城市排水防涝泵站自动化控制系统应用

城市排水防涝泵站自动化控制系统应用
城市排水防涝泵站自动化控制系统应用

城市排水防涝泵站自动化控制系统应用本文只是我精心从网络上搜集来的,我保留了原作者的姓名。如果有侵犯了你的权利,请第一时间通知我,我在第一时间内做出删除处理。给你带来的不便表示抱歉。另外,如果文章中出现了应该有图片而没有显示出来的,可能是因为文档在转换过程中的丢失造成的问题,如果图片的请和我联系。

城市排水防涝泵站自动化控制系统应用

网络收集

城市排水防涝泵站自动化控制系统应用

1.项目简介

泵站作为市政建设和管理工程的主要设施,担负着城市排水防涝的重要任务。泵站控制系统的自动化监控和管理具有重要意义,能达到减员增效和提高管理水平的目的,易控应用于某泵站自动化监控系统实现了对雨水泵房和污水泵房的自动化监测和控制。

泵站建立独立的功能完善的就地自动化控制系统,建立集中监测和控制室,实现泵站的自动化运行控制。泵站内各种设备的运行均由泵站就地控制系统直接控制,泵站就地控制系统是根据液位等泵站运行工况来进行控制的。泵站接收污水治理工程中央监控系统下载的全局性运行数据和调控指令,作为泵站自动控制的条件参数,以配合实现污水治理工程中央监控系统规定的基于流量的控制。

2.系统构成

泵站系统采用分层控制结构,系统分为三层:

信息层:监控计算机

控制层:PLC与远程IO子站

设备层:阀门、水泵、流量计、水位计等现场设备

信息层位于中央控制室,利用易控(INSPEC)组态软件设计完成整个监控系统的图形界面,以及监控数据报表等。可对全泵站生产数据进行收集以及集中控制,设有上位机2台(工程师站、操作员站各一台)以及相关打印机与不间断电源UPS,上位机通过以太网与PLC分站连接;设有模拟屏,显示全泵站的电力监控情况。

控制层负责对现场仪表数据的采集,以及对现场设备进行监控。PLC主站通过以太网与上位机进行连接,通过DeviceNet与远程IO子站进行连接。

设备层由现场仪表、电机、阀门及其他执行设备等组成。这些仪表设备通过

24VDC开关量信号及4,20mA模拟信号与PLC远程IO站连接,把工艺参数、运行状态送到PLC,而PLC则实现对设备的控制。

上位监控系统完成全站的自动化运行及其管理。下位PLC采用GE公司的90-30系列PLC、远程I/O子站采用Beckhoff公司的BK5220系列I/O模块。下位PLC共有3台,分别负责水位测量、电力监控、水泵启停等工作。下位PLC通过以太网模块接入Hub与上位机进行通讯,下位PLC与远程IO子站通过Device net网络进行通讯。PLC1共有6个远程IO子站,PLC3共有11个远程IO子站,PLC2没有带子站。泵站系统结构图如下:

泵站系统结构示意图由于季节性变化,所有泵站在不同季节将采取不同的运行模

式,该泵站全年运行模式如下:

模式一:旱季无雨时或初雨且尚未超过截流水量时,仅有截流污水泵交替运行或满

负荷运行。

模式二:初雨且已超过截流水量时,截流污水泵满负荷运行,雨水调节池启用。

模式三:降雨继续,雨水调节池已储满时,截流污水泵满负荷运行,雨水泵开始防

汛排涝运行。

模式四:降雨结束,雨水泵停运,调节池开始放空时,仅有截流污水泵交替运行。

模式五:旱季无雨,雨水泵试车时,截流污水泵暂时停止运行。

模式六:泵站大修。

3.系统特点

系统运行可靠。提供雨污水外排工程的运行监视,提供工程范围内主要设备的运行监视,提供故障报警和事故状态下应急处理的方案及手段。

系统运行经济。充分发挥泵组的提升能力和管网系统对雨污水的运载能力,动用最少的机电设备,最小的能耗,达到最大的排放能力。

实现对包括泵站等设施内的全部仪表和机电设备的监控。污水泵房的控制分三层实现,即中央控制、就地控制和基本控制,雨水泵房不设中央控制,仅有就地控制和基本控制。

完善的数据采集,对全厂主要设备的运行状态和运行参数自动定时的进行采集,并存于实时数据库,供计算机系统实现画面显示、制表打印及完成各种计算、控制等功能时使用。

安全运行监视:中控室值班运行人员借助监控系统人机界面,监视泵站的生产过程和运行情况,各点参数及其变化趋势和设备状态,在运行状态发生变更时能及时进行分析和处理。

实现自动控制,减轻泵站运行人员的劳动强度,提高安全运行水平。

4.系统方案

污水泵房和雨水泵房的控制相对独立,分别设置各自的基于可编程序逻辑控制器(PLC)所构成的污水泵房控制子系统和雨水泵房控制子系统。变电所设置独立的自动化控制系统,并和集控室的计算机系统连接。在集控室设置两台监控计算机(一用一备)用以管理、协调各子系统的工作,其显示屏和键盘构成泵站就地控制系统的操作界面。污水泵房和雨水泵房的PLC分别负责与污水治理工程中央监控主站及市区排水信息系统的通信。

