荧光探针综述

合集下载

荧光探针的应用与进展课件

荧光探针的应用与进展课件

环境监测
污染物检测
荧光探针可以用于检测水体、土 壤等环境中的有害物质,如重金 属、有机污染物等,为环境污染 治理和生态保护提供技术支持。
生物毒性测试
荧光探针可以用来评估化学物质 对生物体的毒性作用,通过观察 荧光信号的变化,快速、准确地
评估环境中有害物质的风险。
生态研究
利用荧光探针标记生物个体或种 群,通过观察荧光信号的分布和 动态变化,研究生物在生态系统
开发适用于环境监测和食品安全检测的荧光探针,保障人类健康和 生态安全。
加强荧光探针的基础研究与人才培养
基础研究投入
加大对荧光探针基础研究的投入 ,支持科研团队开展创新性研究 ,推动荧光探针技术的持续发展 。
人才培养与交流
加强荧光探针领域的人才培养和 学术交流,鼓励跨学科合作与交 流,促进荧光探针技术的普及和 应用。
荧光探针与其他技术的结合应用
总结词
荧光探针与其他技术的结合应用是荧光探针领域的重 要发展方向,通过将荧光探针与其他技术相结合,可 以实现更高效、更准确的检测和诊断。
详细描述
随着各种技术的不断发展,研究者们将荧光探针与其 他技术相结合,如光学成像技术、质谱技术、纳米技 术等。这些技术的结合可以充分发挥各自的优势,提 高荧光探针的应用范围和效果。例如,将荧光探针与 光学成像技术相结合,可以实现生物体内的高清成像 和可视化检测;将荧光探针与质谱技术相结合,可以 实现蛋白质组学和代谢组学的高灵敏度检测。
荧光探针的分类
总结词
荧光探针可以根据激发波长、发射波长、荧光染料类型等进 行分类。
详细描述
根据激发波长,荧光探针可以分为紫外激发和可见光激发两 类;根据发射波长,可以分为长波长发射和短波长发射两类 ;根据荧光染料类型,可以分为荧光染料、荧光量子点、荧 光蛋白等类型。

荧光探针定义

荧光探针定义

荧光探针定义
荧光探针(Fluorescence probe),又被称作荧光化学传感器,是一类具有特征荧光的分子,它们可以根据所处环境的性质的变化,如极性、折射率、粘度等,而灵敏地改变自身的荧光性质,如激发和发射波长、强度、寿命、偏振等。

