钢结构的脆性断裂和疲劳

合集下载

钢结构名词解释

钢结构名词解释

钢结构的优缺点:优点:强度高,质量轻;材性好,可靠性高;工业化程度高,工期短;密封性好;抗震性能好;耐热性好;缺点:价格贵,耐腐蚀性差,耐火性差钢结构破坏形式:对材料抗力而言:塑性破坏,脆性断裂破坏,疲劳破坏,损伤累计破坏。

结构性能而言:结构或构件整体失稳/局部失稳,塑性过度发展,结构变成机构钢结构对钢材的要求:有较高的强度,塑性好,冲击韧性好,冷加工性能好,可焊性好,耐久性好,钢度好抗震强。

伸长率δ:是应力应变曲线中的最大应变值等于试件拉断后的原标距间长度的伸长值和原标距比值的百分率。

断面收缩率:ψ是指试件拉断后,颈缩区的断面面积缩小值与原断面面积比值的百分率时效现象:屈服点提高,韧性降低,并且极限强度也稍有提高。

冷拉目的:提高强度冷弯目的:抵抗断裂的能力冷弯性能:指钢材在冷加工(即在常温下加工)产生塑性变形时,对发生裂缝的抵抗力。

冷弯性能用冷弯试验来检验。

冷作硬化:在冷(常温)加工过程中引起的钢材硬化的现象。

C对弹塑性和强度的影响:屈服点和抗拉强度提高,但塑性和韧性,特别是低温冲击韧性下降,可焊性,耐腐蚀性能,疲劳强度和冷弯性能明显下降。

有害元素有:硫,大大降低塑性,冲击韧性,疲劳强度和抗锈性,热脆。

磷提高强度和抗锈性,但严重降低塑性,冲击韧性、冷弯性能,冷脆。

氧热脆,氮冷脆。

可焊性好:是指焊接安全、可靠、不发生焊接裂逢,焊接接头和焊缝的冲击韧性以及热影响区的延伸性(塑性)等力学性能都不低于母材钢材的脆性断裂是钢结构在静力或加载次数不多的动荷载作用下发生的脆性破坏。

防止刚材脆性断裂的措施:1、加强施焊工艺管理,避免施焊过程中产生裂纹、夹渣和气泡等焊接缺陷2、焊接不宜过分集中,施焊时不宜过强约束,避免产生过大残余应力。

3、进行合理细部构造设计,避免产生应力集中4、选择合理的钢材应力集中:是指结构或构件的局部区域的最大应力值比平均应力值高的现象。

应力集中的特点:能使物体产生疲劳裂纹,也能使脆性材料制成的零件发生静载断裂。

钢结构的破坏形式资料

钢结构的破坏形式资料
3.4 结构的脆性断裂
脆性断裂是钢结构在静力和加载次数不多的动力作用 下发生的脆性破坏。结构或构件破坏前没有明显的变形和 征兆,破坏时产生的变形远比结构应有的变形能力小,吸 收能量很少,突然发生断裂破坏, 断口平齐、发亮,无机 会补救。
11
钢结构的可能破坏形式
3 钢结构的 可能破坏形式
3.5 结构的疲劳破坏
3 钢结构的 可能破坏形式
工程设计上采用控制长细比x或y≥5.07b/t,以防止扭转屈曲。
6
钢结构的可能破坏形式
截面为单轴对称(T 形截面)或无对称轴的轴 心受压构件绕对称轴失稳 时,由于截面形心和剪切 中心不重合,在发生弯曲 变形的同时必然伴随有扭 转变形,这种现象称为弯 扭失稳。
3 钢结构的 可能破坏形式
1
钢结构的可能破坏形式
3 钢结构的 可能破坏形式
3.1 结构的整体失稳破坏
稳定性:结构在荷载作用下处于平衡位置,微小外界挠动使其 偏离平衡位置,若外界挠动除去后仍能回复到初始平衡位置,则 是稳定的;若外界挠动除去后不能回复到初始平衡位置,且偏离 初始平衡位置逾来逾远,则是不稳定的;若外界挠动除去后不能 回复到初始平衡位置,仍能停留在新的平衡位置,则是临界状态, 也称随遇平衡。
(3)疲劳对缺陷十分敏感。
原因: 缺陷、微观裂纹、宏观裂纹。
注意:结构只有在循环拉应力作 用下才有可能发生疲劳破坏。
12
钢结构的可能破坏形式
疲劳断裂过程
裂纹形成
3 钢结构的 可能破坏形式
裂纹稳定扩展
裂纹失稳 扩展断裂
疲劳分类
高周疲劳(应力疲劳)
工作应力小于fy,没有明显的塑性变形, 寿命n≥5×104次。如吊车梁、桥梁、海洋平 台在日常荷载下的疲劳破坏

