地层压力预测方法
泥页岩地层孔隙压力的预测方法

泥页岩地层孔隙压力的预测方法左 星1 何世明1 黄 桢2 范兴亮2 李 薇1 曾永清3(11西南石油大学,四川成都610500;21四川石油管理局川东开发公司,重庆400021;31塔里木油田公司勘探事业部,新疆库尔勒841000) 摘 要 勘探开发过程中,由于地层孔隙压力预测不准,时常造成井眼坍塌、破裂,这不但影响了工程的进行,而且带来了巨大的经济损失。
因此,准确预测地层孔隙压力,对钻井设计中钻井液密度的选择和合理的井身结构设计起着重要作用,同时也是打好一口井的重要因素。
文中概述了关于地层孔隙压力预测的一系列方法,并通过实例来说明如何准确预测,最后针对预测方法的局限性提出了一些建议。
关键词 勘探开发 预测 地层孔隙压力 钻井液密度 地层孔隙压力预测方法的理论基础是压实理论、均衡理论及有效应力理论,预测方法有钻速法、地球物理方法(地震波)、测井法(声波时差)等。
目前单一应用某一种方法是很难准确评价一个地区或区块的地层孔隙压力,往往需要运用多种方法形成一种规范的预测准则[1],来进行综合分析和解释。
地层孔隙压力评价方法可分为2类:一类是利用地震资料或已钻井资料进行预测,建立单井或区块地层压力剖面,用于钻井工程设计、施工;另一类是钻井过程中监测地层压力,掌握地层压力实际变化,确定现行钻井措施及溢流监控。
3 目前常用的地层孔隙压力预测方法有钻前预测地层压力、随钻检测地层压力和钻井后检测地层压力。
1 钻前预测地层压力由于在钻某一区块的第一口井时没有可用的测井资料及邻井相关数据,所以只能通过地震资料来估算地层压力[2]。
预测原理:地震波在地层中的传播速度与地层岩石的岩性压实程度、埋藏深度以及地质时代等因素有关。
一般情况下,地震波的传播速度随地层的埋藏深度的加大而增加,地震波在地层介质中的传播速度与岩层埋藏深度、岩石沉积时代和岩石密度成正比关系,与岩石孔隙度成反比关系,利用这些特性就可以对地层压力进行预测。
地层压力预测分析方法在秦皇岛某油田中应用

地层压力预测分析方法在秦皇岛某油田中应用地层压力预测是钻井基本设计与钻井工程设计的基础,是确定钻井井身结构、钻井液体系及密度、预防和减少井下复杂情况不可缺少的关键数据。
文章通过对Drillworks压力预测软件分析及操作流程应用在秦皇岛某油田。
根据现场监测到的压力及地漏试验数据对该油田的孔隙压力、破裂压力、坍塌压力进行了预测。
计算发现该井坍塌压力为1.128-1.271g/cc大于孔隙压力,因此,在进行钻井设计时,应参照坍塌压力和破裂压力确定泥浆安全密度窗口。
标签:软件;压力预测;Drillworks;三压力Abstract:Formation pressure prediction is the basis of drilling basic design and drilling engineering design. It is an indispensable key data to determine drilling well structure,drilling fluid system and density,so as to prevent and reduce the complex situation in downhole. In this paper,Drillworks pressure prediction software analysis and operation process are applied in Qinhuangdao Oil Field. The pore pressure,fracture pressure and collapse pressure of the oilfield are forecast according to the pressure monitored in the field and the ground drain test data. It is found that the collapse pressure of