组,再求k的值.(2)你最欣赏(1)中的哪种思路?先根据你所选的思路解答此题,再对你选择的思路进行简要评价.(评价参考建议:基于观察到题目的什么特征设计的相应思路,如何操作才能实现这些思路、运算的简洁性,以及你依此可以总结什么解题策略等等)19.根据要求,解答下列问题.(1)解下列方程组(直接写出方程组的解即可):A.B.C.方程组A的解为,方程组B的解为,方程组C的解为;(2)以上每个方程组的解中,x值与y值的大小关系为;(3)请你构造一个具有以上外形特征的方程组,并直接写出它的解.20.根据要求,解答下列问题.(1)解方程组:.(2)解下列方程组,只写出最后结果即可:①;②.(3)以上每个方程组的解中,x值与y值有怎样的大小关系?(4)观察以上每个方程组的外形特征,请你构造一个具有此特征的方程组,并用(3)中的结论快速求出其解.21.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”译文:“几个人一起去购买物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱,求有多少人,物品的价格是多少”.22.某服装店用4400元购进A,B两种新式服装,按标价售出后可获得毛利润2800元(毛利润=售价﹣进价),这两种服装的进价,标价如表所示.类型价格A型B型进价(元/件)60100标价(元/件)100160(1)请利用二元一次方程组求这两种服装各购进的件数;(2)如果A种服装按标价的9折出售,B种服装按标价的8折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?23.如图为地铁调价后的计价表.调价后小明、小伟从家到学校乘地铁分别需要4元和3元.由于刷卡坐地铁有优惠,因此,他们平均每次实付3.6元和2.9元.已知小明从家到学校乘地铁的里程比小伟从家到学校的里程多5km,且小明每千米享受的优惠金额是小伟的2倍,求小明和小伟从家到学校乘地铁的里程分别是多少千米?24.小阳骑车和步行的速度分别为240米/分钟和80米/分钟,小红每次从家步行到学校所需时间相同.请根据两人的对话解决如下问题:小阳:“如果我骑车,你步行,那么我从家到学校比你少用4分钟”小红:“如果我们俩都步行,那么从家到学校我比你少用2分钟.”若设小阳从家到学校的路程为x米,小红从家到学校所需的时间为y分钟.(1)小阳从家到学校骑车的时间是分钟,步行的时间是分钟(用含x的式子表示).(2)求x,y的值.25.[阅读•领会]怎样判断两条直线是否平行?如图①,很难看出直线a、b是否平行,可添加“第三条线”(截线c),把判断两条直线的位置关系转化为判断两个角的数量关系.我们称直线c为“辅助线”.在部分代数问题中,很难用算术直接计算出结果,于是,引入字母解决复杂问题,我们称引入的字母为“辅助元素”事实上,使用“辅助线”、“辅助元”等“辅助元素”可以更容易地解决问题【实践•体悟】(1)计算(2+++)(+++)﹣(++)(2++++),这个算式直接计算很麻烦,请你引入合适的“辅助元”完成计算(2)如图②,已知∠C+∠E=∠EAB,求证AB∥CD,请你添加适当的“辅助线”,并完成证明【创造•突破】(3)若关于xy的方程组的解是的解是•则关于x、y的方程组的解为(4)如图③∠A1=∠A5=120°,∠A2=∠A4=70°,∠A6=∠A8=90°,我们把大于平角的角称为“优角”,若优角∠A3=270°,则优角∠A7=26.七(1)班五位同学参加学校举办的数学素养党赛试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道題未答),具体如下表:参赛同学答对题数答错题数未答题数A1901B1721C1523D1712E//7最后从公布的竞赛成绩中获知A,B,C,D,E五位同学的实际成绩分别是95分,81分,57分,83分,58分(1)求E同学的答对题数和答错题数;(2)若A,B,C,D四位同学中有一位同学记错了自己的答题情况.请指出哪位同学记错了,并写出他的实际答题情况.27.某公司以每吨600元的价格收购了100吨某种药材,若直接在市场上销售,每吨的售价是1000元,该公司决定加工后再出售,相关信息如下表所示:工艺每天可加工药材的吨数成品率成品售价粗加工1480%6000精加工660%11000(注:①成品率80%指加工100吨原料能得到80吨可销售药材;②加工后的废品不产生效益)受市场影响,该公司必须在10天内将这批药材加工完毕.(1)若全部粗加工,可获利元;(2)若尽可能多的精加工,剩余的直接在市场上销售,可获利元;(3)若部分粗加工,部分精加工,恰好10天完成,求可获利多少元?28.在我市“精准扶贫”工作中,甲、乙两个工程队先后接力为扶贫村庄修建一条210米长的公路,甲队每天修建15米,乙队每天修建25米,一共用10天完成.根据题意,小红和小芳同学分别列出了下面尚不完整的方程组:小红:小芳:(1)请你分别写出小红和小芳所列方程组中未知数x,y表示的意义:小红:x表示,y表示;小芳:x表示,y表示;(2)在题中“()”内把小红和小芳所列方程组补充完整;(3)甲工程队一共修建了天,乙工程队一共修建了米.29.