高中数学高二数学 数列通项公式求法集锦
高二数学 求通项公式方法大汇总

高二数学 求通项公式方法大汇总1、定义法:直接求首项和公差或公比。
2、公式法:1 (1) (2)n n nn S n a S S n -=⎧=⎨-≥⎩两种用途(列举),结果要验证能否写成统一的式子.例、数列{}n a 的各项都为正数,且满足()()2*14nna S n N +=∈,求数列的通项公式.解一:由()()2*14nna S n N +=∈得()()()221114411n n n n n a S S a a +++=-=---化简得()()1120n n n n a a a a +++--=,因为10,2n n n a a a +>∴-=,又()2111441S a a ==-得11a =,故{}n a 是以1为首项,2为公差的等差数列,所以21n a n =-.解二:由()()2*14nn a S n N +=∈,可得()11,12n n n a S S n -=-∴=--≥化简可得)211n S -=,即1=,又11S =,所以数列是首项为1,公差为1的等差数列,∴n =,从而2n S n =,所以121n n n a S S n -=-=-,又11a =也适合,故21n a n =-.练习:已知数列{a n }的前n 项和S n 满足120n n n a S S -+=(2n ≥),a 1=21,求n a . 答案:a n =⎪⎪⎩⎪⎪⎨⎧≥--=)2()1(21)1(21n n n n .扩展一:作差法例、在数列}{n a 中,11a =,212323(1)n a a a na n n ++++=-+L ,求n a .解:由212323(1)n a a a na n n ++++=-+L ,得2123123(1)(2)1n a a a n a n n -++++-=-+-L ,两式相减,得66n na n =-+,∴ 1 (=1)66 (2)n n a n n n⎧⎪=-⎨≥⎪⎩.练习(理):已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥L ,,求n a . 解:由123123(1)(2)n n a a a a n a n -=++++-≥L ,得1123123(1)n n n a a a a n a na +-=++++-+L ,两式相减,得1n n n a a na +-=,即11(2)n na n n a +=+≥,所以13222122![(1)43]2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=L L 又由已知,得2122a a a =+,则211a a ==,代入上式,得!13452n n a n =⋅⋅⋅⋅⋅=L , 所以,{}n a 的通项公式为 1 (1)! (2)2n n a n n =⎧⎪=⎨≥⎪⎩.扩展二、作商法例、在数列}{n a 中,11a =,对所有的2n ≥,都有2123n a a a a n ••••=L ,求n a . 解:∵2123n a a a a n ••••=L ,∴21232(1)n a a a a n -••••=-L ,故当2n ≥时,两式相除,得22(1)n n a n =-, ∴221 (=1) (2)(1)n n a n n n ⎧⎪=⎨≥⎪-⎩.3、 叠加法:对于型如)(1n f a a n n =-+类的通项公式.例、在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .答案:na n 14-=. 例、已知数列{}n a 满足112231n n n n a a ++=++-(*n N ∈),352a =,求通项n a .解:由112231n nn n aa ++=++-,两边同除以12n +,得()111131112222n n n n n n n a a n ++++-=-+≥,列出相加得121212121332323212212121-+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=---n a a n n n n ΛΛ又由已知求得16a =,∴()*231n n n n N a n ∈=•++.练习:已知数列}a {n 满足3a 132a a 1nn 1n =+⋅+=+,,求数列}a {n 的通项公式.答案:1n 32n 31332a n nn -+=++--⋅=.4、叠乘法:一般地,对于型如1+n a =f (n)·n a 的类型例(理)、已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式.解:因为112(1)53nn n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故13211221n n n n n a a a a a a a a a a ---=⋅⋅⋅⋅⋅L 121[2(11)5][2(21)5][2(11)5]3n n n n --=-+-++⨯⨯L (1)1(1)(2)21122[(1)32]53325!n n n n n n n n n ---+-+++-=-⋅⋅⨯⨯⨯=⨯⨯⨯L L ,所以数列{}n a 的通项公式为(1)12325!n n n n a n --=⨯⨯⨯.练习:在数列{a n }中,112a =,11(1n n n a a a n --=⋅+≥2),求n a . 答案:)1(1+=n n a n . 5、构造法:型如a n+1=pa n +f(n) (p 为常数且p ≠0, p ≠1)的数列(1)f(n)= q (q 为常数) 一般地,递推关系式a +1=pa n +q (p 、q 为常数,且p ≠0,p ≠1)等价与)1(11pqa p p q a n n --=--+,则{p q a n --1}为等比数列,从而可求n a .