the well is 1.128-1.271 g/cc larger than the pore pressure,therefore,in drilling design,the mud safety density window should be determined by reference to collapse pressure and fracture pressure.Keywords:software;stress prediction;Drillworks;three stresses钻井工程所谓的地层压力是“地层孔隙压力、地层破裂压力、地层坍塌压力”的总称[1-2]。
地层孔隙压力

在等效深度处,d指数相等
PP—所求深度的地层压力,MPa; H—所求地层压力点的深度,m; G0—上覆地层压力梯度,MPa/m; HE—等效深度,m; Gn—等效深度处的正常地层压力梯度,MPa/m。
地层压力计算步骤
钻井参数录入
钻速、钻压、转速、地层水密度、钻井液密度
H
计算dc指数
回归正常趋势线
计算地层压力
而地层孔隙内流体(水)的压力为: p=0.00981ρh =0.00981×1.07×3000 =31.547MPa
主要内容
地层孔隙压力的概念 地层孔隙压力的预测方法
孔隙压力计算实例
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
二、地层孔隙压力的预测方法
基于压实理论、均衡理论及有效应力理论,地层压力预测方法主要有: (1)地球物理方法(地震波法)——钻前 (2)钻速法(dc指数法)——钻井中 (3)测井法(声波时差法)——钻后
二、地层孔隙压力的预测方法
2、dc指数法
(1)原理:机械钻速是井底压差、钻压、转速、钻头类型及尺 寸、水力参数、钻井液性能、地层岩性等因素的函数。当其它因 素一定时,只考虑压差对钻速的影响,则机械钻速随压差减小而 增加。
(2)适用范围:岩性为泥岩、页岩;钻进过程中的地层压力监
测和完钻后区块地层压力统计分析。
标准钻速方程:
d
P e V = KN D 有缘学习更多+谓ygd3076考b 证资料或关注桃报:奉献教育(店铺)
二、地层孔隙压力的预测方法
3、声波时差法
(1)原理:声波在地层中的传播速度与岩性密
切相关,当岩性一定时,声波的速度随岩石孔
隙度的增大而减小。在正常地层压力井段,随
地层压力预测方法

地层压力预测方法地层压力预测是地质工程领域的一项重要任务,对于石油勘探和开发、地下工程建设等具有重要的指导意义。
目前,地层压力预测方法主要包括地质学、地球物理学、工程地质学和数学建模等多个学科领域。
下面将介绍几种常用的地层压力预测方法。
1.地质学方法:地质学方法是通过对地层中岩石类型、岩性、孔隙度、渗透率等参数进行研究,通过地质剖面、钻孔揭示、岩心剖面和地层分析等手段,结合实验室试验数据,来预测地层压力。
地质学方法的优点是具有相对较低的成本,但缺点是预测结果受到地质条件的限制。
2.地球物理学方法:地球物理学方法是通过对地下岩石的密度、速度、弹性模量等进行测量和解释,来预测地层压力。
常用的地球物理学方法包括地震反演、重力测量、地电场测量等。
地球物理学方法的优点是可以对大范围地区进行预测,但缺点是需要高精度的仪器设备和复杂的数据处理。
3.工程地质学方法:工程地质学方法是通过地质工程勘探和地层测试,获取地层岩石、土层、岩石层序等信息,结合现场观测数据,来预测地层压力。
常用的工程地质学方法包括钻孔测量、压汞测试、孔隙压力测试等。
工程地质学方法的优点是能够针对具体工程进行预测,但缺点是成本较高且实施周期长。
4.数学建模方法:数学建模方法是通过建立数学模型来预测地层压力。
常用的数学建模方法包括地层力学模型、模拟算法等。
数学建模方法的优点是可以量化地层压力的变化和分布规律,但缺点是对实际情况的复杂程度要求较高。
综上所述,地层压力预测方法是一项复杂的任务,需要综合应用地质学、地球物理学、工程地质学和数学建模等多个学科领域的知识和方法。