春天来了,石头城边,秦淮河畔,鸟语花香,柳条飘逸.为给市民提供更好的休闲锻炼环境,决定对一段总长为1800米的外秦淮河沿河步行道出新改造,该任务由甲、乙两工程队先后接力完成.甲工程队每天改造12米,乙工程队每天改造8米,共用了200天.(1)根据题意,小莉、小刚两名同学分别列出了尚不完整的方程组如下:小莉:小刚:根据两名同学所列的方程组,请你分别指出未知数x、y表示的意义,然后补全小莉、小刚两名同学所列的方程组:小莉:x表示,y表示;小刚:x表示,y表示;(2)求甲、乙两工程队分别出新改造步行道多少米.30.小明是一个乐思好问的学生,在解答七年级下册教材中一道拓广探索题时遇到了困难.这道题是一个长方形的长减少5cm,宽增加2cm,就成为一个正方形,并且这两个图形的面积相等.这个长方形的长、宽各是多少?(1)如图,设长方形的长、宽各是xcm,ycm,小明绞尽脑汁列出了三个不同的方程组:①,②,③以上三个方程组中,能正确反映题意的有.(请直接填写序号)(2)小明列出的方程,根据目前知识不易求解,便请教老师,老师提示这个问题可以列二元一次方程组来解答,并适时点拨,小明终于明白了.请你写出小明列出的二元一次方程组,并写出解题过程.31.某公司要把一批货物运往A地,准备租用汽车运输公司的甲乙两种货车.过去曾两次租用这两种货车的情况如表:第一次第二次租用甲种货车(辆)25租用乙种货车(辆)36合计运货吨数(吨)15.535现租用该公司甲种货车3辆,乙种货车5辆,正好运完这批货,如果每吨货物的运费为30元,这批货物应该付运费多少元?32.某校组织七年级全体师生乘旅游客车前往广州开展研学旅行活动.旅游客车有大小两种,2辆大客车与3辆小客车全部坐满可乘载195人,4辆大客车与2辆小客车全部坐满可乘载250人,全体师生刚好坐满12辆大客车与10辆小客车,问该校七年级师生共有多少人?33.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开放术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金34.某运动员在一场篮球比赛中的技术统计如表所示:技术上场时间(分钟)出手投篮(次)投中(次)罚球得分篮板(个)助攻(次)个人总得分数据4666221011860注:表中出手投篮次数和投中次数均不包括罚球.投篮投不中不得分,罚球投中一球得1分,除罚球外投中一球得2分或3分.根据以上信息,求本场比赛中该运动员投中2分球和3分球各几个.35.分别用8个大小一样的长方形拼图.如图①,小明拼成了一个大的长方形;如图②,小红拼成了一个大的正方形,但中间恰好空出一个边长为1mm的小正方形.你能求出小长方形的长和宽吗?36.我国古代数学著作《九章算术》中有这样一题,原文是:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,是古代的一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?请解答.37.在国家积极推进“互联网+”行动以来,网上购物已成为生活中的新常态.某甲在网购平台上购买商品A、B共三次,只有一次购买时,商品A、B同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如下表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物64240第二次购物86204第三次购物56280(1)某甲第次购物时,商品A、B同时打折,并简略叙述理由.理由为:.(2)请求出商品A的标价.38.随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:时间(分钟)里程数(公里)车费(元)小明8812小刚121016(1)求x,y的值;(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?39.某市为了鼓励居民节约用水,决定实行两级收费制度,若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价m和市场价n分别是多少元?(2)小明家5月份交水费70元,则5月份他家用了多少吨水?40.奖励在演讲比赛中获奖的同学,班主任派学习委员小明为获奖同学买奖品,要求每人一件,小明到文具店看了商品后,决定奖品在钢笔和笔记本中选择,如果买4个笔记本和2支钢笔,则需86元;如果买3个笔记本和1支钢笔,则需57元.(1)求购买每个笔记本和钢笔分别为多少元?(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受8折优惠,若买15支钢笔,20个笔记本,一共花多少钱?参考答案与试题解析一.解答题(共40小题)1.解:(1),②﹣①得:8y=﹣8,解得:y=﹣1,把y=﹣1代入①得:x=1,则方程组的解为;(2)方程组整理得:,①﹣②得:4y=26,解得:y=,把y=代入①得:x=,则方程组的解为.2.