钢材的疲劳-常幅疲劳

钢材的疲劳-常幅疲劳
[Ds](N/mm2)(对数尺) β =4 1
1 β =3
n(对数尺)
疲劳容许应力幅[Ds]与应力循环次数n的关系曲线
钢材的疲劳——常幅疲劳
四、常幅疲劳验算 参数C和的取值
构件和连接类别
C β
1
1940×1012
2
861×1012

3
3.26×1012
4
2.18×1012
5
1.47×1012
6
0.96×1012
有光泽的晶粒状或人字纹。而疲劳破坏的主要断口特征是放射和年轮状花纹。
(3)疲劳对缺陷十分敏感。
钢材的疲劳——常幅疲劳
二、引起疲劳破坏交变荷载的两种类型 常幅交变荷载----常幅应力----常幅疲劳 变幅交变荷载----变幅应力----变幅疲劳 应力比()
循环应力中绝对值最小的峰值应力smin与绝对值最大的峰值应力smax之比。= smin
钢材的疲劳——常幅疲劳
钢材的疲劳——常幅疲劳
一、疲劳破坏的特征 定义:钢材在循环荷载作用下,应力虽然低于极限强度,甚至低于屈服强度,但 仍然会发生断裂破坏,这种破坏形式就称为疲劳破坏。
破坏过程:裂纹的形成----裂纹的扩展----最后的迅速断裂而破坏
破坏特点: (1)疲劳破坏时的应力小于钢材的屈服强度,钢材的塑性还没有展开,属于脆性破 坏。 (2)疲劳破坏的断口与一般脆性破坏的断口不同。一般脆性破坏后的断口平直,呈
三、常幅疲劳 2. 焊接结构的疲劳
f
y
y
f
y
最大:
最小:
s m a x
f
f
y
f
y
Ds
f s
y
m a x

钢结构易发生的工程事故有哪些

钢结构易发生的工程事故有哪些

钢结构易发生的工程事故有哪些一、钢结构承载力和刚度失效。

二、钢结构失稳。

钢结构的失稳主要发生在轴压、压弯和受弯构件。

三、钢结构疲劳破坏。

热门城市:中山律师宁德律师商丘律师固原律师乐山律师钦州律师荆门律师常州律师海东律师鞍山律师钢结构是一种新型的结构体系,有着各种各样的优点,随着钢结构的不断发展,许多其他的结构体系都在被取代,我国的钢结构也在蓬勃发展。

但是钢结构也有其不足的地方,他的一些缺陷可能造成事故。

下面小编就为您介绍钢结构易发生的工程事故有哪些。

钢结构的事故按破坏形式大致可分为:钢结构承载力和刚度失效;钢结构失稳;钢结构疲劳;钢结构脆性断裂和钢结构的腐蚀等几种。

一、钢结构承载力和刚度失效1、钢结构承载力失效指正常使用状态下结构构件或连接材料强度被超越而导致破坏。

其主要原因为:①钢材的强度指标不合格。

合格钢结构设计中有两个重要强度指标:屈服强度fy;另外,当结构构件承受较大剪力或扭矩时,钢材抗剪强度fv也是重要指标。

②连接强度不满足要求。

焊接连接的强度取决于是否与母材匹配的焊接材料强度、焊接工艺、焊缝质量和缺陷及其检查控制、焊接对母材热影响区强度的影响等;螺栓连接强度的影响因素为:螺栓及其附件材料的质量以及热处理效果(高强螺栓)、螺栓连接的施工技术工艺的控制,特别是高强螺栓预应力控制和摩擦面的处理、螺栓孔引起被连接构件截面的削弱和应力集中等。