在实际应用中,通常需要结合多种方法进行验证和交叉验证,以提高地层压力预测结果的准确性和可靠性。
另外,随着技术和方法的不断进步,地层压力预测方法也在不断演化和改进,以适应不同地质条件和工程需求。
地层压力预测技术研究1

PDC 钻头随钻地层孔隙压力预测方法与应用研究
Q——排量,L/s; D——井径,mm。 规定一组标准值:Wn,Nn,Pbn,Qn 则 R=K×(Wn-M)×Nnλ×Pbn×Qn/D2 式(1-7)除以式(1-6)得: (1-7)
N n Pbn Qn n M Rn R W W M N Pb Q
(1-8)
式(1-8)即可将任意一点的钻速进行标准化。 此公式中 M、λ值需在钻井过程中用五点法试验得到,Pb、Q 的值需 在钻井过程中经测量和计算得到。 (1) Pb、Q 值的确定 在现场水力参数最直观的表现为泵压、排量,因此,可用泵压 P、排 量 Q 代替 Pn,Qn 值。 令 Pb×Q=KP 式中:K——换算系数。 (2) 钻井液密度的标准化处理 原方法中是重新建立钻速正常趋势线,现改为对标准化钻速进行校 正: Rn=R×Bn/B 式中:Bn——规定的标准化值, B——现场测量值。 经上述处理,式(1-8)即可改力: (1-10) (1-9)
2
PDC 钻头随钻地层孔隙压力预测方法与应用研究
孔隙压力预测还是需要继续研究的课题。
1.2.2.1 该地区地层水密度的确定
地层水密度可用地层水的矿化度计算,计算公式如下: Gn=0.999+5.859×10-7Mf 式中: Gn——地层水的密度,g/cm3; Mf——氯化钠型地层水矿化度,mg/L。 英科 1 井地层水为氯化钙型地层水。乌拉根地层以上(乌拉根地层 顶界深度 6141.5rn)井段的氯根含量一直保持在从 20000mg/L 左右。转 化成氯化钠型地层水矿化度为 329588mg/L。由此可计算出 6151.5m 以 上井段地层水的密度为: Gn=1. 018 g/cm3 随着井深的增加,地层水中的氯根含量一直在增加。进入乌拉根地 层(顶深 61415m,底深 6250m)之后氯根含量已达 120000mg/L(地层 溢 流 体中 的 氯根 含 量的 测 量值 ) 。转 化 成氯 根 型地 层 水矿 化 度高达 197746mg/L。由此可计算出 6141.5~6250m 井段地层水的密度为 Gn=1.1149g/cm3 进入喀拉塔尔地层(顶深 6250m)和齐姆根地层(6406m 未穿)之后, 氯根含量已达 179439mg/L(地层溢流体中的氯根含量的测量值) 。转化 成氯根型地层水矿化度高达 295695mg/L。由此可计算出 6250~6406m 井段地层水的密度为 Gn=1.1722 g/cm3 二开固井之后,φ339.7mm 套管封固质量不好造成套管外出水,地 层水一直外溢到地面,实际测得其密度是 1. 01 g/cm3。比计算得到的地层 水密度稍低一点, 但非常接近。 因此, 6141.5m 以前的井段采用 1.01 g/cm3 作为该井段地层水的密度;6141.5~6250m 乌拉根地层井段采用 1.11 g/cm3
石油钻井地层压力预测与计算方法

(1)
Pc——套管压力,MPa; Lf——动液面,m
L——泵挂深度,m; H——油层中部深度,m;
ot , os ——地下、地面原油密度, g/cm3
w
——地层水密度,g/cm3;
三、 井底压力的计算
水井井底注入压力p井计算
p井 pef H w 101 .97
(2) (3) (4)
pef p pm p fr pcf pV
p fr 1.06510
14 1.8 0.2 0.8 HQ1
d14.8
2 Q2 4 d2
pcf 1.0861013
(5)
pef , ppm——有效、实测井口注入压力,MPa; pfr,pcf,pV——注入水通过油管、水嘴、配水器节流凡尔所产生的压力损失, MPa; Q1, Q2——注入量,m3/d; 当有两个直径相同的水嘴时,Q1=0.5Q2.
(6)
p1 , p2——水井、油井单独生产在任一点产生的地层 压力,MPa; pe——原始地层压力,MPa.