荧光探针在紫外-可见-近红外区有较强的荧光信号,因此可以用于对不同物质或生物过程的检测和标记。

荧光探针的发光原理主要是基于荧光现象,即当物质受到激发后,能够释放出一种特定波长的光信号。

荧光探针的应用十分广泛,可以用于探测分子的浓度、位置和相互作用,例如蛋白质、核酸、离子和小分子等。

荧光探针在生物医学研究、药物开发、环境监测等领域都有重要的应用价值。

此外,荧光探针还可以通过与其他技术相结合,如显微镜、流式细胞术和光谱学等,来实现对生物体系的多维度观测和分析。

荧光探针具有成本廉价、灵敏度较高、操作简捷容易、能够远距离发光、选择性优良、不容易受外界电磁场的影响、稳定性高、不需要预处理等优点。

总的来说,荧光探针是一种重要的分析工具,具有广泛的应用前景和重要的科学价值。

荧光探针原理

荧光探针原理

荧光探针原理
荧光探针原理是一种常用的生物标记技术,用于研究生物样品中特定分子的分布和动态变化。

荧光探针通常由两个组成部分构成:一个是荧光染料,它能够吸收外界的激发光并发射出荧光信号;另一个是靶向分子,它能够与目标分子特异性结合。

荧光探针的工作基于荧光现象和能量转移原理。

当荧光染料被激发光激发后,其电子跃迁到高能级,随后又以放射光的形式返回到基态。

这个过程中放射的光具有特定的波长和颜色,称为荧光。

当荧光探针中的靶向分子与目标分子结合后,它们之间的距离和相对位置可能会发生变化。

如果这个变化导致荧光染料与另一个分子之间的距离适合,就会引发能量转移现象。

即原本由荧光染料发出的荧光信号将被转移给另一个分子,导致荧光染料的荧光强度减弱或熄灭。

通过测量荧光强度的变化,可以推断出目标分子的存在和活动状态。

荧光探针还可以通过调整荧光染料的性质,如吸收和发射波长,来实现多种目标的同时检测。

综上所述,荧光探针原理基于荧光现象和能量转移原理,利用荧光染料和靶向分子的相互作用实现对目标分子的检测和分析。

生物荧光探针的原理及应用综述

生物荧光探针的原理及应用综述

生物荧光探针的原理及应用综述1 生物荧光探针的基本原理荧光探针是指能够通过荧光发射产生信号的分子或化合物。

荧光分子能够吸收特定波长的光并以较长波长的荧光形式发射出来。

在生物研究中,荧光探针可用作分子标记,以跟踪生物分子(如蛋白质、核酸、糖类等)在细胞或组织中的分布、动态变化等。

荧光探针可分为非共价和共价两种类型。

非共价荧光探针一般应用于无细胞或无机物中。

共价探针则是通过共价键与目标分子结合并发出荧光信号。

生物荧光探针的共价基本原理包括:探针与目标分子产生共价结合,导致荧光氧化还原反应、光致断裂产生荧光等过程。

2 常见的生物荧光探针类型2.1 荧光染料荧光染料是指能够特异性地与目标分子结合从而发出荧光信号的化合物。

荧光染料可以自然地、共价地或靶向结合到特定的细胞结构或生物分子中。

常见且热门的荧光染料有荧光素、FITC、罗丹明、乙烯基荧光染料等。

2.2 荧光蛋白荧光蛋白原是从发光细菌中发现的蛋白质,是一种能发出强光的天然荧光染料。

在细胞或组织研究中,人工合成的荧光蛋白(如绿色荧光蛋白、红色荧光蛋白、黄色荧光蛋白等)被广泛应用于荧光显微镜分析、蛋白质标记、酶观察等方面。

2.3 量子点量子点是一种具有独特光学特性的新型探针,是一种纳米级别的半导体颗粒。

量子点利用电子从价带到导带的跃迁,通过吸收和发射光来产生荧光。