监控计算机、污水泵房控制PLC、雨水泵房控制PLC、变电所自动化系统的数据集总器等设备采用工业以太网(Ethernet)相互连接。PLC与水泵、闸门等机械设备的控制箱之间采用DeviceNet总线相互连接。仪表的模拟量和脉冲量信号则通过远端I/O模块转接入DeviceNet。

泵站与污水治理工程中央监控主站的通信使用两个信道:常用信道采用市数字数据网 (DDN);备用信道为无线通信信道,经SA泵站转接至位于M2泵站的污水治理工程中央监控主站。通信规约采用IEC60870.5-101,非平衡传输模式,实现轮询方式下的逢变则报。

泵站与市区排水信息系统的常用通信方式为无线通信方式,备用为拨号电话线路。

污水泵房的控制分三层实现,即中央控制、就地控制和基本控制。

雨水泵房不设中央控制,仅有就地控制和基本控制。

中央控制层:中央控制层提供系统的宏观调度,维持系统的整体协调。本工程污水泵房的(远程)中央控制室是位于M2泵站的中央监控主站。中央控制室能够对该

泵站进行远程的数据采集和运行参数设定,但不直接控制该泵站的设备。

就地控制层:就地控制的优先级高于中央控制,利用PLC的逻辑控制功能,提供设备的自动控制及关联设备的联动、连锁控制。本工程的就地控制操作界面是集中控制室的监控计算机屏幕,PLC能根据监控计算机发出的指令及预先制定的规则和调节方法自动控制现场设备。

基本控制层:基本控制具有最高的控制优先级,当设备操作箱的控制方式手柄处于“手动操作”时,监控计算机和PLC发出的控制命令被屏蔽,现场设备可以在配电屏或控制柜上实现手动操作与检查。这些配电屏或控制柜需提供基本的控制连锁或

联动。

5.软件应用

泵站自动化监控系统的上位监控由易控(INSPEC)组态软件开发实现,建立独立的、功能完善的雨水泵房和污水泵房统一控制系统,具备集中监测、控制室,实现泵站的自动化运行控制功能,其中监控系统的主要功能包括实时检测各项数据,定时打印数据报表,查询历史数据、报警信息、显示流量曲线等。

系统图形显示界面

泵站监控系统的地显示界面按功能分为主控平台,电站检测,报警查询,报表浏览,系统维护,系统运行时,首先进入主控平台界面,该界面可以显示整个泵站所有设备的信息,点击每个设备可以查看设备的详细信息,电站检测界面可以显示系统电气连接网络图,报警查询和报表浏览界面可以查看报警情况和历史数据实时数

据的浏览曲线图。以下是泵站监控画面图:

泵站监控画面示意图在主控平台中包含泵站的所有污水泵、雨水泵及格栅等的各类

参数信息以及对各个泵、闸门及格栅等的操作。

1、泵的启停及主要参数: “机泵监测”窗口集中显示了该泵的当前运行状态、累积运行时间与次数、电流值、频率值、转速值、累积流量等参数信息;还能对该泵

进行远程启停控制。

2、闸门的启停及主要参数: “闸门监测”窗口集中显示了该闸门的当前状态、累

积运行时间与次数等参数信息;还能对该闸门进行远程开关闸控制。 3、格栅的主要参数: “格栅监测”窗口集中显示了格栅的当前状态等参数信息。 4、“雨水排放操作”及“污水排放操作”窗口中包含了各种对雨水或污水排放的操作模式。

下图为泵站监测界面

电站监测界面示意图数据采集

本系统对过程数据自动进行巡回采集和存储,数据采样周期小于100ms,其中机

组重要参数按性质分为两大类。

(1)开关类参数:这类参数来源是PLC,如:机组控制开机、停机,闸门开关等;

(2)流量类参数:测量污水和雨水流量,它们来自液位仪,流量计,雨量计。如:机组各项绕组温度及轴承温度等。上位机对于不同设备分别进行数据采集,对于PLC 设备,使用时只需添加设备并进行一些参数设置,便可实现信息传送;。根据用户要求进行不同的数据处理,动态显示或者保存到数据库中。

报表

报表是泵站管理的一项重要功能,系统要求上位机定时或召唤自动出报表,设计的报表包括:泵站所有机组的运行日志;污水和雨水流量统计报表(分为年、月、日

统计报表);故障报警报表等。

6.结束语

该系统具有完善的泵站监测和控制功能,满足安全监视、控制调节及生产管理等多方面的要求,现场运行稳定可靠、经济节能,大大减轻了泵站运行人员的劳动强度。通过易控(INSPEC)组态的人机界面具有强大的自动控制和数据管理功能,而且整个监控系统运行稳定可靠,为用户的泵站泵站监控自动化提供了理想的信息化

解决方案。(end)