四、油水井间地层压力分布
对水井
p1 p
' 井1
1.842103 Q1 r ln 1 K K rw h1 rw
1.842103 Q2 r ln 2 K K rw h2 rw
式(11)减式(12)得
p井1 p井 2 1.842103 K K rw Q1 Q2 d h h ln r 2 w 1
(13)
设M=K· Krw/µ ,则式(13)变换 为
1.842 103 M p 井1-p 井 2 Q1 Q2 d h h ln r 2 w 1
p井1 p井1 p井2 1.842103 Q2 d pe ln K K rw h2 rw
地层压力预测方法总结

地震地层压力预测摘要目前,地震地层压力预测方法归纳起来可以分为图解法和公式计算法两大类10余种。
本文对各种地震地层压力预测方法进行了系统地归纳和总结,并对各种方法的特点、适用性以及存在的问题进行分析和讨论.在此基础上,就如何提高压力预测的精度,提出了一种简单适用的改进措施,经J1.K地区的实测资料的验证,效果良好。
主题词地层压力地震预测正常压实异常压实引言众所周知,油气层的压力是油气层能量的反映,是推动油气在油层中流动的动力,是油气层的“灵魂”。
因此,在石油和天然气的勘探开发中,研究油气层的压力具有十分重要的意义。
首先,在油气田勘探中,研究油气层压力特别是油气层异常压力的分布,以及预测和控制油气层压力的方法,不仅可以保证安全快速地钻进,而且可以正确地设计泥浆比重和工程套管程序;同时也可以帮助选择钻井设备类型和有效安全正确的完井方法等。
这些都直接关系到钻井的成功率以及油气田的勘探速度等问题。
其次,在油气田开发过程中,准确的压力预测以及认真而系统的油气层压力分布规律的研究,不仅可以帮助我们认识和发现新的油气层,而且对于了解地下油气层能量、控制油气层压力的变化,并合理地利用油气层能量最大限度地采出地下油气均具有十分重要的意义。
多少年来,人们在异常地层压力(这里主要指异常高压或超压)预测方面进行了种种尝试,然而直到本世纪70年代以来,随着岩石物理研究的不断深人以及地震技术的不断提高,才真正使得地层压力的地震预测成为现实。
对于异常高压地层,一般表现为高孔隙率、低密度、低速度、低电阻率等特点,因此,凡是可以反映这些特点的各种地球物理方法均可用于检测地层压力。
但是,由于各种测井方法均为“事后”技术,这就使得在初探区内利用地震方法进行钻前预测显得尤为重要。
与此同时,地震地层压力预测还可以提供较测井方法更为丰富的空间压力分布信息。
利用地震资料进行地层压力预测,主要是利用了超压层的低速特点,因为在正常情况下,速度随深度的增加而增加,当出现超压带时,将伴随出现层速度的降低。
地层压力预测

地层压力的预测:利用预钻井位处的地震资 料及附近已钻井的钻井、录井、测井和测试 等方面的资料,在钻前对预钻井位地表以下 地层压力的估算。 地层压力的监测:在钻井过程中,利用直接 测量正在破碎的地层内与压力有关的参数, 实时地估算地层压力,其主要作用在于监视 钻头附近地层压力的变化情况,实时地检验 和修正压力预测的结果。 地层压力的检测:在钻井之后或钻井过程中, 利用已钻阶段的各种资料估算地层压力,与 已有的压力预测结果进行对比称为地层压力 的检测。
p s Gs s g D
pair
p
s 2.65g/cm3
Gs25.97MPa/km
D
pw ps
ps pair s gD
=0.101+2.659.81 =26.07MPa
3. 上覆(层)压力
地面 某一深度D处, 由上覆 岩石的固体骨架和孔 隙中流体的总重量所 产生的压力
•异常高压原因
Pai
r
P
储层不连续 流体不连通
D
P
w
•开放地层
D pR
pR pw pair w gD
•封闭地层