解:(1),把①代入②得:3x+2x﹣4=1,解得:x=1,把x=1代入①得:y=﹣2,则方程组的解为;(2)方程组整理得:,①×2﹣②得:3y=9,解得:y=3,把y=3代入②得:x=5,则方程组的解为.3.解:因为两组方程组有相同的解,所以原方程组可化为,解方程组(1)得,代入(2)得.所以(﹣a)b=(﹣2)3=﹣8.4.解:∵关于x、y的二元一次方程组的解是,∴(1),解得;(2),解得.5.④解:(1)∵a=b=3,∴3+3m=1,解得m=﹣,∴c和d的关系式为d﹣c=1;(2)依题意有,①+②,得b+d+(a+c)m=2⑤,把③④代入⑤,得4m+4+12m=2,即16m=﹣2,∴m=﹣,①﹣②,得b﹣d=(c﹣a)m即b﹣d=﹣(c﹣a)∵a<c.即c﹣a>0∴b﹣d=﹣(c﹣a)<0∴b<d.6.解:(1)由题意得:[﹣2.6]=﹣3,<6.2>=7;故答案为:﹣3,7;(2)解方程组得:,故x,y的取值范围分别为﹣1≤x<0,2≤y<3.故答案为:﹣1,3,﹣1≤x<0,2≤y<3.7.解:①×3+②得:7x+7y=10k+4,7(x+y)=10k+4,x+y=,x+y=2,=2,解得k=1.8.解:将x=﹣3、y=1和x=2、y=11代入得:,解得:,把k=2,b=7,y=﹣3代入y=kx+b中,可得:﹣3=2x+7,解得:x=﹣5.9.解:(1):将代入方程4x﹣by=1得b=5将代入方程ax+5y=﹣17得a=4(2)将a=4,b=5代入原方程组得,解此方程组得10.解:①+②得:4x+3z=18④,①+③得:2x﹣2z=2⑤⑤×2﹣④得:﹣7z=﹣14,解得:z=2,把z=2代入①得:x=3,把x=3,z=2代入①得:y=1,则方程组的解为.11.解:根据题意得:,②﹣①得:5k=15,解得:k=3,把k=3代入①得:﹣6+b=﹣8,解得:b=﹣2,答:k=3,b=﹣2.12.解:联立得:,①+②得:9x=9,解得:x=1,把x=1代入①得:y=﹣5,把代入得:,解得:a=b=﹣1,则原式=1.13.解:(1),①+②得:2x=6,解得:x=3,把x=3代入①得:y=﹣1,则方程组的解为;(2),①+②得:3x﹣y=3④,①+③得:4x=6,解得:x=1.5,把x=1.5代入④得:y=1.5,把x=1.5,y=1.5代入①得:z=3.5,则方程组的解为.14.解:(1)∵a⊗b=2a+b,∴2⊗(﹣5)=2×2+(﹣5)=4﹣5=﹣1;(2)∵x⊗(﹣y)=2,且2y⊗x=﹣1,∴,解得,∴x+y=﹣=.15.解:(1)由题意得,①+②,得:3x=6,解得:x=2,将x=2代入②,得:2+y=3,解得:y=1,则方程组的解为;(2)令x+y=m、x﹣y=n,则,①×8﹣②,得:n=46,解得:n=6,将n=6代入①,得:+2=6,解得:m=8,则,③+④,得:2x=14,解得:x=7,③﹣④,得:2y=2,解得:y=1,所以原方程组的解为.16.解:由题意得:,解得:m=﹣23,n=﹣39.17.解:(1)∵∴①﹣②得:2(x+2y)=m+1∵x+2y=2,∴m+1=4,∴m=3,(2)∵a≥m,即a≥3,∴a+1>0,2﹣a<0,∴原式=a+1﹣(a﹣2)=318.解:我最欣赏(1)中的乙同学的解题思路,,①+②得:5x+5y=7k+4,x+y=,∵x+y=2,∴=2,解得:k=,评价:甲同学是直接根据方程组的解的概念先解方程组,得到用含k的式子表示x,y的表达式,再代入x+y=2得到关于k的方程,没有经过更多的观察和思考,解法比较繁琐,计算量大;乙同学观察到了方程组中未知数x,y的系数,以及与x+y=2中的系数的特殊关系,利用整体代入简化计算,而且不用求出x,y的值就能解决问题,思路比较灵活,计算量小;丙同学将三个方程做为一个整体,看成关于x,y,k的三元一次方程组,并且选择先解其中只含有两个未知数x,y的二元一次方程组,相对计算量较小,但不如乙同学的简洁、灵活.19.解:(1)方程组A的解为,方程组B的解为,方程组C的解为;故答案为:;;;(2)以上每个方程组的解中,x值与y值的大小关系是x=y;故答案为:x=y;(3)根据题意举例为:,其解为.20.解:(1),①×2﹣②得:3y=3,即y=1,把y=1代入①得:x=1,则方程组的解为;(2)①;②;(3)以上每个方程组的解中,x=y;(4)把x=y代入①得:3y+7y=10,即y=1,则方程组的解为.21.解:设有x人,物品价格为y钱,由题意可得,,解得:,答:有7人,物品的价格是53钱.22.解:(1)设购进A种服装x件,购进B种服装y件,根据题意得:,解得:.答:购进A种服装40件,购进B种服装20件.(2)40×100×(1﹣0.9)+20×160×(1﹣0.8)=1040(元).答:服装店比按标价出售少收入1040元.23.解:设小明和小伟从家到学校乘地铁的里程分别是x千米、y千米,根据题意得,解得.答:小明和小伟从家到学校乘地铁的里程分别是10千米、5千米.24.解:(1)小阳从家到学校的骑车时间是:;步行时间是:;故答案为:;;(2)设小阳同学从家到学校的路程为x米,小红从家到学校所需时间是y分钟,由题意得:,解得:.答:x和y的值分别是720,7.25.