③使用荷载和条件的变化。

包括计算荷载的超载、部分构件退出工作引起其他构件增载、意外冲击荷载、温度变化引起的附加应力、基础不均匀沉降引起的附加应力等。

2、钢结构刚度失效指产生影响其继续承载或正常使用的塑性变形或振动。

其主要原因为:①结构或构件的刚度不满足设计要求如轴压构件不满足长细比要求;受弯构件不满足允许挠度要求;压弯构件不满足上述两方面要求等。

②结构支撑体系不够。

支撑体系是保证结构整体和局部刚度的重要组成部分,它不仅对抵制水平荷载、抗振动有利,而且直接影响结构正常使用(如工业厂房当整体刚度不足时,在吊车运行过程中会产生振动和摇晃)。

钢结构简答题

钢结构简答题

钢结构简答题钢结构思考题及解答1.3 钢结构主要有哪些结构形式?钢结构的基本构件有哪⼏种类型?答:⑴钢结构的主要形式有钢框架结构、钢桁架及钢⽹架结构、悬索结构、预应⼒钢结构。

⑵根据受⼒特点构件可分为轴⼼受⼒构件、受弯构件、拉弯及压弯构件三⼤类。

钢结构还可与混凝⼟组合在⼀起形成组合构件,如钢-混凝⼟组合梁、钢管混凝⼟、型钢混凝⼟构件等。

1.4 钢结构主要破坏形式有哪些?有何特征?答:⑴钢结构破坏的主要形式包括强度破坏、失稳破坏、脆性断裂破坏。

⑵强度破坏特征:内⼒达到极限承载⼒,有明显的变形;失稳破坏特征:具有突然性,可分为整体失稳破坏与局部失稳破坏;脆性断裂破坏特征:在低于强度极限的荷载作⽤下突然断裂破坏,⽆明显征兆。

1.6 钢结构设计的基本⽅法是什么?答:基本⽅法:概率极限状态设计法、允许应⼒法。

2.1 钢材有哪两种主要破坏形式?各有何特征?答:⑴塑性破坏与脆性破坏。

⑵特征:塑性破坏断⼝呈纤维状,⾊泽发暗,有较⼤的塑性变形和颈缩现象,破坏前有明显预兆,且变形持续时间长;脆性破坏塑性变形很⼩甚⾄没有,没有明显预兆,破坏从应⼒集中处开始,断⼝平齐并呈有光泽的晶粒状。

2.2 钢材主要⼒学性能指标有哪些?怎样得到?答:①⽐例极限f:对应应变约为0.1%的应⼒;p②屈服点(屈服强度)f:对应应变约为0.15%的应⼒,即下屈服极限;yf:应⼒最⼤值;③抗拉强度uf:⾼强度钢材没有明显的屈服点和④条件屈服点(名义屈服强度)0.2屈服强度,定义为试件卸载后残余应变为0.2%对应的应⼒。

2.3 影响钢材性能的主要化学成分有哪些?碳、硫、磷对钢材性能有何影响?答:⑴铁、碳、锰、硅、钒、铌、钛、铝、铬、镍、硫、磷、氧、氮。

⑵碳的含量提⾼,钢材强度提⾼,但同时钢材的塑性、韧性、冷弯性能、可焊性及抗锈蚀能⼒下降;硫使钢材热脆,降低钢材冲击韧性,影响疲劳性能与抗锈蚀性能;磷在低温下时钢变脆,在⾼温时使钢塑性降低,但能提⾼钢的强度和抗锈蚀能⼒。