例、已知数列{}n a 满足112a =,132n n a a --=(2n ≥),求通项n a . 解:由132n n a a --=,得111(1)2n n a a --=--,又11210a -=≠,所以数列{1}n a -是首项为12,公比为12-的等比数列,∴11111(1)()1()22n nn a a -=---=+-. 练习:已知数列}{n a 的递推关系为121+=+n n a a ,且11=a ,求通项n a . 答案:12-=n na .(2) f(n)为等比数列,如f(n)= q n (q 为常数) ,两边同除以q n ,得111+=++nn n n qa p q a q ,令nn n a b q =,则可转化为b n+1=pb n +q 的形式求解.例、已知数列{a n }中,a 1=65,1111()32n n n a a ++=+,求通项n a . 解:由条件,得2 n+1a n+1=32(2 n a n )+1,令b n =2 n a n ,则b n+1=32b n +1,b n+1-3=32(b n -3) 易得 b n =3)32(341+--n ,即2 n a n =3)32(341+--n , ∴ a n =n n 2332+-. 练习、已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求通项n a .答案:31()222nn a n =-.(3) f(n)为等差数列,如1n n a Aa Bn C +=++型递推式,可构造等比数列.(选学,注重记忆方法)例、已知数列{}n a 满足11=a ,11212n n a a n -=+-(2n ≥),求.解:令n n b a An B =++,则n n a b An B =--,∴11(1)n n a b A n B --=---,代入已知条件, 得11[(1)]212n n b An B b A n B n ---=---+-,即11111(2)(1)2222n n b b A n A B -=++++-,令202A +=,1022A B +-=,解得A=-4,B=6,所以112n n b b -=,且46n n b a n =-+, ∴{}n b 是以3为首项、以12为公比的等比数列,故132n n b -=,故13462n n a n -=+-. 点拨:通过引入一些尚待确定的系数,经过变形与比较,把问题转化成基本数列(等差或等比数列)求解. 练习:在数列{}a n 中,132a =,1263n n a a n --=-,求通项a n . 答案:a n nn -+=69912·().解:由1263n n a a n --=-,得111(63)22n n a a n -=+-,令11[(1)]2n n a An B a A n B -++=+-+,比较系数可得:A=-6,B=9,令n n b a An B =++,则有112n n b b -=,又1192b a A B ==++,∴{}n b 是首项为92,公比为12的等比数列,所以b n n =-92121(),故a n n n-+=69912·(). (4) f(n)为非等差数列,非等比数列法一、构造等差数列法例、在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>,求数列{}n a 的通项公式.解:由条件可得111221n nn nn n a a λλλλ+++⎛⎫⎛⎫-=-+ ⎪⎪⎝⎭⎝⎭,∴数列2n n n a λλ⎧⎫⎪⎪⎛⎫-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是首项为0,公差为1的等差数列,故21nnn a n λλ⎛⎫-=- ⎪⎝⎭,∴(1)2n n n a n λ=-+. 练习:在数列{a n }中,a na n a n n n n n 1132212==+++++,()()(),求通项a n 。
数列通项公式求法大全

最全得数列通项公式得求法数列就是高考中得重点内容之一,每年得高考题都会考察到,小题一般较易,大题一般较难。
而作为给出数列得一种形式——通项公式,在求数列问题中尤其重要。
本文给出了求数列通项公式得常用方法。
一、直接法根据数列得特征,使用作差法等直接写出通项公式。
二、公式法①利用等差数列或等比数列得定义求通项②若已知数列得前项与与得关系,求数列得通项可用公式求解、(注意:求完后一定要考虑合并通项)例1.①已知数列得前项与满足.求数列得通项公式、②已知数列得前项与满足,求数列得通项公式、③已知等比数列得首项,公比,设数列得通项为,求数列得通项公式。
三、归纳猜想法如果给出了数列得前几项或能求出数列得前几项,我们可以根据前几项得规律,归纳猜想出数列得通项公式,然后再用数学归纳法证明之。
也可以猜想出规律,然后正面证明。
四、累加(乘)法对于形如型或形如型得数列,我们可以根据递推公式,写出n取1到n时得所有得递推关系式,然后将它们分别相加(或相乘)即可得到通项公式。
例4.若在数列中,,,求通项。
例5.在数列中,,(),求通项。
五、取倒(对)数法a、这种类型一般就是等式两边取对数后转化为,再利用待定系数法求解b、数列有形如得关系,可在等式两边同乘以先求出c、解法:这种类型一般就是等式两边取倒数后换元转化为。
例6、.设数列满足求例7设正项数列满足,(n≥2)、求数列得通项公式、变式:1、已知数列{a n}满足:a1=,且a n=求数列{a n}得通项公式;2、若数列得递推公式为,则求这个数列得通项公式。
3、已知数列{}满足时,,求通项公式。
4、已知数列{an }满足:,求数列{an}得通项公式。