解:(1)设a=++,原式=(2+a)(a+)﹣a(2+a+)=;(2)延长BA交CE于点F,如图所示:∵∠EAB是△EF A的外角,∴∠EAB=∠E+∠EF A,又∵∠EAB=∠E+∠C,∴∠EF A=∠C,∴AB∥CD;(3)把代入方程组得:,与方程组比较得:,方程组的解为:;故答案为:x=1,y=﹣3.(4)连接A7、A3,∵五边形的内角和为(5﹣2)×180°=540°,∴∠A1+∠A2+∠A8+∠1+∠3=540°,∠A4+∠A5+∠A6+∠2+∠4=540°,∵∠A1=∠A5=120°,∠A2=∠A4=70°,∠A6=∠A8=90°,∴∠1+∠3=∠2+∠4=260°,∴∠1+∠3+∠2+∠4=520°,∵优角∠A3=270°,即∠3+∠4=270°∴∠1+∠2=520°﹣270°=250°.故答案为:250°.26.解:(1)设E同学的答对题数为x条,则答错y条.由题意解得答:设E同学的答对题数为12条,则答错1条.(2)C同学错了自己的答题情况.应该是对13题,错4题,没有答3题.27.解:(1)全部粗加工共可售得6000×80%×100=480000(元),成本为600×100=60000(元),获利为480000﹣60000=420000(元).全部粗加工可获利420000元.故答案为420000;(2)10天共可精加工10×6=60(吨),可售得60×60%×11000+40×1000=436000(元),获利为436000﹣60000=376000(元).可获利376000元,故答案为376000;(3)设精加工x天,粗加工y天,则解得,销售可得:30×60%×11000+70×80%×6000=534000(元),获利为534000﹣60000=474000(元),答:可获利474000元.28.解:(1)由题意可得,小红:x表示甲队修建的天数,y表示乙队修建的天数;小芳:x表示甲队修建的长度,y表示乙队修建的长度;故答案是:甲队修建的天数;乙队修建的天数;甲队修建的长度;乙队修建的长度.(2)依题意得:小红:,小芳:.(3)解方程组,得则25y=25×6=150(米)即:甲工程队一共修建了4天,乙工程队一共修建了150米.故答案是:4;150.29.解:(1)由题意可得,小莉的:设甲工程队改造x天,乙工程队改造y天,,小刚的:设甲工程队改造长度x米,乙工程队改造长度y米,,故答案为:200、1800;1800、200;甲工程队改造天数,乙工程队改造天数;甲工程队改造的长度,乙工程队改造的长度;(2)设甲工程队改造长度x米,乙工程队改造长度y米,,解得,,答:甲、乙两工程队分别出新改造步行道600米、1200米.30.解:(1)解:由题意得:.故答案为:①②③(2)设长方形的长、宽各是x cm,y cm,由题意列方程组,得解这个方程组,得答:长方形的长、宽分别是cm、cm.31.解:设甲种货车每辆运x吨,乙种货车每辆运y吨,,得,∴3x+5y=3×4+5×2.5=24.5,30×24.5=735(元),答:如果每吨货物的运费为30元,这批货物应该付运费735元.32.解:设1辆大客车乘载x人,1辆小客车乘载y人,根据题意列出方程组得:,解得12×45+10×35=890(人).答:该校七年级师生共有890人.33.解:设每头牛值金x两,每只羊各值金y两.根据题意得:解得:答:每头牛值金两,每头羊值金两.34.解:设本场比赛中该运动员投中2分球x个,3分球y个,根据题意得:,解得:.答:本场比赛中该运动员投中2分球16个,3分球6个.35.解:设小长方形的长为xmm,宽为ymm,根据题意得:,解得:.答:小长方形的长为5mm,宽为3mm.36.解:设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,则,解得:,答:1个大桶可以盛酒斛,1个小桶可以盛酒斛.37.解:(1)某甲以折扣价购买商品A、B是第二次购物.理由:∵某甲在某商店购买商品A、B共三次,只有一次购买时,商品A、B同时打折,其余两次均按标价购买,且只有第二次购买数量明显增多,但是总的费用不高,∴某甲以折扣价购买商品A、B是第二次购物;(2)设商品A的标价为x元,商品B的标价为y元,根据题意,得,解得:.答:商品A的标价为20元.故答案为:二;∵某甲在某商店购买商品A、B共三次,只有一次购买时,商品A、B同时打折,其余两次均按标价购买,且只有第二次购买数量明显增多,但是总的费用不高,∴某甲以折扣价购买商品A、B是第二次购物.38.解:(1)根据题意得:,解得:.(2)11×1+14×=18(元).答:小华的打车总费用是18元.39.解:(1)根据题意得:,解得:.答:每吨水的政府补贴优惠价m是2元,市场价n是3.5元.(2)设5月份小明家用了x吨水,根据题意得:14×2+3.5(x﹣14)=70,解得:x=26.答:5月份小明家用了26吨水.40.解:(1)设每个笔记本的价格为x元,每支钢笔的价格为y元.根据题意得:,解得:.答:每个笔记本的价格为14元,每支钢笔的价格为15元.(2)10×15+(15﹣10)×15×0.8+14×20=490(元).答:一共花了490元钱.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

