中国古代经典数学题
中国古代最著名的数学题

中国古代最著名的数学题
中国古代最著名的数学题有:
1.韩信点兵问题:韩信点兵,原来有1500名士兵,打完战后不知道士兵总数。
只知道士兵若三人一组余两人;五人一组余三人;七人一组余四人。
请问,总共有多少士兵?
2.鸡兔同笼问题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?
3.物不知数问题:有物不知其数,三三数之余二,五五数之余三,七七数之余二。
问物几何?
4.今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺。
大鼠日自倍,小鼠日自半:有一堵十尺厚的墙,两只老鼠从两边向中间打洞。
大老鼠第一天打一尺,小老鼠也是一尺。
大老鼠每天的打洞进度是前一天的一倍,小老鼠每天的进度是前一天的一半。
问它们几天可以相逢,相逢时各打了多少。
古代有趣的题目

在古代,有许多有趣的题目,其中一些是数学问题,还有一些涉及到文字游戏、谜语和哲学思考。
以下是一些古代有趣的题目:
1.鸡兔同笼:这是一个经典的古代数学问题。
题目描述了一个笼子里有一些鸡
和兔子,总共有若干头和脚,要求找出鸡和兔子各有多少只。
2.百钱百鸡:另一个古代的数学问题。
有一个人用100钱买了100只鸡,公鸡
5钱一只,母鸡3钱一只,小鸡1钱三只,问公鸡,母鸡,小鸡各买了多少只?
3.韩信点兵:韩信带兵打仗,只知道自己的兵数是5的倍数,而且在1000~
2000人之间,他利用“韩信点兵”的方法求出士兵数。
问:这个士兵数是多少?
4.百僧分百馍:唐诗云:“一百馒头一百僧,大僧三个更无争,小僧三人分一
个,大小和尚各几丁?”意思是有100个和尚分100个馒头,大和尚每人分3个,小和尚3人分一个,问大和尚、小和尚各多少人?
5.丢番图的墓志铭:丢番图(Diophantus)是古希腊的一位数学家。
他的墓志
铭上刻着:“过路人,这里埋着丢番图的骨灰。
下面的数目可以告诉你他的一生经过了多少寒暑。
他生命的六分之一是童年;再活了十二分之一,他颊上长出了胡须;又过了生命的七分之一,他走上了婚床;五年后喜得贵子,可怜的小孩活了生命的一半就撒手人间;此后,四年中老伴相继而去;五年前蜡烛燃尽了生命之光。
不知道他逝世多少时,那空空的墓穴将是他的归宿。
”
你知道丢番图到底活了多少岁吗?
以上只是一部分古代有趣的题目,如果您对此感兴趣,可以阅读数学史或相关文献以获取更多信息。
中国古代数学问题

清明巡园,共坐八船, 大船满六,满四小船, 38 学子, 满船坐观。 请问客家,大小几船?
第二十一页
寺庙朗朗,溪流畅畅, 龟鹤共舞,4 0 头 扬, 鹤腿龟腿,1 1 2 偎。 请问裟家,龟鹤几何?
11、龟鹤共 解:设鹤有x只舞,
则龟有(40-x)只,
由题意得 2x+4(40-x)=112
第二十二页
解此方程得: X=23 35 - x=12
答:笼中有鸡23只,兔12只。 第五页
例3: 《折绳测井》
以绳测井。若将绳三折测之,绳多四尺 ;若将绳四折测之,绳多一尺。绳长、 井深各几何?
题
目 用绳子测水井深度,如果将绳子折成三等
大 意 是
份,井外余绳4尺;如果将绳子折成四等 份,井外余绳1尺。问绳长、:“今有上禾三秉
,中禾二秉,下禾一秉,实三十九斗;上禾二秉,中 禾三秉,下禾一秉,实三十四斗;上禾一秉,中禾二 秉,下禾三秉,实二十六斗.问上中下禾实一秉各几 何?
设:上禾一秉为x斗 中禾一秉为y斗 下禾一秉为z斗
3x+2y+z=39
2x+3y+z=34 X+2y+3z=26
第十六页
练习: “我问开店李三公,众客都来到店中,
一房七客多七客,一房九客一房空.”
那么有多少间房,有多少位客人?
第十七页
例:周瑜寿属
而立之年督东吴,早逝英年两位数;
十比个位正小三,个位六倍与寿符;
哪位同学算得快,多少年寿属周瑜?
设个位数字为x,十位数字y x-y=3
6x=x+10y
36
第十八页
答:找等量关系
第二十四页
课堂总结
请你总结一下列方程解古代数学名题的一般步骤.
古代数学名题集锦