5、若数列{a}中,a=1,a= n∈N,求通项a.六、迭代法迭代法就就是根据递推式,采用循环代入计算、七、待定系数法:1、通过分解常数,可转化为特殊数列{a+k}得形式求解。
一般地,形如a=p a+q(p≠1,pq≠0)型得递推式均可通过待定系数法对常数q分解法:设a+k=p(a+k)与原式比较系数可得pk-k=q,即k=,从而得等比数列{a+k}。
求数列通项公式的十种方法

求数列通项公式的十种方法求解数列的通项公式是高中数学中的一个重要问题,通常需要运用数学分析方法、递推关系、差分方法等多种技巧。
下面将列举十种常见的方法来求解数列的通项公式。
方法一:等差数列的通项公式对于等差数列 an = a1 + (n - 1) * d,其中 a1 为首项,n 为项数,d 为公差。
通项公式可以直接通过公式计算得出。
方法二:等差数列的求和公式对于等差数列 S = (n / 2) * (a1 + an),其中 S 为前 n 项和,a1 为首项,an 为末项,n 为项数。
可以通过求和公式推导出等差数列的通项公式。
方法三:等比数列的通项公式对于等比数列 an = a1 * r^(n - 1),其中 a1 为首项,r 为公比,n 为项数。
通项公式可以直接通过公式计算得出。
方法四:等比数列的求和公式对于等比数列S=(a1*(r^n-1))/(r-1),其中a1为首项,r为公比,n为项数。
可以通过求和公式推导出等比数列的通项公式。
方法五:递推关系法对于一些递推关系的数列,可以通过寻找规律,构建递推关系来求解数列的通项公式。
例如斐波那契数列就可以通过递推关系f(n)=f(n-1)+f(n-2),其中f(1)=1,f(2)=1,来求解通项公式。
方法六:二项式展开法对于一些满足二项式展开的数列,可以通过展开得到二项式系数,然后通过系数的通项公式来求解数列的通项公式。
例如二项式数列(x+1)^n的展开系数就是通过n阶二项展开推导出来的。
方法七:差分法通过对数列进行差分操作,找到规律来求解数列的通项公式。
例如,如果差分的结果是一个等差数列,那么原数列就是一个二次或高次多项式。
方法八:线性递推法对于一些线性递推关系的数列,可以通过构建矩阵形式或特征方程的方法来求解数列的通项公式。
例如,对于一阶线性递推数列a(n)=p*a(n-1)+q,可以通过特征方程x-p*x-q=0来求解通项公式。
方法九:插值法通过给定数列中的若干项,利用 Lagrange 插值公式来推导数列的通项公式。
高二数学 求通项公式方法大汇总

高二数学 求通项公式方法大汇总1、定义法:直接求首项和公差或公比。
2、公式法:1 (1) (2)n n nn S n a S S n -=⎧=⎨-≥⎩两种用途(列举),结果要验证能否写成统一的式子.例、数列{}n a 的各项都为正数,且满足()()2*14nna S n N +=∈,求数列的通项公式.解一:由()()2*14nna S n N +=∈得()()()221114411n n n n n a S S a a +++=-=---化简得()()1120n n n n a a a a +++--=,因为10,2n n n a a a +>∴-=,又()2111441S a a ==-得11a =,故{}n a 是以1为首项,2为公差的等差数列,所以21n a n =-.解二:由()()2*14nn a S n N +=∈,可得()11,12n n n a S S n -=-∴=--≥化简可得)211n S -=,即1=,又11S =,所以数列是首项为1,公差为1的等差数列,∴n =,从而2n S n =,所以121n n n a S S n -=-=-,又11a =也适合,故21n a n =-.练习:已知数列{a n }的前n 项和S n 满足120n n n a S S -+=(2n ≥),a 1=21,求n a . 答案:a n =⎪⎪⎩⎪⎪⎨⎧≥--=)2()1(21)1(21n n n n .扩展一:作差法例、在数列}{n a 中,11a =,212323(1)n a a a na n n ++++=-+L ,求n a .解:由212323(1)n a a a na n n ++++=-+L ,得2123123(1)(2)1n a a a n a n n -++++-=-+-L ,两式相减,得66n na n =-+,∴ 1 (=1)66 (2)n n a n n n⎧⎪=-⎨≥⎪⎩.练习(理):已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥L ,,求n a . 解:由123123(1)(2)n n a a a a n a n -=++++-≥L ,得1123123(1)n n n a a a a n a na +-=++++-+L ,两式相减,得1n n n a a na +-=,即11(2)n na n n a +=+≥,所以13222122![(1)43]2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=L L 又由已知,得2122a a a =+,则211a a ==,代入上式,得!13452n n a n =⋅⋅⋅⋅⋅=L , 所以,{}n a 的通项公式为 1 (1)! (2)2n n a n n =⎧⎪=⎨≥⎪⎩.扩展二、作商法例、在数列}{n a 中,11a =,对所有的2n ≥,都有2123n a a a a n ••••=L ,求n a . 解:∵2123n a a a a n ••••=L ,∴21232(1)n a a a a n -••••=-L ,故当2n ≥时,两式相除,得22(1)n n a n =-, ∴221 (=1) (2)(1)n n a n n n ⎧⎪=⎨≥⎪-⎩.3、 叠加法:对于型如)(1n f a a n n =-+类的通项公式.