由于其非常小的粒径和荧光能量可调性,量子点在分子标记、细胞成像、癌症诊断、药物递送等领域呈现出广泛的应用前景。

3 生物荧光探针在生物学领域的应用生物荧光探针在生物研究中具有广泛的应用,在许多领域都发挥着重要的作用。

3.1 细胞成像在生物领域,荧光探针广泛应用于细胞成像。

它们能够用来对细胞结构、蛋白质位置、细胞凋亡等进行标记,并通过荧光显微镜观察。

荧光探针能够让研究者追踪分子的位置和行为,显示环境的变化以及让人们更好地理解细胞如何工作。

3.2 蛋白质标记生物荧光探针可以连接到蛋白质上,使得研究者通过荧光显微镜观察特定蛋白质在细胞中的运动和位置。

荧光探针的研究及应用

荧光探针的研究及应用

荧光探针的研究及应用随着科技的不断发展,荧光探针逐渐成为生命科学研究领域中不可缺少的重要工具。

荧光探针是一种能够发射出荧光信号的分子,在分子生物学、生物医学和化学生物学等领域中有着广泛的应用。

它们可以被用来研究细胞内的分子相互作用、识别生物分子、分析细胞功能,并可以在体内用作活体成像和药物筛选的工具。

本文将简要介绍荧光探针的基本原理、常见的荧光探针类型和其在生物学研究中的应用。

一、荧光探针的基本原理荧光探针的基本原理是荧光共振能量转移(FRET),其通过将荧光分子与生物分子(生物样品)耦合,使两者之间发生相互作用,从而产生能量转移。

FRET 能量转移是从能量接受者的激发态到另一个分子的荧光染料的发射态的一种非辐射性能量转移。

在FRET中,激发荧光染料的光子会被共振耦合到另一个染料的激发态,从而使其发出荧光光子。

这样,在激发荧光染料的时候,可以用荧光染料的荧光光子来检测另一个染料的存在和位置。

荧光探针对于荧光光子的发射特征和其它的生化参数是很敏感的,所以它们可以被用来探测各种细胞和分子。

二、常见的荧光探针类型1. 荧光染料:荧光染料是最常见的荧光探针类型之一,它们有着广泛的应用,可以被用来标记蛋白质、核酸等生物分子。

常见的荧光染料包括荧光素、草铵膦、偶氮染料等。

2. 荧光蛋白:荧光蛋白是一种具有自发荧光性质的蛋白质,其最早源自于水母Aequorea victoria。

荧光蛋白可以用来跟踪胞内或胞外的重要过程,如蛋白质、核酸合成、信号传递等。

3. 量子点:量子点是一种半导体纳米粒子,具有窄的发射光谱、强的光稳定性和较大的荧光量子产率。

这些特点使得量子点成为新一代高亮度及高灵敏度的荧光探针。

三、荧光探针在生物学研究中的应用荧光探针广泛地应用于细胞内信息传递、化学生物学、生物传感、药物筛选和临床诊断等方面。

以下为举几个常见的案例:1. 细胞内信息传递:荧光探针可被用于研究细胞内信号转导、磷酸化和蛋白质相互作用等过程。

硫化氢荧光探针的构建及其应用的研究进展综述

硫化氢荧光探针的构建及其应用的研究进展综述

硫化氢荧光探针的构建及其应用的研究进展
综述
1研究简介
硫化氢是一种毒性有害气体,其浓度变化往往伴随着环境污染程度的升高,因此研发出荧光探针以监测硫化氢可能防治一些环境灾害的发生。

近年来,很多重要的研究成果取得了明显的进步,为硫化氢在低温环境、气溶胶和水体中的检测提供了新思路。

本文综述了硫化氢荧光探针的构建及其应用的研究,以期增进硫化氢的检测技术。

2硫化氢荧光探针
硫化氢荧光探针一般由分子结构的荧光传感器与传感器的活性部分组成,以及一些改性材料和调节剂,能够监测硫化氢的浓度变化,并用硫化氢刺激来调节荧光探针的荧光变化。