网络收集,如果侵犯了您的利益,请立刻和我联系,我将第一时间内做出处理~~

另外,如果有需要购买着,不方便在豆丁购买的,支持支付宝,T*B交易,优惠。。。

城市排水(雨水)防涝综合规划编制大纲

城市排水(雨水)防涝综合规划编制大纲 第一部分规划编制大纲 一、规划背景与现状概况 (一)规划背景 1. 区位条件 2. 地形地貌 3. 地质水文 4. 经济社会概况 5. 上位规划概要 6. 相关专项规划概要 (二)城市排水防涝现状及问题分析 1. 城市排水防涝现状 2. 问题及成因分析 二、城市排水防涝能力与内涝风险评估 (一)降雨规律分析与下垫面解析 (二)城市现状排水系统能力评估 1. 排水系统总体评估 2. 现状排水能力评估 (三)内涝风险评估与区划 三、规划总论 (一)规划依据

(二)规划原则 (三)规划范围 (四)规划期限 (五)规划目标 (六)规划标准 7.雨水径流控制标准 8.雨水管渠、泵站及附属设施设计标准 9.城市内涝防治标准 (七)系统方案 四、城市雨水径流控制与资源化利用(一)径流量控制 (二)径流污染控制 (三)雨水资源化利用 五、城市排水(雨水)管网系统规划(一)排水体制 (二)排水分区 (三)排水管渠 (四)排水泵站及其他附属设施 六、城市防涝系统规划 (一)平面与竖向控制 (二)城市内河水系综合治理

(三)城市防涝设施布局 10.城市涝水行泄通道 11.城市雨水调蓄设施 (四)与城市防洪设施的衔接 七、近期建设规划 八、管理规划 (一)体制机制 (二)信息化建设 (三)应急管理 九、保障措施 (一)建设用地 (二)资金筹措 (三)其他 十、附件 (一)近期建设任务与投资列表 (二)规划附图要求 第二部分关于规划编制大纲的说明一、规划背景与现状概况 (一)规划背景 3.区位条件 描述城市位置与区位情况。

12.地形地貌 描述城市地形地貌概况。 13.地质水文 描述城市气候、降雨、土壤和地质等基本情况。 14.经济社会概况 描述城市人口、经济社会情况等。 15.上位规划概要 (1)城市性质、职能、结构、规模等内容。 (2)城市发展战略和用地布局等内容。 (3)城市总体规划中与城市排水防涝相关的绿地系统规划、 城市排水工程规划、城市防洪规划等内容。 16.相关专项规划概要 重点分析城市防洪规划、城市竖向规划、城市绿地系统专项 规划、城市道路(交通)系统规划、城市水系规划等与城市 排水与内涝防治密切相关的专项规划的内容。 (二)城市排水防涝现状及问题分析 4.城市排水防涝现状 (1)城市水系 城市内河(不承担流域性防洪功能的河流)、湖泊、坑塘、 湿地等水体的几何特征、标高、设计水位及城市雨水排放口 分布等基本情况。 城市区域内承担流域防洪功能的受纳水体的几何特征、设计 水(潮)位和流量等基本情况。 (2)城市雨水排水分区 城市排水分区情况,每个排水分区的面积,最终排水出路等。(3)道路竖向 城市主次干道的道路控制点标高。 (4)历史内涝 描述近10年城市积水情况,积水深度、范围等,以及灾害造 成的人员伤亡和直接、间接经济损失。 (5)城市排水设施 城市现有排水管渠长度,管材,管径,管内底标高,流向, 建设年限,设计标准,雨水管道和合流制管网情况及城市雨 水管渠的运行情况。 城市排水泵站位置,设计流量,设计标准,服务范围、建设 年限及运行情况。

城市排水(雨水)防涝综合规划编制大纲

城市排水(雨水)防涝综合规划编制大纲第一部分规划编制大纲 一、规划背景与现状概况 (一)规划背景 1. 区位条件 2. 地形地貌 3. 地质水文 4. 经济社会概况 5. 上位规划概要 6. 相关专项规划概要 (二)城市排水防涝现状及问题分析 1. 城市排水防涝现状 2. 问题及成因分析 二、城市排水防涝能力与内涝风险评估 (一)降雨规律分析与下垫面解析 (二)城市现状排水系统能力评估 1. 排水系统总体评估 2. 现状排水能力评估 (三)内涝风险评估与区划 三、规划总论 (一)规划依据

(二)规划原则 (三)规划范围 (四)规划期限 (五)规划目标 (六)规划标准 1. 雨水径流控制标准 2. 雨水管渠、泵站及附属设施设计标准 3. 城市内涝防治标准 (七)系统方案 四、城市雨水径流控制与资源化利用(一)径流量控制 (二)径流污染控制 (三)雨水资源化利用 五、城市排水(雨水)管网系统规划(一)排水体制 (二)排水分区 (三)排水管渠 (四)排水泵站及其他附属设施 六、城市防涝系统规划 (一)平面与竖向控制 (二)城市内河水系综合治理

(三)城市防涝设施布局 1. 城市涝水行泄通道 2. 城市雨水调蓄设施 (四)与城市防洪设施的衔接 七、近期建设规划 八、管理规划 (一)体制机制 (二)信息化建设 (三)应急管理 九、保障措施 (一)建设用地 (二)资金筹措 (三)其他 十、附件 (一)近期建设任务与投资列表 (二)规划附图要求 第二部分关于规划编制大纲的说明 一、规划背景与现状概况 (一)规划背景 1. 区位条件