例、在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .答案:na n 14-=. 例、已知数列{}n a 满足112231n n n n a a ++=++-(*n N ∈),352a =,求通项n a .解:由112231n nn n aa ++=++-,两边同除以12n +,得()111131112222n n n n n n n a a n ++++-=-+≥,列出相加得121212121332323212212121-+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=---n a a n n n n ΛΛ又由已知求得16a =,∴()*231n n n n N a n ∈=•++.练习:已知数列}a {n 满足3a 132a a 1nn 1n =+⋅+=+,,求数列}a {n 的通项公式.答案:1n 32n 31332a n nn -+=++--⋅=.4、叠乘法:一般地,对于型如1+n a =f (n)·n a 的类型例(理)、已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式.解:因为112(1)53nn n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故13211221n n n n n a a a a a a a a a a ---=⋅⋅⋅⋅⋅L 121[2(11)5][2(21)5][2(11)5]3n n n n --=-+-++⨯⨯L (1)1(1)(2)21122[(1)32]53325!n n n n n n n n n ---+-+++-=-⋅⋅⨯⨯⨯=⨯⨯⨯L L ,所以数列{}n a 的通项公式为(1)12325!n n n n a n --=⨯⨯⨯.练习:在数列{a n }中,112a =,11(1n n n a a a n --=⋅+≥2),求n a . 答案:)1(1+=n n a n . 5、构造法:型如a n+1=pa n +f(n) (p 为常数且p ≠0, p ≠1)的数列(1)f(n)= q (q 为常数) 一般地,递推关系式a +1=pa n +q (p 、q 为常数,且p ≠0,p ≠1)等价与)1(11pqa p p q a n n --=--+,则{p q a n --1}为等比数列,从而可求n a .例、已知数列{}n a 满足112a =,132n n a a --=(2n ≥),求通项n a . 解:由132n n a a --=,得111(1)2n n a a --=--,又11210a -=≠,所以数列{1}n a -是首项为12,公比为12-的等比数列,∴11111(1)()1()22n nn a a -=---=+-. 练习:已知数列}{n a 的递推关系为121+=+n n a a ,且11=a ,求通项n a . 答案:12-=n na .(2) f(n)为等比数列,如f(n)= q n (q 为常数) ,两边同除以q n ,得111+=++nn n n qa p q a q ,令nn n a b q =,则可转化为b n+1=pb n +q 的形式求解.例、已知数列{a n }中,a 1=65,1111()32n n n a a ++=+,求通项n a . 解:由条件,得2 n+1a n+1=32(2 n a n )+1,令b n =2 n a n ,则b n+1=32b n +1,b n+1-3=32(b n -3) 易得 b n =3)32(341+--n ,即2 n a n =3)32(341+--n , ∴ a n =n n 2332+-. 练习、已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求通项n a .答案:31()222nn a n =-.(3) f(n)为等差数列,如1n n a Aa Bn C +=++型递推式,可构造等比数列.(选学,注重记忆方法)例、已知数列{}n a 满足11=a ,11212n n a a n -=+-(2n ≥),求.解:令n n b a An B =++,则n n a b An B =--,∴11(1)n n a b A n B --=---,代入已知条件, 得11[(1)]212n n b An B b A n B n ---=---+-,即11111(2)(1)2222n n b b A n A B -=++++-,令202A +=,1022A B +-=,解得A=-4,B=6,所以112n n b b -=,且46n n b a n =-+, ∴{}n b 是以3为首项、以12为公比的等比数列,故132n n b -=,故13462n n a n -=+-. 点拨:通过引入一些尚待确定的系数,经过变形与比较,把问题转化成基本数列(等差或等比数列)求解. 练习:在数列{}a n 中,132a =,1263n n a a n --=-,求通项a n . 答案:a n nn -+=69912·().解:由1263n n a a n --=-,得111(63)22n n a a n -=+-,令11[(1)]2n n a An B a A n B -++=+-+,比较系数可得:A=-6,B=9,令n n b a An B =++,则有112n n b b -=,又1192b a A B ==++,∴{}n b 是首项为92,公比为12的等比数列,所以b n n =-92121(),故a n n n-+=69912·(). (4) f(n)为非等差数列,非等比数列法一、构造等差数列法例、在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>,求数列{}n a 的通项公式.解:由条件可得111221n nn nn n a a λλλλ+++⎛⎫⎛⎫-=-+ ⎪⎪⎝⎭⎝⎭,∴数列2n n n a λλ⎧⎫⎪⎪⎛⎫-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是首项为0,公差为1的等差数列,故21nnn a n λλ⎛⎫-=- ⎪⎝⎭,∴(1)2n n n a n λ=-+. 练习:在数列{a n }中,a na n a n n n n n 1132212==+++++,()()(),求通项a n 。