古代数学名题集锦百蛋(外国古题)两个农民一共带了100只蛋到市场上去出卖。
他们两人所卖得的钱是一样的。
第一个人对第二个人说:“假若我有象你这么多的蛋,我可以卖得15个克利采(一种货币名称)”。
第二个人说:“假若我有了你这些蛋,我只能卖得6又三分之二个克利采。
”问他们俩人各有多少只蛋?和尚吃馒头(中国古题)大和尚每人吃4个,小和尚4人吃1个。
有大小和尚100人,共吃了100个馒头。
大、小和尚各几人?各吃多少馒头?洗碗(中国古题)有一位妇女在河边洗碗,过路人问她为什么洗这么多碗?她回答说:家中来了很多客人,他们每两人合用一只饭碗,每三人合用一只汤碗,每四人合用一只菜碗,共用了碗65只。
你能从她家的用碗情况,算出她家来了多少客人吗?《算法统宗》里的问题《算法统宗》是中国古代数学著作之一。
书里有这样一题:甲牵一只肥羊走过来问牧羊人:“你赶的这群羊大概有100只吧”,牧羊人答:“如果这群羊加上一倍,再加上原来这群羊的一半,又加上原来这群羊的1/4,连你牵着的这只肥羊也算进去,才刚好凑满一百只。
”请您算算这只牧羊人赶的这群羊共有多少只?《张立建算经》里的问题《张立建算经》是中国古代算书。
书中有这样一题:公鸡每只值5元,母鸡每只值3元,小鸡每三只值1元。
现在用100元钱买100只鸡。
问这100只鸡中,公鸡、母鸡、小鸡各有多少只?《九章算术》里的问题《九章算术》是我国最古老的数学著作之一,全书共分九章,有246个题目。
其中一道是这样的:一个人用车装米,从甲地运往乙地,装米的车曰行25千米,不装米的空车曰行35千米,5日往返三次,问二地相距多少千米?共有多少个桃子著名美籍物理学家李政道教授来华讲学时,访问了中国科技大学,会见了少年班的部分同学。
在会见时,给少年班同学出了一道题:“有五只猴子,分一堆桃子,可是怎么也平分不了。
于是大家同意先去睡觉,明天再说。
夜里一只猴子偷偷起来,把一个桃子扔到山下后,正好可以分成五份,它就把自己的一份藏起来,又睡觉去了。
孙子算经经典数学题

孙子算经经典数学题
孙子算经是中国古代的一本数学著作,包含了许多经典的数学问题。
以下是其中一些著名的数学题:
1. 九九乘法表:这是孙子算经中最著名的问题之一,要求计算1到9的乘法表,每个数字与它的下一行数字相乘的结果都要填写在表中。
2. 算筹问题:这个问题要求用一根长为100的正整数尺子,测量出长度为45的线段的长度。
3. 数轴问题:这个问题要求在数轴上找到一点P,使得
|OP|+|PO|+|OP|的值等于100。
4. 三角函数问题:这个问题要求计算正弦值、余弦值、正切值和折射值等三角函数的数值,使用一个已知角度和边长的三角形进行计算。
5. 比例问题:这个问题要求计算一个长为100,宽为50的矩形的面积,以及一个长为75,宽为25的正方形的面积,使得它们的面积之比等于3:2。
孙子算经中的数学问题不仅涉及到基本的乘法、除法、分数、小数等数学知识,还涉及到几何、三角函数、比例等学科,是中国古代数学的杰出代表之一。
中国古代数学名题