在过去几年里,学者们研究了大量不同类型的硫化氢探针,包括有机小分子、配合物、聚合物、卤素化合物等,可以适应低温环境、气溶胶和水体中硫化氢的检测。

3性能特点
硫氢荧光探针检测灵敏度高、操作简单、快速、稳定,可以检测室内外环境的硫化氢浓度和进行连续性的环境监测。

硫化氢荧光探针的结构简单,质量轻,可以实现室外的无人监控检测,成本也比传统的检测方法低得多。

4应用
在技术发展的今天,硫化氢荧光探针已经被广泛应用于各种场合,如卫生、环境空气污染检测、渔业水路污染监测、医用气体检测、航空航天等。

这些应用领域证明了硫化氢荧光探针的广泛应用前景和巨大潜力。

总之,硫化氢荧光探针技术日渐成熟,为抵御空气污染和水资源污染提供了一定的参考,以保护人类健康和环境,特别是水资源的安全。

荧光探针的原理及应用

荧光探针的原理及应用

荧光探针的原理及应用1. 荧光探针的定义荧光探针是一种用于检测分子或离子存在和活动的化学试剂。

它们基于荧光现象,通过发射和吸收特定波长的光来揭示目标分子的存在和特性。

荧光探针已成为生物学、药物研究和环境监测等领域中常用的工具。

2. 荧光探针的原理荧光探针的原理基于以下几个方面:2.1 发射和吸收光荧光探针能够吸收特定波长的光能,激发其电子到较高能级。

随后,这些电子以非辐射的方式退回到基态,并且在这个过程中会发射一个较长波长的荧光光子。

2.2 荧光强度与浓度的关系荧光探针的荧光强度与其所探测物的浓度成正比关系,利用这种关系可以定量地测量目标物。

2.3 荧光寿命荧光探针的荧光寿命是指其从较高能级退回到基态所需的时间。

不同的荧光探针具有不同的荧光寿命,可以利用这个特性来区分不同的物质。

3. 荧光探针的应用荧光探针在许多领域都有广泛的应用,以下是一些常见的应用:3.1 生物分子检测荧光探针可以用于检测生物分子,如蛋白质、核酸和糖类等。

通过将荧光探针与目标分子结合,可以通过测量荧光强度或荧光寿命来研究生物分子的结构和功能。

3.2 细胞成像荧光探针可以用于细胞成像,通过标记特定的细胞结构或代谢物,可以实现对细胞内过程的实时观察。

这在生物学和医学研究中具有重要意义。

3.3 药物筛选荧光探针可以用于药物筛选和评价。

通过将荧光探针与药物结合,可以测量药物对目标分子的影响,从而评估药物的活性和选择性。

3.4 环境监测荧光探针可以用于环境监测,例如检测水中的污染物或土壤中的重金属。

通过选择适合的荧光探针可以实现快速和敏感的分析。

3.5 医学诊断荧光探针可以用于医学诊断。

例如,在癌症诊断中,可以利用荧光探针来检测肿瘤标记物,从而早期发现和诊断肿瘤。

4. 荧光探针的发展趋势随着科学技术的不断进步,荧光探针的研究也在不断发展。

以下是一些目前的研究方向:4.1 高灵敏度和高选择性研究人员致力于开发具有更高灵敏度和更高选择性的荧光探针,以实现更准确和可靠的检测。

荧光探针

荧光探针
特别是在分子生物学、生物化学、医学等领域中有较 广泛的应用。
荧光分子探针的结构
荧光分子探针通常由三部分组成:
Fluorephore Spacer
识别基团(receptor) hv
荧光基团(fluorophore)
连接体部分(spacer)
F
S
Receptor R
Analyte
strongly fluorescent
荧光探针
什么是荧光探针?
荧光探针就是以荧光物质作为指示剂,并在一定波长 光的激发下使指示剂产生荧光,通过检测所产生的荧光实 现对被检测物质的定性或者定量分析。
荧光探针受到周围环境的影响,使其发生荧光发射 发生变化,从而使人们获知周围环境的特征或者环境中 存在的某种特定信息。
荧光低 不需预处理 不受外界电磁场影响 远距离发光
Thanks for attention
经典分子信标结构
分子信标在生物分子检测中的应用
实时监测聚合酶链反应 基因变异的检测 分子信标生物传感器 活细胞中RNA的检测 DNA与蛋白质相互作用研究
展望
随着荧光探针技术的不断发展和完善,必然会给目前 较为热门的基因组学、蛋白质组学、生物芯片以及等 药物作用机制等领域带来新的发展契机,提供非常有 价值的方法和信息。
识别基团决定了探针分子的选择性和特异性,荧光基 团则决定了识别的灵敏度,而连接体部分则可起到分 子识别枢纽的作用。
荧光基团和识别基团二者连接在同一个共轭体系中,荧 光基团是该体系中最基本的组成部分,一般为芳香族的 稠环化合物,其目的是将分子识别转换成不同形式的荧 光信号,如荧光强度的增强或减弱、荧光寿命的变化、 光谱的移动等。识别基团是为了实现这一选择性识别而 合成的探针结构单元,是决定荧光分子探针和被检测体 结合的灵敏度与选择性的部分,通常也称为受体。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