高中数学数列通项公式的求法技巧大全

数列通项公式的求法技巧大全一.利用递推关系式求数列通项的11种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号)、数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、特征根法二。
四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。
等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。
三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等级差数列或等比数列。
四.求数列通项的基本方法是:累加法和累乘法。
五.数列的本质是一个函数,其定义域是自然数集的一个函数。
一、累加法1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。
2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2)()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。
例2 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。
求数列通项公式的十一种方法

求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号)、数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、特征根法二。
四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。
等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。
三.求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等级差数列或等比数列。
四.求数列通项的基本方法是:累加法和累乘法。
五.数列的本质是一个函数,其定义域是自然数集的一个函数。
一、累加法1.适用于:1()n n a a f n +=+----------这是广义的等差数列累加法是最基本的二个方法之一。
2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=两边分别相加得111()nn k a a f n +=-=∑例1已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则所以数列{}n a 的通项公式为2n a n =。
例2已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
解法一:由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-所以3 1.n n a n =+-解法二:13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++,则111213333n n n n n a a +++-=+,故 因此11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯, 则21133.322n n n a n =⨯⨯+⨯-练习1.已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式.答案:12+-n n练习2.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.答案:裂项求和n a n 12-=评注:已知a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项n a .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n 的二次函数,累加后可分组求和;③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和。
高中数学求解数列通项公式常用方法总结

高中数学求解数列通项公式常用方法总结(共15种类型类型1(迭加法1112212212(212(log 1(n 1n nn n n n n n n a a f n n-++-⎧⎪⎪⎪-+⎪⎪--==⎨⎪⎪⎪⎪⎪+⎩,n a a求,11=以上6种情况都要试着做一遍例1:已知数列{}n a满足11211,2n n a a a n n+=-=+,求n a。