數學名題欣賞中国古代数学名题1、雞兔同籠:今有雞兔同籠,上有35個頭,下有94只腳。
雞兔各幾隻?想:假設把35只全看作雞,每只雞2只腳,共有70只腳。
比已知的總腳數94只少了24只,少的原因是把每只兔的腳少算了2只。
看看24只裏面少算了多少個2只,便可求出兔的只數,進而求出雞的只數。
解決這樣的問題,我國古代有人想出更特殊的假設方法。
假設一聲令下,籠子裏的雞都表演“金雞獨立”,兔子都表演“雙腿拱月”。
那麼雞和兔著地的腳數就是總腳數的一半,而頭數仍是35。
這時雞著地的腳數與頭數相等,每只兔著地的腳數比頭數多1,那麼雞兔著地的腳數與總頭數的差等於兔的頭數。
我國古代名著《孫子算經》對這種解法就有記載:“上署頭,下置足。
半其足,以頭除足,以足除頭,即得。
”具體解法:兔的只數是94÷2-35=12(只),雞的只數是35-12= 23(只)。
2.韓信點兵:今有物,不知其數。
三三數之剩二,五五數之剩三,七七數之剩二。
問物幾何?這是我國古代名著《孫子算經》中的一道題。
意思是:一個數除以3餘2,除以5餘3,除以7餘2。
求適合這些條件的最小自然數。
想:此題可用枚舉法進行推算。
先順序排出適合其中兩個條件的數,再在其中選擇適合另一個條件的數。
3.三階幻方:把1—9這九個自然數填在九空格裏,使橫、豎和對角線上三個數的和都等於15。
想:1+9=10,2+8=10,3+7=10,4+6=10。
這每對數的和再加上5都等於15,可確定中心格應填5,這四組數應分別填在橫、豎和對角線的位置上。
先填四個角,若填兩對奇數,那麼因三個奇數的和才可能得奇數,四邊上的格裏已不可再填奇數,不行。
若四個角分別填一對偶數,一對奇數,也行不通。
因此,判定四個角上必須填兩對偶數。
對角線上的數填好後,其餘格裏再填奇數就很容易了。
4.兔子問題:十三世紀,義大利數學家倫納德提出下面一道有趣的問題:如果每對大兔每月生一對小兔,而每對小兔生長一個月就成為大兔,並且所有的兔子全部存活,那麼有人養了初生的一對小兔,一年後共有多少對兔子?想:第一個月初,有1對兔子;第二個月初,仍有一對兔子;第三個月初,有2對兔子;第四個月初,有3對兔子;第五個月初,有5對兔子;第六個月初,有8對兔子……。
古代经典数学题