D
P
f
pR pw pair w gD
Pair
P
低
高
D
0.8 Pw 1.2
•异常高压
地面
pair
p
D
pw
高
•地层封闭
•高产
•井喷
异常低压
pair
p
D
pw
•异常低压
3、录井资料
用于压力预测的资料包括岩屑、钻井液和钻 具三大类,其中岩屑类有岩屑岩性和矿物成 分、岩屑密度、岩屑的形状和大小、岩屑内 气体含量、岩石因子(CEC)等;钻井液类包 括气侵、密度、井涌、管线温度、电阻率钻 井液排量、池液面等等;钻具类主要有接单 根气、提钻重力钻具回收深度等等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、地层压力预测软件有:1.JASON软件Jason软件是一套综合应用地震、测井和地质等资料解决油气勘探开发不同阶段储层预测和油气藏描述实际问题的综合平台。
Jason 的重要特点就是随着越来越多的非地震信息(测井,测试,地质)的引入,由地震数据推演的油气藏参数模型的分辨率和细节会得到不断的改善。
用户可根据需要由Jason 的模块构建自己的研究流程。
其反演模块包括:InverTrace:递归反演稀疏脉冲反演InverTrace_plus:稀疏脉冲反演RockTrace:弹性反演InverMod:特征反演(主组分分析)StatMod:随机模拟随机反演FunctionMod:函数运算压力预测原理:由JASON反演出地层速度,速度计算垂直有效应力,进而求出孔隙流体压力。
2、地层孔隙压力和破裂压力预测和分析软件DrillWorks/PREDICTGNG软件功能:•趋势线(参考线)的建立--手工--最小二乘方拟合--参考线库•页岩辨别分析•上覆岩层梯度分析--体积密度测井--密度孔隙度测井--用户定义方法(程序)•孔隙压力分法--指数方法电阻率、D一指数声波、电导率地震波--等效深度方法电阻率、D--指数声波--潘尼派克方沾--用户定义方法(程序)•压裂梯度分法--伊顿方法--马修斯和凯利方法--用户定义方法(程序)•系统支持项目和油井数据库•系统支持所有趋势线方法•系统包括交叉绘图功能•用户定义方法(程序)•包括全套算子•系统支持井与井之间的关联分析•系统支持岩性显示•系统支持随钻实时分析•系统支持随钻关联分析•多用户网络版本数据装载功能:•斯仑贝谢LIS磁盘输入•斯仑贝谢LIS磁带输入•CWLS LAS输入•ASCII输入•离散的表格输入•井眼测斜数据•测深/垂深表格用户范围:•美国墨西哥湾•北海•西部非洲•南美•尼日利亚三角洲•南中国海•澳大利亚DrillWorks/PREDICTGNG 与其它软件的区别•世界上用得最多的地层压力软件•钻前预测、随钻监测和钻后检测•用户主导的软件系统•准确确定--上覆岩层压力梯度--孔隙压力梯度--破裂压力梯度•使用下列数据的任何组合来分析地层:-地震波速度-有线测井-MWD、LWD数据-重复地层测试(RFT)-泄漏试验(LOT)数据-录井资料-地质资料•面向现实世界中数据资料不尽人意、而新的方法又层出不穷的用户而设计的•地层压力软件平台:新的预测压力方法可通过"用户定义方法(程序)"编入系统软件用途:•准确预测地层压力•有效降低钻井成本•提高经济效益•优化井眼尺寸•优化泥浆和水力学•避免井涌和卡钻•减少地层污染•延伸套管鞋深度•减少套管数目•保障施工安全3、GeoPredict地层孔隙压力预测软件本程序基于当量深度法,根据钻进过程中钻时的快慢,并结合岩屑的岩性,由操作人员在图中用拖动鼠标的方式挑出的泥/页岩段,完成压力预测原理中首先选取泥/页岩段的过程。
操作人员选取泥/页岩段后,所选取泥/页岩段的深度间隔自动记录到数据库中,并且可以很容易地通过在图中拖动鼠标加以修改、删除和添加,所做的所有修改自动在数据库中更新。