解:由条件知:121111(11n n a a n n n n n n+-===-+++分别令1,2,3,,(1n n=-,代入上式得(1n-个等式累加之,即21 32431((((n n a a a a a a a a--+-+-++-1111111(1(((223341n n=-+-+-++--所以111n a a n-=-111131, 1222n a a n n=∴=+-=-类型2(迭乘法11(=2n n n n a f n n a++⎧⎪=⎨⎪⎩,n a a求,11=例2:已知数列{}n a满足112,31n n n a a a n+==+,求n a。
解:由条件知11n n a n a n+=+,分别令1,2,3,,(1n n=-,代入上式得(1n-个等式累乘之,即3241231112311234n n n a a a a a n a a a a n a n--=⨯⨯⨯⨯⇒=又122,33n a a n=∴=∵类型3(退一相减法递推公式为S n与a n的关系式。
(或(n n S f a=解法:这种类型一般利用11(1(2n n n S n a S S n-=⎧=⎨-≥⎩与11((n n n n n a S S f a f a--=-=-消去n S(2n≥或与1 ((2n n n S f S S n-=-≥消去n a进行求解。
常见题型:1、12++=n n S n,n a求(关系与n S n2、n n n a a S求,23+=(关系与n n a S3、n n a a a a n 22223133221+⋅⋅⋅+++=+,求n a(n a n与例:已知数列{}n a前n项和214 2n n n S a-=--.(1求1n a+与n a的关系;(2求通项公式n a.解:(12142n n n S a-=--得:111142n n n S a++-=--于是112111((22n n n n n n S S a a++---=-+-所以1111111222n n n n n n n a a a a a+++-=-+⇒=+.类型3(构造法1 n 1n a pa q+=+(其中,p q均为常数,((10pq p-≠。
高中数学解题方法系列:数列中求通项的10种方法

高中数学解题方法系列:数列中求通项的10种方法一、公式法例1 已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式。
解:1232n n n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2n na 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222n n a n =-。
二、累加法 )(1n f a a n n =--例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2n a n =。
例3已知数列{}n a 满足1132313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
解:13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+ 三、累乘法 )(1n f a a n n =- 例4 已知数列{}n a 满足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列通项公式求法集锦
一、累加法(叠加法、迭加法)
1、d a a n n +=+1(d 为常数):等差数列为代表
2、)(1n f a a n n +=+则
)1(.....)2()1(......)1()2()1(121-++++==-+-+=-+=--n f f f a n f n f a n f a a n n n )(n f 为关于n 的函数,一般有以下形式:
(1) 裂项消项法:
)11()(2k n n k A kn n A n f +-=+= 、)11()(2n
k n k A kn n A n f --=-= )())(()(n k n k A n k n n k n n k n A k n n A n f -+=-+++-+=++=
例:1111)(2+-=+=
n n n n n f ; 裂项方法:令1
1)(2+-=+=
n B n A n n n f ,则n n A n B A n n Bn n A n B n A n n ++-=+-+=+-=+222)()1(11,对比n n +21与n n A n B A ++-2)(可以得到等式⎩⎨⎧==-10A B A ,则⎩⎨⎧-==1
1B A ,所以1111)(2+-=+=n n n n n f 。
(2)常用数列:b kn n f +=)((等差数列) n q k n f ⋅=)((等比数列)
累加时为求等差或等比数列的前n 项和。
(3)特殊数列:2)(n n f = 3)(n n f =
6)12)(1(......3212222++=
++++n n n n 22223333).....321()2
)1((4)1(......321n n n n n n ++++=+=+=++++ 二、累乘法(叠乘法、迭乘法)
1、n n qa a =+1(q 为非零常数):等比数列为代表:11-⋅=n n q a a ;
2、n n a n f a •=+)(1,则
)1(.....)2()1(......)1()2()1(121-••==-•-•=-•=--n f f f a n f n f a n f a a n n n
)(n f 为关于n 的函数,一般有如下形式
(1)k
n k n n f +++=1)(, )1(.....)2()1(......)1()2()1(121-••==-•-•=-•=--n f f f a n f n f a n f a a n n n =1
11.....231211+++•=+++••++•++k k n a k n k n k k k k a (2)1)(-•=n q k n f