钢结构疲劳分析

钢结构疲劳分析
19
钢结构疲劳问题
其他原因: 行动活荷载; 焊接缺陷:孔洞、夹渣等; 成型控制缺陷(冲孔、剪边、气割); 几何截面的突然变形; 地震的对结构的反复摇摆,温度变化。
20
钢结构疲劳问题
疲劳计算原则
安全寿命法:先估计一个荷载谱,然后通过分析和实验找出 关键构件在这一荷载普下的语气寿命,在引入安全系数以得 到安全寿命,安全寿命决定使用期限,就够后构件到安全寿 命就要报废或者更换,使用于飞机设计。
应力比:R=min/ max
应力幅:循环一周最大、最小应力差
= max- min
t
t
常幅疲劳
变幅疲劳
“常幅疲劳”是指在使用期内交变荷载下每次循环的应力变化幅 值相同;否则称“变幅疲劳”。承受吊车荷载的吊车梁属变幅疲 劳,因为起吊重量有时满载,有时欠载。
9
钢结构疲劳问题
a)静应力R=1 b)脉动循环应力R=0 c)对称循环应力R=-1
16
钢结构疲劳问题
延长疲劳寿命的方法: 减小初始裂纹尺寸a1。因为在裂纹尺寸很小时,扩展速率da/dN很低; 降低构件所承受的应力和采用韧性较好的材料。减低应力幅要求增大构件截 面,从而提高造价。采用高韧性材料和加强施工质量控制也都要提高造价。 于是要权衡轻重做出最佳的方案
17
钢结构疲劳问题
高周疲劳:在疲劳破坏之前具有应力大,应变小的特点 低周疲劳:在疲劳破损之前具有应力小,应变大的特点 采用较小的循环应力,可降低疲劳强度,增大构件的寿命
I:对接焊缝 II:角接焊缝
22
钢结构疲劳问题
应力幅准则
自从焊接结构用于承受疲劳荷载以来,工程界从实践逐渐认识
14
钢结构疲劳问题
A的纵坐标是在N=N1时,交变循环荷载作用下的 max

3 钢结构的破坏形式

3  钢结构的破坏形式
18
钢结构的可能破坏形式
3 钢结构的 可能破坏形式
正确制造
(1) 严格按照设计要求进行制作,不得随意进行钢材代换,不得随意将 螺栓连接该为焊接连接,不得随意加大焊缝厚度。 (2) 为了避免冷作硬化现象的发生,应采用钻孔或冲孔后再扩钻的方 法,以及对剪切边进行刨边。 (3) 为了减少焊接残余应力导致的应力集中,应该制定合理的焊接工艺 和技术措施,并由考试合格的焊工施焊,必要时可采用热处理方法 消除主要构件中的焊接残余应力。 (4) 焊接中不得在构件上任意打火起弧,影响焊接的质量,应按照规范 的要求进行。
N增大到一定数值(Ncr)
N继续增大(>Ncr)
不稳定平 衡状态
3
钢结构的可能破坏形式
3 钢结构的 可能破坏形式
理想的轴心受压构件(杆件挺直、荷载无偏心、无初始 应力、无初弯曲、无初偏心、截面均匀等)的失稳形式分为:
弯曲失稳 扭转失稳 弯扭失稳
4
钢结构的可能破坏形式
3 钢结构的 可能破坏形式
无缺陷的轴心受压构件 (双轴对称的工型截面) 通常发生弯曲失稳,构 件的变形发生了性质上 的变化,即构件由直线 形式改变为弯曲形式, 且这种变化带有突然性。
σmax σmin
变幅疲劳计算: 吊车荷载作用 下的疲劳计算:
e
(a) σ
t
σmax
f 210
σmin
(b)
6
16t
钢结构的可能破坏形式 图 1-1 疲劳应力谱
3 钢结构的 可能破坏形式
疲劳破坏中一些值得注意的问题
(1)疲劳验算采用的是容许应力设计法,而不是以概率论为基础的 设计方法。这主要是因为焊接构件焊缝周围的力学性能非常复杂, 目前还没有较好试验或数值方法对其进行以概率论为基础的研究。 采用荷载标准值计算。 (2)对于只有压应力的应力循环作用,由于钢材内部缺陷不易开展, 则不会发生疲劳破坏,不必进行疲劳计算。 (3)国内外试验证明,大多数焊接连接类别的疲劳强度不受钢材强 度的影响,故可认为疲劳容许应力幅与钢种无关。 (4)提高疲劳强度和疲劳寿命的措施 (a)采取合理构造细节设计,尽可能减少应力集中; (b)严格控制施工质量,减小初始裂纹尺寸; (c)采取必要的工艺措施如打磨、敲打等。