描述城市位置与区位情况。 2. 地形地貌 描述城市地形地貌概况。 3. 地质水文 描述城市气候、降雨、土壤和地质等基本情况。 4. 经济社会概况 描述城市人口、经济社会情况等。 5. 上位规划概要 (1)城市性质、职能、结构、规模等内容。 (2)城市发展战略和用地布局等内容。 (3)城市总体规划中与城市排水防涝相关的绿地系统规划、城市排水工程规划、城市防洪规划等内容。 6. 相关专项规划概要 重点分析城市防洪规划、城市竖向规划、城市绿地系统专项规划、城市道路(交通)系统规划、城市水系规划等与城市排水与内涝防治密切相关的专项规划的内容。 (二)城市排水防涝现状及问题分析 1. 城市排水防涝现状 (1)城市水系 城市内河(不承担流域性防洪功能的河流)、湖泊、坑塘、湿地等水体的几何特征、标高、设计水位及城市雨水排放口分布等基本情况。 城市区域内承担流域防洪功能的受纳水体的几何特征、设计水(潮)位和流量等基本情况。 (2)城市雨水排水分区 城市排水分区情况,每个排水分区的面积,最终排水出路等。 (3)道路竖向 城市主次干道的道路控制点标高。 (4)历史内涝 描述近10年城市积水情况,积水深度、范围等,以及灾害造成的人员伤亡和直接、间接经济损失。 (5)城市排水设施 城市现有排水管渠长度,管材,管径,管内底标高,流向,建设年限,设计标准,雨水管道和合流制管网情况及城市雨水管渠的运行情况。

城市排水防涝泵站自动化控制系统应用

城市排水防涝泵站自动化控制系统应用本文只是我精心从网络上搜集来的,我保留了原作者的姓名。如果有侵犯了你的权利,请第一时间通知我,我在第一时间内做出删除处理。给你带来的不便表示抱歉。另外,如果文章中出现了应该有图片而没有显示出来的,可能是因为文档在转换过程中的丢失造成的问题,如果图片的请和我联系。 城市排水防涝泵站自动化控制系统应用 网络收集 城市排水防涝泵站自动化控制系统应用 1.项目简介 泵站作为市政建设和管理工程的主要设施,担负着城市排水防涝的重要任务。泵站控制系统的自动化监控和管理具有重要意义,能达到减员增效和提高管理水平的目的,易控应用于某泵站自动化监控系统实现了对雨水泵房和污水泵房的自动化监测和控制。 泵站建立独立的功能完善的就地自动化控制系统,建立集中监测和控制室,实现泵站的自动化运行控制。泵站内各种设备的运行均由泵站就地控制系统直接控制,泵站就地控制系统是根据液位等泵站运行工况来进行控制的。泵站接收污水治理工程中央监控系统下载的全局性运行数据和调控指令,作为泵站自动控制的条件参数,以配合实现污水治理工程中央监控系统规定的基于流量的控制。 2.系统构成 泵站系统采用分层控制结构,系统分为三层: 信息层:监控计算机 控制层:PLC与远程IO子站 设备层:阀门、水泵、流量计、水位计等现场设备

信息层位于中央控制室,利用易控(INSPEC)组态软件设计完成整个监控系统的图形界面,以及监控数据报表等。可对全泵站生产数据进行收集以及集中控制,设有上位机2台(工程师站、操作员站各一台)以及相关打印机与不间断电源UPS,上位机通过以太网与PLC分站连接;设有模拟屏,显示全泵站的电力监控情况。 控制层负责对现场仪表数据的采集,以及对现场设备进行监控。PLC主站通过以太网与上位机进行连接,通过DeviceNet与远程IO子站进行连接。 设备层由现场仪表、电机、阀门及其他执行设备等组成。这些仪表设备通过 24VDC开关量信号及4,20mA模拟信号与PLC远程IO站连接,把工艺参数、运行状态送到PLC,而PLC则实现对设备的控制。 上位监控系统完成全站的自动化运行及其管理。下位PLC采用GE公司的90-30系列PLC、远程I/O子站采用Beckhoff公司的BK5220系列I/O模块。下位PLC共有3台,分别负责水位测量、电力监控、水泵启停等工作。下位PLC通过以太网模块接入Hub与上位机进行通讯,下位PLC与远程IO子站通过Device net网络进行通讯。PLC1共有6个远程IO子站,PLC3共有11个远程IO子站,PLC2没有带子站。泵站系统结构图如下: 泵站系统结构示意图由于季节性变化,所有泵站在不同季节将采取不同的运行模