本程序采用五点三次平滑算法处理校正后的D指数,然后结合钻井过程中诸如背景气、单根气、停泵气、后效气的大小及出现的频率以及岩屑中有无掉块、提下钻过程中有无挂卡等诸多因素后确定正常压实趋势线,实现了钻井过程中的实时地层压力预测,帮助减少钻井生产中的问题,提高钻井安全性,实现高效钻进。
本程序操作界面友好,格式编辑方便、灵活,能够适应现场各种形式的资料处理要求。
本程序由北京新煜达石油勘探开发有限公司开发。
与地层压力有关的参数:4.PetroMod 不依赖速度数据二、地震资料求取压力数据的方法首先地震预测地层压力的必要条件:(1)高质量的地面地震资料。
(2)有声波、自然伽马(或自然电位)测井资料。
(3)该区域地层压力的测试数据。
(4)相对简单的沉积接触关系。
2.1.利用地震层速度预测地层压力的方法该方法是近几十年来国外广泛使用的一项新技术。
首先取得地震层速度的资料有两种途径:一是利用野外地震采集到的资料,二是利用井下声波测井或垂直地震测井取得的资料。
该方法的基本原理是认为:地震波在泥、页岩中的传播速度是随埋藏深度而有规律地加快,除非出现了异常压力层。
1968 年Pennebaker 认为此规律是:V=K*Z n.式中,V 指地震波在地层中的传播速度,K 是常数,Z 指地层埋藏深度,如果用地震波在层段中的传播时间(即传播速度的倒数)来表示,则上式变为:∆t=K1∗Z 1 n式中,△t为传播时间,K1为系数,它与孔隙压力P,岩性L和地质年代有关。
即:∆t=P∗L∗a∗Z 1 n两边取对数,变为:Log△t=P*L*a*1/n*logZ=K1*logZ由上式可在对数坐标纸上得到一条直线。
该直线表明,在没有异常压力时的传播时间与深度的关系,称之为“正常孔隙压力趋向线”偏离趋向线的泥、页岩段则为异常压力层。
趋向线还受地质年代的影响,埋藏年代越久,地层越致密,地震波传播速度越快,传播时间越短。
除此之外,还受地温梯度的影响,地温梯度高的地区传播速度快。
2.2.R 比值法用Pennebaker 法预测地层压力在意大利波河盆地遇到了困难。
意大利通用公司提出了一种用地震资料预测异常地层压力的新方法,该法是基于研究实测层速度Vi 与参考速度Vs 的比值R,称R 比值法。
该法的原理:页岩和碳酸盐岩声波速度是骨架压力的函数,高孔隙度砂岩位于页岩之下,碳酸盐岩的变化范围很宽,实验发现:泥岩中声波速度Vs 与骨架压力Pc 之间的关系可用如下经验公式描绘:Vs= v mx∗PcA∗Pc+B+v min式中,Vmx为骨架速度,单位m/s,Vmin为土壤最低速度,A,B为常系数。
骨架压力Pc 与上覆压力Pov,孔隙压力Pp 的关系为:Pc=Pov- Pp ,上覆压力Pov 可由层速度用下式计算:P ov=∑(ni=1d mx−2.11)(H i10)[(1−V i)/Vmx]/[1+ViV min]其中,Dmx为骨架速度,设为2.75g/cm3;Vi层速度;Hi为厚度。
利用上式可由声波测井资料求出上覆压力。
如地质剖面上部大多数为页岩或其它碎屑岩地层,并假设孔隙压力为正常,这样便可计算出可靠的声波参考速度Vs 值,当为超压实地层时,Vi>Vs;正常压实地层时,Vi=Vs;高压地层时,Vi<Vs。
因此,可以根据Vs 与Vi 的关系绘制曲线,从而判断高压地层的存在。
但这种图使用起来不太方便,所以取Vi 与Vs 的比值,并以R 表示:R=Vi/Vs,便可画出R 与深度关系曲线。
2.3 公式计算法该方法是先建立正常压实地层地震层速度随井深变化的关系式,即正常压实趋势线的方程。
而在异常高压层段,通过实测地震层速度与同深度处正常压实趋势线上层速度之间建立的关系式进行计算,而获得异常高压层段的地层压力值的方法。