)1(.....)2()1(......)1()2()1(121-••==-•-•=-•=--n f f f a n f n f a n f a a n n n =1)(.....)()(121-•=⋅••⋅•⋅••-n S n n q k q k q k q k k a (S n-1 为q 的指数(等差数列)的前n-1项和)
三、q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。
解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,则有t tp pa a n n +-=+1,所以q t tp =+-,则p
q t -=1。
令t a b n n -=,则有t a b n n -=,则有n n pb b =+1,利用迭乘法(方法二、1)可解。
四、n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。
(或1n n n a pa rq +=+,其中p ,q, r 均为常数) 。
解法一:一般地,要先在原递推公式两边同除以1+n q ,得:q
q a q p q a n n n n 111+•=++引入辅助数列{}n b (其中n n n q a b =),得:q
b q p b n n 11+=+再利用类型三解决。
解法二:一般地,要先在原递推公式两边同除以1+n p ,得:n n n n n p q p p
a p a )(111⋅+=++ 引入辅助数列{}n
b (其中n
n n p a b =
),得:n n n p q q b b )(11⋅+=+再利用迭加法(方法一,2,(2))解决。
五、n n n qa pa a +=++12(其中p ,q 均为常数)。
解法一:(待定系数法):先把原递推公式转化为)(112n n n n sa a t sa a -=-+++,{则
))(12n n n tsa a t s a -+=++则s ,t 满足⎩
⎨⎧-==+q st p t s ,}令n n n sa a b -=+1,则有n n tb b =+1,解出n b (等比数列)的通项公式,则有111-+⋅+=n n n t b sa a ,再利用类型四解出n a 。
解法二(特征根法):对于由递推公式n n n qa pa a +=++12,βα==21,a a 给出的数列{}n a ,方程02
=--q px x ,叫做数列{}n a 的特征方程。
若21,x x 是特征方程的两个根。
当21x x ≠时,数列{}n a 的通项为1211--+=n n n Bx Ax a ,其中A ,B 由βα==21,a a 决定
(即把2121,,,x x a a 和2,1=n ,代入1211--+=n n n Bx Ax a ,得到关于A 、B 的方程组);
当21x x =时,数列{}n a 的通项为11)(-+=n n x Bn A a ,其中A ,B 由βα==21,a a 决定(即
把2121,,,x x a a 和2,1=n ,代入11)(-+=n n x Bn A a ,得到关于A 、B 的方程组)。
六、r n n pa a =+1)0,0(>>n a p
解法:两边取对数,n r n n a r p pa a lg lg )lg(lg 1+==+,令n n a b lg =,则p rb b n n lg 1+=+,利用方法三可解。
七、C
Ba Aa a n n n +=+1 解法:两边取倒数得到
A B a A C a n n +•=+11
1,令n n a b 1=,则有A B b A C b n n +•=+1,利用方法三可解。
八、1+n a =
D
Ca B Aa n n ++型(A 、B 、C 、D 为常数) 特征根法:x =D
Cx B Ax ++ (1)21x x ≠时,2
1x a x a n n --=C ·2111x a x a n n ---- (2)21x x =时, 11x a n -=C x a n +--111 九、q pn a a n n +=++1或n n n pq a a =⋅+1
解法:对于q pn a a n n +=++1 (1)
q n p a a n n +-=+-)1(1 (2)
(1)-(2)得到p a a n n =+-+11,即数列中的所有奇数项和偶数项分别构成等
差数列。
对于n n n pq a a =⋅+1 (1)
11--=⋅n n n pq a a (2)
(1)/(2)得到q a a n n =-+1
1,即数列中的所有奇数项和偶数项分别构成等比数列。
练习
例1 已知数列{}n a 满足1121
1n n a a n a +=++=,,求数列{}n a 的通项公式。
例2 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
例3 在数列{}n a 中,若111,23(1)n n a a a n +==+≥,求该数列的通项n a
例4 已知数列{}n a 满足*111,21().n n a a a n N +==+∈求数列通项n a
例5 设数列{}n a 的前n 项的和14122333
n n n S a +=-⨯+, 求通项n a ; 例6已知数列{}n a 满足*12211,3,32().n n n a a a a a n N ++===-∈
(I )证明:数列{}1n n a a +-是等比数列;
(II )求数列{}n a 的通项公式;
例7已知数列{a n }满足:a 1=
32
,且a n =n 1n 13na n 2n N 2a n 1*≥∈--(,)+-求数列{a n }的通项公式;。