H2N
NH2
N Br
溴乙锭
N
N
N
HCl
吖啶橙
荧光素类
O
O
O
O O
烯丙基荧光素
Байду номын сангаасBODIPY类
NN B
FF
BODIPY
罗丹明类
N
O
N
芘类
O3S
O O
烯丙基罗丹明B
OH 3Na
O3S
SO3
8-羟基芘-1,3,6-三磺酸,三钠盐
2.2.2 近红外区荧光探针
噻嗪和噁嗪类
N
N
S
N
天青B
酞菁类
N
O
O
N
O
烯丙基尼罗红
2.2 有机小分子荧光探针
有机荧光试剂都含有荧光团,荧光团必须含有共轭 大π键,共轭π键达到一定程度才能发射荧光, 比如: (—CH=CH—)n (n>2)
O
O
O O
有机荧光试剂与结构的关系
• 分子共轭体系大小对荧光的影响 • 共轭大π键共平面及其刚性的影响 • 取代基对荧光的影响
– 取代基的种类 – 取代基的数量 – 取代基的位置
Cl
R'
N
N
RX
R
思路2:制成荧光微球 文献报道:
+ Br
N
N Br
N Br
N
Br
谢谢
• 近年来,荧光标记技术在生物技术领域得到了广 泛而重要的应用。
• 譬如,荧光探针在DNA自动测序,蛋白质检测, 抗体免疫分析,疾病诊断,抗癌药物分析等方面 应用广泛。
2.1 分类
按照制备方法分: – 化学荧光探针: 用化学方法合成 • 有机小分子荧光探针 • 纳米荧光探针 – 基因荧光探针: 可遗传、由DNA编码、蛋白 质组成 • 荧光蛋白(GFP、YFP、DsRed等)
荧光探针综述
李婷婷 2010.12.10
• 1、荧光相关知识简介 • 2、荧光探针综述 • 3、花菁类荧光探针研究思路
1、荧光相关知识简介
当紫外或可见光照射到某些物质上时,这些物质就发射出波 长和强度各不相同的光线,停止照射光照射时,这种光线马 上或逐渐消失,这就是荧光。
反映荧光特性的几个主要参数:
方酸菁类
OH
HO
O
O
方酸
TO 和YO类
R3 N
R1
S
N
R2
X
噻唑橙(TO)系列
O
R1
R2
O
R1=R2时 对称方酸菁 R1≠R2时 不对称方酸菁
N O N
I
噁唑黄(YO)
3、花菁类荧光探针研究思路
3.1 结构及特点
• 近红外区荧光探针 • 结构特点是中间为多亚甲基桥,两端为吲哚、苯
并噻唑、苯并噁唑和苯并咪唑等。
• Stokes位移(Δλ)
• 荧光强度(F)
Δλ= λem- λex
F=0.23 ΦFIοεbc ΦF 荧光量子产率
ΦF =发射的荧光光子数/吸收激发光的光子数 ε 摩尔消光系数 Iο激发光的强度 b 检测池厚度 c 物质浓度
• 荧光寿命(τ)
2、荧光探针综述
• 荧光探针是与氨基酸、多肽、蛋白质和DNA等生 物大分子结构以共价键或其他形式结合形成发荧 光的络合物或聚集体的一类物质。
为了提高探针的稳定性,常将母体中的多亚甲基链 改变为方酸环、环戊烯、环己烯等刚性环结构。
3.2 研究思路
思路1:提高光稳定性和水溶性
NHNH2 O
HOAc
O
O
CH2Cl2
O Cl
HN
POCl3
H
OH
N RBr
N Br R
Cl
N R Br
N R
Cl
N RX
N R
R'
N RX
N R
Cl
N
N
RX
R
R'
有机小分子荧光探针在紫外-可见-近红外区 有特征荧光,对环境变化非常敏感,按照 荧光发射波长(λem ),分类如下:
• 紫外可见区荧光探针
• 近红外区荧光探针
2.2.1 紫外可见区荧光探针
按照化学结构,主要有以下几类:
香豆素类
萘衍生物类
O
HO
OO
7-羟基香豆素
NH
O
1,8-萘二甲酰亚胺
啡啶和吖啶类
相关文档
最新文档