常用计算公式有等效深度式和比值法:2.3.1 等效深度式该式是假定层速度相等的地层具有相同的有效压力。
借助实测的地震层速度可以找到一个与此速度相当的所谓等效深度,由等效深度点上的正常地层压力和等效深度与实际深度之间的深度差,就可估算出地层压力的大小,其计算式为:Pp=P0*H+(Pw- P0)*Hc=Pw*Hc+(H- Hc)*P0式中,Pp 为计算点H 处的地层压力,Po 为上覆岩层压力,Pw为正常地层压力的静水压力,Hc为与H 相同层速度的等效深度。
2.3.2比值法是假定正常压力地层的地层压力与层速度的乘积应该等于异常压力地层的地层压力与该层层速度的乘积,其计算式为:Pp= Vn/V*Pw (10)式中,Vn 为正常压力Pw处的层速度,V 为异常压力Pp 的层速度。
上述两种计算式都需要建立正常压实地层的趋势线方程。
该方法的准确程度不仅取决于层速度的计算精度,而且取决于正常压实趋势线的准确与否。
2.4研究新进展该法首先针对检测地区的沉积特点和地质构造特征进行分析研究,确定该地区各层位地层压力成因,然后分别建立各成因对地层压力贡献的计算式,最后综合得到地层压力检测值。
该法的典型代表是Exxon 油藏公司的G.L.Bowers 提出的。
它考虑了两个产生异常高压的原因,即“欠压实”和水热增压。
该法利用声波速度与有效压力的关系来确定有效压力,利用有效压力与地层的关系来确定地层压力。
它的基本原理是,地层压实后,岩石孔隙不再改变,这时的有效应力称为原始有效应力。
若流体温度升高,孔隙限制流体膨胀,升压的结果是降低岩石骨架的有效应力。
能过大量的理论与实验研究,分别建立了两种状态下有效应力与声波速度的关系式,并分别称为原始曲线和卸载曲线。
前者用于“欠压实”引起的地层压力预测,后者用于水热增压引起的地层压力预测。
该法已成功地在墨西哥湾的一口井和北海中部的一口井进行了实际预测。
2.5.总结尽管地震资料来源广泛,且能描述地层压力在横向和纵向上的分布规律,但由于地震层速度的估算受到多种因素的影响,使得预测方法受到局限。
同时,由于地震资料具有多解性,只有消除或减少多解性才能提高其预测精度,因此,地层压力的预测既展示出其良好的前景,也预示着研究的道路还很长远。
压力预测算法:1.辽东部压力预测算法辽东湾地区具有较好的成油地质条件:受构造演化和沉积条件的控制,而形成了巨厚的油气源岩.据已砂岩储层,性较好,压胶较弱,有隙存在和油气的保存;同时东营末期长时间的抬升剥蚀,受大气淡水淋滤的作用促使储层次生溶孔较发育,有机质的热演化也促使隙的产生,因而了个次生孔隙发育带.此,本区砂岩层的储集性能,储了良好的空间.,构造演化的多制的沉积条件的差异,了多层次,圈闭.具有一定成因联系的圈闭在纵向和横向上有机地组合,便构成了不同类型的复式圈闭带,为油气聚集提供了有利场所⋯.Fillippone(1979,1982提出的经验公式计算地层压力 PfPf=(Vmax-Vi) x *Pov/(Vmax-Vmin)Vmax是有效孔隙度接近零的骨架岩石速度,近似于机质速度;Vi即预测层段的层速度;Pov为平均地层压力;Vmin是岩石刚性为0的压缩速度。
经验公式中,Vmax,Vmin采取如下公式计算Vmax=1.4V+3K*tRO+0.5k *tVmin=0.7VRO其中Vro 为均方根速度随t变化的截距,t为双程反射事件,k为斜率Pov采用下面公式计算:Pov=z*ρρ=1.73+1.64exp(-3048/Va)其中z为研究层深度,ρ为其上覆层平均体积密度(g/cm³),Va为上覆地层的平均速度(单位m/s),然后计算剩余地层压力Dp及剩余压力系数Cp绘制地层压力参数剖面及水平面变化图。