泵站自动控制系统

泵站自动控制系统 【摘要】本文提出了一种以可编程控制器(PLC)为核心的泵站水泵控制方案。在该方案中,各台水泵平等地投入使用,并通过对各台水泵运行情况的记录,令运行较少的水泵优先启动,实现了对各台水泵的均衡使用。 【关键词】PLC;泵站;水位控制;均衡使用 1.引言 泵站在污水处理、城市排涝中都是必不可少的环节,而可编程控制器(PLC)以其出色的可靠性和抗干扰性常常被用作泵站的控制系统核心。目前泵站水泵的自动控制一种是在集水井安装超声波液位计,超声波液位计将集水井中的水位信号送给PLC,有PLC自动控制水泵的运行,另一种控制方式是在集水井中安装水位开关,将水位开关送给PLC,到预先设置好的水位后自动开/停污水泵[1] 。一般来说,泵站会设有备用水泵,以便在主水泵出现故障的时候维持泵站的正常运行。但若备用水泵在水中长期不运行,则电机的绝缘性能会下降,影响水泵的正常运行及使用寿命,而主水泵长期运行也会令其故障频率上升,各台水泵使用不均匀也会使总的维修成本增加。之前也有人提出了一个设计方案,使得各水泵轮流启动,互为备用,但该系统依然无法让各水泵均衡地投入使用[2]。本文设计了一个泵站水泵控制系统,在此系统中,各台水泵的地位是平等的,不存在固定的备用水泵,各台水泵均衡地投入使用。 某泵站目前有三台水泵,分别为一、二、三号泵。在正常情况下,两台水泵同时运行就能满足最大泵水量的要求,剩下一台作为备用水泵,但当水位超过警戒线时,三台水泵都要投入运行。 S1、S2、S3、S4、S5、S6为水位开关,当其浸入水中时处于接通状态(ON),在水面之上时为断开状态(OFF)。6个开关的安装位置由高到低依次是S6、S5、S4、S3、S2、S1。 2.控制要求 (1)当水位到达S2时,启动一台水泵,水位到达S4时启动两台水泵,水位到达警戒水位S6时,三台水泵都要运行;当水位依次回落到停止水位S5、S3、S1时,相应地停止一台泵,两台泵,三台泵。 (2)三台水泵的实际运行时间要尽量均衡,不能出现水泵之间累计运行时间相差悬殊的情况。 3.系统实现 3.1 详细分析

水务集团无人值守泵站自动化控制系统概述

自上世纪70年代自动化技术开始在泵站工程应用以来,其技术水平在不断地提高,应用范围也在不断地扩大,发展到今天,泵站自动化技术和自动化控制系统已初具规模,并逐步向一体化、智能化方向发展。一、泵站自动化技术改造目的宜兴水务集团由氿滨水厂和大贤岭水厂两个水厂以横山水库为水源向全市人民供水,分为东线和西线。为了实现可靠、连续、优质供水,宜兴水务集团下设了东山泵站、新庄泵站、都山泵站、杨巷泵站、洋溪泵站、高塍泵站等16个泵站,保证水压和水质。为对这16个泵站进行更合理有效地维护,同时可以更好地提高泵站的效率,减少站内工作人员的工作强度,在集团相关部门经过一系列充分的讨论工作后,决定将泵站改造为无人值守泵站。通过对泵站的有序控制,将泵站运行的泵机设备、清水库水位、压力、流量、浊度仪、余氯仪等实时信息采集到调度指挥中心,进行远程监视和控制,并在局域网内计算机上可通过WEB浏览数据,使调度人员对泵站操作情况做到有的放矢,在全集团范围实现供水大生产和大调度的目的。二、泵站自动化技术改造思路1、无人值守泵站自控系统的组成整个系统分两部分,一部分为远程控制系统:由PLC 主控模块,电源模块,开关量输入输出模块、模拟量输入输出模块、现场仪表、其他辅助设备以及监控工业组态软件组成;一部分为远程监视系统:由摄像头,硬盘录像机,液晶显示器和网络视频监控软件等组成;两部分组合为无人值守泵站自控系统,通过光纤在调度指挥中心实现监控泵站的情况和远程控制泵站的操作。自控系统的PLC选型AB公司的CompactLogix系列,编程软件为Rslogix5000,工控组态软件为Wonderware Intouch V10.0,系统以Rslinx2.55为OPC实现PLC和组态软件Intouch V10.0之间的通讯,进行DDE动态数据交换。监视系统的摄像头选型和硬盘录像机皆选型国产海康威视的产品,设置IP地址后,通过上位机网络视频软件设置进行监视。泵站系统示意图如图1:图1 泵站系统示意图2、无人值守泵站自控系统的功能⑴数据的采集:通过PLC对各种参数进行采集,如电力参数AB相电压、BC相电压、功率因素、泵电流等;泵机参数如运行状态、过载状态、泵的启停等;水情况如水压、水位、流量等;水质监测参数如浊度仪、余氯仪等;⑵变频恒压供水:通过PLC的编程,对变频器进行控制,达到根据不同时间段设定供水压力变频恒压,无需人为干涉。⑶人机界面:通过各主要画面的切换可以在调度指挥中心很直观地反映各泵站的工作情况;⑷水位的控制:通过组态软件界面,可实时监测清水库的水位,当达到一定值时,可远程关闭清水库的进水阀门,打开自流阀门;⑸统计和计算:调度指挥中心可通过压力监测系统查询每天泵机组的运行时间、调压情况、进出水流量的统计等;⑹视频监控:在泵站的大门口、泵房、低配、清水池、道路等安装摄像头,接入硬盘录像机,在调度指挥中心可通过网络视频软件实时观察泵站的情况;3、泵站自动化技术改造后的控制方式泵站自动化技术改造前,不同泵站有不同的操作方式,极不统一。但基本都是由现场的操作工进行手动操作:有的泵站未做恒压变频控制系统,需要操作工不时地根据压力和流量情况手动调节变频器的频率,来达到调节压力的目的;有的泵站已做恒压变频控制系统,但也需要在不同的时间段通过触摸屏设置目标压力;有的泵站根本没有变频系统,只是简单地通过调节泵机前端的阀门开大关小来达到调节压力的目的;也有极少数的泵站,利用触摸屏和变频器用RS485协议通讯,设置在不同时间段进行不同压力的恒压控制。泵站自动化技术改造后,对泵站进行统一的模式的控制。在手动状态,通过电位器调节变频器的频率来达到调节供水压力。在远程状态,有两种模式,在远程手动状态,可以人为地在不同时间段内设置目标压力,以满足供水调度要求;在远程自动状态,则可以预先在工业组态软件上根据不同的时间段进行设置,泵站的泵机就可以根据不同时间段不同压力无需人为干预实现全自动运行。三、泵站自动化技术改造中碰到的问题和解决方法在无人值守泵站自动化技术改造中,主要碰到了几个实际的问题:⑴设备陈旧老化:有的泵站的设备年代已久,