在古代数学史上,有许多经典的数学问题激发了数学家的创造力,推动了数学的进步。
以下是一些著名的古代数学题:1. 勾股定理:这是古希腊数学家毕达哥拉斯最知名的成就之一。
勾股定理描述了直角三角形三边之间的关系:直角三角形的斜边的平方等于两条直角边的平方之和。
用数学公式表示就是:c² = a² + b²,其中 a 和 b 是直角边,c 是斜边。
1. 欧几里得算法:这是古希腊数学家欧几里得在《几何原本》中提出的一种计算最大公约数(GCD)的方法。
欧几里得算法是一种递归方法,不断将较大数除以较小数,直到余数为零,此时的除数便是最大公约数。
1. 三斜线化圆:这是古希腊数学家阿波罗尼奥斯提出的一种求圆周的问题。
题目要求用三条切线将一个已知半径的圆逼近,并通过切线长度求圆周长。
该问题引申出许多关于圆和椭圆的数学理论,影响了数学史上许多学科的发展。
1. 百鸟问题:这是古代中国数学家张秀贞在《算经》中提出的一个数学问题。
问题描述了一位商人售卖鸡、鸭、鹅三种鸟的故事,总共售卖100只,总价为100文钱。
鸡3文钱1只,鸭2文钱1只,鹅1文钱3只。
求各种鸟分别售出多少只?这个问题实际上涉及到了线性方程组的解决方法。
1. 七桥问题:这是一个始于18世纪的数学问题,出自普鲁士(现在的加里宁格勒,俄罗斯)的哥尼斯堡市。
问题要求在一个有七座桥的地区行走,使每座桥都只走一次并回到起点。
这个问题激发了数学家莱昂哈德·欧拉提出了图论,并证明了这个问题实际上是没有解的。
在古代,这些数学题目是求解现实生活中的问题和锻炼智慧的方法。
它们不仅启发了许多数学家的思维,还引领着数学领域的发展。
中国古代数学趣题

中国古代数学1. 及时梨果元代数学家朱世杰于1303年编著的《四元玉鉴》中有这样一道题目:九百九十九文钱,及时梨果买一千,一十一文梨九个,七枚果子四文钱。
问:梨果多少价几何?此题的题意是:用999文钱买得梨和果共1000个,梨11文买9个,果4文买7个。
问买梨、果各几个,各付多少钱? 解:梨每个价:11÷9=911(文) 果每个价:4÷7=74(文) 果的个数:(911×1000-999)÷(911-74)=343(个) 梨的个数:1000-343=657(个)梨的总价:911×657=803(文) 果的总价:74×343=196(文)2.两鼠穿墙我国古代数学典籍《九章算术》第七章“盈不足”中有一道两鼠穿墙问题:今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺。
大鼠日自倍,小鼠日自半。
问何日相逢,各穿几何?今意是:有厚墙5尺,两只老鼠从墙的两边相对分别打洞穿墙。
大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半。
问几天后两鼠相遇,各穿几尺?解:第一天,1+1=2尺 还有3尺第二天,2+0.5=2.5尺 还有0.5尺第三天,解:设还需X 天。
(4+0.25)X=0.5 X=172 172天=2小时49分 在第三日凌晨2时49分相逢,相逢时大老鼠穿 3.47尺,小老鼠穿 1.53尺。
3.隔壁分银只闻隔壁客分银,不知人数不知银,四两一份多四两,半斤一份少半斤。
试问各位能算者,多少客人多少银?(注:旧制1斤=16两,半斤=8两)此题是民间算题,用方程解比较方便。
解:设客人为x人。
4x+4=8x-8x=34×3+4=16(两)答:客人3人,银16两。
4.李白打酒李白街上走,提壶去打酒;遇店加一倍,见花喝一斗;三遇店和花,喝光壶中酒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国古代经典数学题
中国古代经典数学题有很多,以下是其中的一些例子:
1. 《孙子算经》中的“百钱买百鸡”问题:一个农夫用100文钱去买100只鸡,其中公鸡5文钱一只,母鸡3文钱一只,小鸡1文钱三只,问该农夫如何购买才能恰好买到100只鸡并且花光所有的钱?
2. 《周髀算经》中的“鸡兔同笼”问题:有若干只鸡和兔子在一个笼子里,数目不知道,但是头数是已知的,若数总共有35个头,脚的总数有94只,求兔子和鸡各有多少只?
3. 《算经十书》中的“海岛问题”:有36个人,他们要穿过一座桥,桥上只能同时容纳两个人,且必须有灯才能够通过。
这36个人中有12个人可以在1分钟内穿过桥,24个人需要2分钟,在桥的这一端还有一盏30秒钟的灯,问这36个人最短需要多长时间才能全部通过桥?
这些问题都具有一定的难度,但又非常有趣,是中国古代数学智慧的体现。