钢结构事故现象及原因分析

钢结构事故现象及原因分析

摘要随着国民经济和科学技术的发展,钢结构的应用范围日趋广泛,由于其应用及结构形式发展较快,也带来一些新问题。

本文首先论述了钢结构的优点和应用前景,并从钢结构工程的深化设计、加工制作安装施工、使用过程的三个阶段出现的问题并导致结构的损伤与破坏的事故,结合生产生活中的实际案例对事故的类型、原因进行了解剖分析。

同时针对建筑工程中钢结构事故的破坏形式如:钢结构失稳,钢结构的脆性断裂,钢结构承载力和刚度失效,钢结构疲劳破坏和钢结构的腐蚀破坏等分析了产生事故的原因并提出了预防措施。

探讨了钢结构工程的深化设计开始把关,继而提出了做好钢结构构件加工质量的控制,并以严、准、细的要求控制钢结构施工安装的相应对策,将钢结构事故发生的可能性降到最低。

钢结构事故现象及原因分析一、钢结构的前景钢结构作为一种新型的结构体系,以其强度高、自重轻、塑性和韧性好、抗震性能优越、工厂化生产程度高、装配方便、造型美观、综合经济效益显著等一系列优点,受到国内外建筑师和结构工程师的青睐,近二十多年来,我国钢结构在工程建设中得到了更为广泛的应用,在材料、加工工艺、施工技术、理论分析和设计方法等诸方面都有了飞速发展和进步,应用钢结构已成为当前的一大“热点”,展现了其广阔的、具有强大生命力的前景。

在高层、大跨建筑领域显示出其无与伦比的优势。

钢结构的形式与应用范围是非常广泛的,在形式上有普钢结构、轻钢结构、空间结构、张拉结构等;应用范围,既有民用建筑钢结构、公共建筑钢结构、工业厂房钢结构、桥梁钢结构,又有特种构筑物(塔桅、储藏库、管道支架、栈桥等)钢结构等,既可应用于高度达400多米以上的高层建筑,跨度达200多米的空间结构,又可应用于几米跨度的建筑结构。

但任何事物都有着它的两面性,钢结构也有其自身的缺陷和不足,钢结构在具体应用中,也会存在一些质量问题,会发生一些工程事故,所以应采取一些积极措施加以预防[1]。

二、钢结构事故的原因(一)设计阶段的原因结构设计[2]方案不合理;计算简图不当,结构计算错误;对结构荷载实际受力情况估计不足;材料选择不宜(如强度、韧性、疲劳、焊条、焊丝、焊接方法、焊接性能等);结构节点不合理或不完善;未充分考虑加工制作与安装施工和使用阶段工艺特点、防腐、防高温、防冷脆措施不足;没有按设计规范或没有相应的规范、规程规定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第8章 钢结构的脆性断裂和疲劳
8.1 钢结构脆性断裂及其防止
8.1.1 脆性断裂破坏
脆性破坏: 结构的最终破坏是由于其构件的脆性断裂导致的。

特点:无塑性发展或很小,断裂时伸长量极其微小,没有破坏的预兆。

脆性破坏分类
①过载断裂:由于过载,强度不足而导致的断裂。

特点:破坏速度快,主要是钢丝束、钢绞线和钢丝绳等。

②非过载断裂:塑性很好的钢构件在缺陷、低温等因素影响下突然呈脆性断裂 ③应力腐蚀断裂:在腐蚀性环境中承受静力或准静力荷载作用的结构,在远低于屈服极限的应力状态下发生的断裂,强度越高则对应力腐蚀断裂越敏感。