地级及以上城市排水防涝标准及对应降雨量

附件3 序号省份城市 内涝防治标准 (重现期:年) 对应降雨量 (毫米/24小时) 1北京北京市100410.0 2天津天津市100270.0 3河北石家庄市50280.0 4河北唐山市50194.4 5河北秦皇岛市30210.0 6河北邯郸市30100.0 7河北邢台市30236.1 8河北保定市30184.0 9河北张家口市30100.4 10河北承德市30151.4 11河北沧州市30158.0 12河北廊坊市30249.5 13河北衡水市30195.7 14山西太原市50180* 15山西大同市50120* 16山西阳泉市30150.0 17山西长治市30102.5 18山西晋城市3079.2 19山西朔州市30100.0 20山西晋中市30150.0 21山西运城市30138.5* 22山西忻州市3050.0 23山西临汾市2075.6 24山西吕梁市20147.3 25内蒙古呼和浩特市50120* 26内蒙古包头市30100* 27内蒙古乌海市30150* 28内蒙古赤峰市50146.4* 29内蒙古通辽市30172* 30内蒙古鄂尔多斯市30100* 31内蒙古呼伦贝尔市30101.4* 32内蒙古巴彦淖尔市30150* 33内蒙古乌兰察布市30100.4* 34辽宁沈阳市50250.0 35辽宁大连市50102.9 36辽宁鞍山市30164.3 37辽宁抚顺市30150.0 38辽宁本溪市30177.2 39辽宁丹东市30172.2 40辽宁锦州市30177.6 41辽宁营口市30158.1 42辽宁阜新市30190.4地级及以上城市排水防涝标准及对应降雨量 1

浅谈泵站自动化控制系统的应用

浅谈泵站自动化控制系统的应用 摘要:泵站作为市政建设和水利工程的主要设施,担负着城市排水防涝的重要 任务。泵站控制系统的自动化监控和管理具有重要意义,能达到减员增效和提高 管理水平的目的,泵站自动化监控系统实现了对雨水泵房和污水泵房的自动化监 测和控制。 关键词:泵站;自动化;应用 引言 泵站建立独立的功能完善的就地自动化控制系统,建立集中监测和控制室, 实现泵站的自动化运行控制。泵站内各种设备的运行均由泵站就地控制系统直接 控制,泵站就地控制系统是根据液位计等泵站运行工况来进行控制的。泵站接收 污水治理工程中央监控系统下载的全局性运行数据和调控指令,作为泵站自动控 制的条件参数,以配合实现污水治理工程中央监控系统规定的基于流量的控制。 1.系统构成 泵站系统采用分层控制结构,系统分为三层: 信息层:监控计算机 控制层:PLC与远程IO子站 设备层:阀门、水泵、流量计、水位计等现场设备 信息层位于中央控制室,利用CloudControl组态软件设计完成整个监控系统 的图形界面,以及监控数据报表等。可对全泵站生产数据进行收集以及集中控制,设有上位机2台(工程师站、操作员站各一台)以及相关打印机与不间断电源UPS,上位机通过以太网与PLC分站连接;设有模拟屏,显示全泵站的电力监控 情况。 控制层负责对现场仪表数据的采集,以及对现场设备进行监控。PLC主站通 过以太网与上位机进行连接,通过DeviceNet与远程IO子站进行连接。 设备层由现场仪表、电机、阀门及其他执行设备等组成。这些仪表设备通过 24VDC开关量信号及4-20mA模拟信号与PLC远程IO站连接,把工艺参数、运 行状态送到PLC,而PLC则实现对设备的控制。 上位监控系统完成全站的自动化运行及其管理。下位PLC采用GE公司的90-30系列PLC、远程I/O子站采用Beckhoff公司的BK5220系列I/O模块。下位PLC 共有3台,分别负责水位测量、电力监控、水泵启停等工作。下位PLC通过以太 网模块接入Hub与上位机进行通讯,下位PLC与远程IO子站通过Device net网络进行通讯。PLC1共有5个远程IO子站,PLC3共有11个远程IO子站,PLC2没有 带子站。泵站系统结构图如下: 泵站系统结构示意图 由于季节性变化,所有泵站在不同季节将采取不同的运行模式,该泵站全年 运行模式如下: 模式一:旱季无雨时或初雨且尚未超过截流水量时,仅有截流污水泵交替运 行或满负荷运行。 模式二:初雨且已超过截流水量时,截流污水泵满负荷运行,雨水调节池启用。 模式三:降雨继续,雨水调节池已储满时,截流污水泵满负荷运行,雨水泵 开始防汛排涝运行。 模式四:降雨结束,雨水泵停运,调节池开始放空时,仅有截流污水泵交替