& 鑫达捷致力于精品文档 精心制作仅供参考 &
鑫达捷
2.2二元一次方程组
一.选择题(共8小题)
1.下列方程组中,不是二元一次方程组的是( )

A. B. C. D.

2.下列方程组① ②③④⑤,
其中是二元一次方程组的有( )
A.2个 B.3个 C.4个 D.5个

3.若是二元一次方程组的解,则这个方程组是( )

A. B. C. D.
4.方程组的解为( )
A. B. C. D.
5.与已知二元一次方程5x﹣y=2组成的方程组有无数多个解的方程是( )
A.10x+2y=4 B.4x﹣y=7 C.20x﹣4y=3 D.15x﹣3y=6

6.若方程组的解x与y相等,则k的值为( )
A.3 B.10 C.20 D.0
7.已知的解为,则(2mn)m等于( )
A.4 B.8 C.16 D.32
8.若是方程组的解,则a与c的关系式( )
A.4a+c=9 B.a+4c=9 C.a﹣4c=﹣1 D.a﹣4c=1
二.填空题(共4小题)
& 鑫达捷致力于精品文档 精心制作仅供参考 &
鑫达捷
9.下列方程(组)中,①x+2=0 ②3x﹣2y=1 ③xy+1=0 ④2x﹣=1 ⑤ ⑥
是一元一次方程的是 ,是二元一次方程的是 ,
是二元一次方程组的是 .
10.写出一个解为的二元一次方程组是 .

11.已知是方程组的解,则a﹣b= .
12.小强同学解方程组时,求得方程组的解为,由于不慎,将一些墨水滴到了作业本
上,刚好遮住了处和◆处的数,那么●处表示的数应该是 ,◆处表示的数应该
是 .
三.解答题(共3小题)

13.已知方程组是二元一次方程组,求m的值.
14.观察下列方程组,解答问题:
①;②;③;…
(1)在以上3个方程组的解中,你发现x与y有什么数量关系?(不必说理)
(2)请你构造第④个方程组,使其满足上述方程组的结构特征,并验证(1)中的结论.
15.已知x,y满足二元一次方程组,求x﹣y的值.

初中数学试卷

相关文档
最新文档