④疲劳断裂与腐蚀疲劳断裂:在交变荷载作用下,裂纹的失稳扩展导致的断裂,高周:循环周数在105以上者,低周:只有几百或几十次, 环境介质导致或加速疲劳裂纹的萌生和扩展称为腐蚀疲劳。

⑤ 氢脆断裂: 氢使材料韧性降低而导致的断裂
钢结构的非过载脆性破坏P302
8.1.2脆性断裂的防止 构件不出现非过载脆性断裂的条件IC I K K ≤=σπα(含义见书) 为了防止脆性断裂,需要从三个方面着手:
1.钢材选择(保证足够韧性IC K )
材料韧性指标:冲击韧性。

碳素钢:夏比V 形缺口冲击功不低于27J ;
低合金高强度结构钢:夏比V 形缺口冲击功不低于34J ;
公路钢桥和吊车梁在翼缘板厚度不超过4Omm ,按所处最低温度加40℃级别要求; 公路钢桥和吊车梁在翼缘板厚度超过 4Omm, 降低最低温度;
低温地区避免用厚度大的钢板,必须用厚板时,应提高对冲击韧性的要求或进行全厚度韧性试验。

2.初始裂纹:减小初始裂纹,避免形成裂缝间隙,保证焊缝质量,限制和避免焊接缺陷,焊缝表面不得有裂纹;
3.应力:缓和应力集中,减小应力值,避免受到约束而产生高额残余应力
4.结构形式与构造细节:超静定结构优于静定结构:由于地基不均匀沉陷会导致严重不利的内力重分布。

静定结构采用多路径传递荷载优于单路径传递荷载。

单个构件:多路径组织要优于单路径组织
焊接受弯构件的受拉翼缘,当弯矩很大,需要选取较厚的翼缘时,从抗断裂的
角度看,后者要比前者有利。

前者一旦开裂,即一裂到断,后者在一层板开裂后,不会波及其他板层。

翼缘和腹板采用不焊透的焊缝连接,有利于阻止裂缝的发展。

但只适用于翼缘和腹板之间无垂直于间隙的拉力时才允许。

否则,构造间隙的类裂纹作用十分有害。

在它近旁的高度应力集中,高额的焊接残余应力,以及因热塑变形而时效硬化导致的基体金属的脆性提高,经常扮演诱发裂纹的角色。

8.2 钢结构抗疲劳设计
8.2.1 疲劳破坏
疲劳破坏是裂缝形成,扩展及最终断裂的过程。

钢结构本身内部存在微小裂纹,所以钢结构疲劳只有后2阶段。

影响结构疲劳因素主要有疲劳荷载(外因),还有内因的断裂韧性,及描述缺陷应力状态的应力集中程度。

对于等幅交变荷载其幅值min max P P P -=∆对疲劳寿命影响显著。

增加荷载幅值,试件的疲劳寿命呈减少趋势,同样的荷载幅值作用下,试件的疲劳寿命随初始裂纹长度的增大而减少,荷载比(或应力比)max min /P P =ρ对裂缝扩展速度较小。

应力集中系数大(相应地,应力集中程度越高),构件的抗疲劳性能越差。

8.2.2 应力幅准则
建立在应力幅基础上的疲劳校核准则:[]σσ∆≤∆(允许应力幅)
[]()βσ/1/n C =∆不同构件式连接的C ,β值见表8-2,308页
例题见311页。

8.2.3 变幅疲劳荷载
对于随机荷载谱,用最大应力幅max σ∆计算偏于保守。

实用的方法是从随机谱中提出若干个应力谱i σ∆并确定和它们相对应的频数i n ,然后,按照线性累积损伤准则 ,找出一个等效应力幅e σ∆,代替前σ∆
()ββσσ/111/⎥⎦⎤⎢⎣⎡∆=∆∑∑==M i M i i i i e n n
i n :预期使用寿命内相应于应力幅i σ∆的应力循环次数
准则假定各应力幅出现的先后顺序不影响疲劳寿命。

i i ησ,∆根据雨流计数法和水库计数法来确定,具体方法见书,改善措施见书。

相关文档
最新文档