智慧排水之在线监测体系构建

1、监测一张网的思路建设思路 目前,大部分城市缺乏集成统一、稳定运行、全面覆盖的排水管网在线监测系统,管 网现状不清,部分规划设计方案偏离实际运行情况,排水系统的动态监测调控水平较低, 不能动态反馈排水设施现场运行状况,对城市内涝、污水溢流、夜间偷排等应急事故缺乏 有效的在线预警与调控技术手段,城市排水系统管理的运行智能化程度不足,科学决策水 平较低。 为提高规划设计的客观准确性,为排水管网日常管理提供依据,为重大工程决策提供 数据支撑,应加强和重视城市排水管网在线监测工作,基于“监测一张网”思路,建立排 水管网在线监测与预警系统,开展基于动态数据的大数据研究与应用实践,提高排水系统 运行的智慧化水平,在排水管网管理工作中达到“用数据说话、用数据决策、用数据管理、用数据创新”的要求。 应充分考虑实用性、分散与集中相结合、代表性和可行性等原则,结合当地排水管网 实际管理监测数据需求,优先考虑选择调蓄设施上下游节点、泵站上下游节点、易涝点、 排放口、溢流口等关键节点,其次考虑覆盖典型下垫面出口、户线接入井、主干管检查井 等节点,选择液位、流量、原位监测水质指标(pH值、水温、电导率、溶解氧、悬浮物、氧化还原电位等)等监测内容,建立城市排水管网在线监测与预警系统并长期有效运行, 形成“源-网-站-厂-河-湖”分层级、系统化的监测管控体系,实现排水设施的长期持续 监测与短时预警预报功能,动态监测排水设施的运行状况及风险,在管网运行数据异常时 快速进行事故溯源、追踪和预警,提高管理部门对排水管网事故的预警和处理能力。同时,通过收集排水设施长期运行数据,可用于识别排水防涝设施的运行规律,定量化评估海绵 城市、黑臭水体、排水防涝等相关工程的实施效果,提高城市排水管网的动态管理能力。 2、软硬件一体化总结架构 为了提高排水管网监测预警系统的现场部署效果,采用软硬件一体化思路进行系统的 整体架构,实现在线监测网络软硬件的紧密集成、系统主要包括四部分:监测主机、监测 中继器、云端数据网关、多种访问终端,其技术架构图如图2-1所示。 图?排水管网监测预警系统的技术架构图

排水泵站自动控制管理系统设计方案

排水泵站远程监控系统 设计方案 ………………………………………………………………… 追求至善 凭技术开拓市场/凭服务树立形象 圣启科技●河北 --------------

目录 第一部分:概述 (3) 1、应用背景 (3) 2、排水泵站远程监控系统 (4) 第二部分:系统组成 (5) 1、远程测控终端系统 (5) 2、通信平台: (6) 3、中心管理系统 (7) 第三部分:系统功能特点 (8) 1、排水泵站监控终端功能特点 (8) 1、1、参数采集传输功能 (8) 1、2、控制功能 (8) 1、3、报警功能 (9) 1、4、存储功能 (9) 1、5、通信方式 (9) 1、6、维护测控设备 (9) 2、管理中心平台具有以下的功能特点 (9) 2、1、远程、实时性 (9) 2、2、安全性 (10) 2、3、保密性 (10) 2、4、容错、冗余 (10) 2、5、报警 (11) 2、6、生成各种数据报表及数据曲线 (11) 第四部分:应用实例 (11) 唐山丰润污水处理厂 (11) 第五部分:扩展应用领域 (12)

第一部分:概述 1、应用背景 随着城市建设和经济发展,城市规模不断扩大,新的市政设施不断建成并投入使用。排水系统在设施能力范围内要保证旱季污水不入河,雨季不淹水,平时还要保持城市河道景观水位,所以日常排水和雨季防汛任务十分繁重。在排水管道的中途和终点需要提升废水时设置泵站,称为中途泵站和终点泵站。排水泵站分为污水泵站、雨水泵站和合流泵站三种,分布在城市的各个范围内,主要用于去除重力流带来的大量废弃物,同时提升水位向邻近污水处理厂送水。担负着城市日常污水排放和汛期排涝的重任。 目前城市排水调度管理尚缺乏可靠的自动化手段,而且排水泵站一般分布较为广泛,站点也较分散,当周围环境有特殊要求时,中途泵站有时全部隐建在地下,绝大多数泵站基本上还是采用人工测报水位、流量、机泵运行等运行参数,靠电话来下达调度命令和人工开停机等相对落后的方式进行运行和管理,这使得

城市排水防涝自查报告一

城市排水防涝自查报告一 XXXX年汛期将至,为全面做好XXXX年城市排水防涝工作,根据上级要求,结合我市实际,现将排水防涝安全自查情况报告如下: 一、领导重视,明确职责 为有效防御洪汛灾害,开展好防汛排涝抢险救灾工作,最大限度地减少对人民群众生命财产造成的危害,确保排水设施的正常使用。我局领导十分重视,从保稳定、促发展的高度认识做好这项工作的重要性,切实加强领导。成立了防汛排涝领导小组。制定了防涝抢险应急预案,明确职能,安排了汛期值班领导和值班人员,做到值班领导和人员二十四小时不关机,保持高度警觉,随时待命,确保发生灾情有组织、有领导、有人员、有预案的开展抢险救灾工作。 二、重点排查,抓好落实 根据排水防涝工作职能和重点防汛区域,汛期前重点进行了排查,排水管网实行分片包干责任到人原则,责任人每天对全市雨水井及检查井进行巡查,发现问题当天解决如不能当天解决,解决时间不能超三个工作日。同时在汛期前,组织精干人员对城区所有排水管道彻底进行清挖、疏通。及时清理打捞排水道入口处的杂物。做好汛期内市政基础设施的修缮与维护工作,加强对城区排污、泄洪干渠的巡查、检查,加强汛中观测,及时处理突发险情。坚持24小时值班制,不得脱岗。逢大雨时城区重点积水部位,确保降雨量10公分内及时到达打捞各类杂物,同时开启井盖,确保洪水排出。 三、存在的问题:

1、城市排水设施不完善,承受不了排涝能力,排水管道直径小。 2、用于排水防涝的专用设施设备数量不足。 3、存在安全隐患的地段a、光明北街原五矿处b、向上路与建设街交叉处c、口岸街人民医院门诊前d、大路老交警队门前e、锦水街警察公寓门前f、口岸街海关转弯处。 四、应急预案: (一)成立应急领导小组; (二)强化汛期安全事故防范,配备相应设备、仪器及防护器具; (三)制定预警等级,根据雨量大小及积水程度分为二个等级。 1、二级预警:一般雨量,道路积水较少,通过排水口可正常排放。 2、一级预警:雨量为大到暴雨,道路积水较多,通过排水口已无法排涝。 城市排水防涝自查报告二 近年来,受全球气候变化和城市热岛效应影响,每到汛期,xxxx 城区频繁遭受暴雨袭击,部分沿山、低洼路段积水严重,城市交通受阻,人民生命财产安全遭到威胁。为根治城区渍涝之患,xxxx市对受渍原因、防涝对策进行了综合分析城区。 一、渍涝成因 (一)先天气候条件影响,特殊地形地势制约。xxxx市中心城区三面环山,一面临江,整体呈盆状的特殊地形地势,加上区域年降水量丰沛,且降水时空分布不均的先天气候条件,形成了中心城区易遭受

城市排水防涝综合规划治理分析

城市排水防涝综合规划治理分析 发表时间:2019-05-24T09:50:06.360Z 来源:《基层建设》2019年第5期作者:许可[导读] 摘要:近年来,随着工业化的大力发展,城市建设日新月异,人们生活的社会环境变得越来越好,但是在这种大环境的背景下衍生出一个很严重的问题,那就是城市内的排水以及内涝问题。宜水环境科技(上海)有限公司上海 200233 摘要:近年来,随着工业化的大力发展,城市建设日新月异,人们生活的社会环境变得越来越好,但是在这种大环境的背景下衍生出一个很严重的问题,那就是城市内的排水以及内涝问题。全国范围内越来越多的洪涝灾害在不断发生,这不仅对人们的生命安全构成威 胁,与此同时这对于整个城市的安全也构成了极大的威胁。所以,对于城市内部的排水和防涝工作要引起足够的重视并找出更好的解决方案。经过专业人员的研究和多年工作的经验我们得知造成这种洪涝灾害的主要原因多是排涝管渠及泵站设施不完善。关键词:城市;排水防涝;综合规划;治理 1项目背景 项目范围为昆山市海绵城市试点区域范围内的吴淞片区和城南片区,面积合计4.96平方公里,是吴淞圩和城南圩北部区域的一小部分,现状主要为老城区、将拆迁地块、部分未开发地块和村庄。 2降雨分析 2.1降雨特征 昆山市历年平均降水量为1133.3毫米,年际差异较大,最多年降水量达1522.4毫米(1991年),最少年降水量为826.1毫米(1992年),统计年降水量大于1200毫米的有十年,占三分之一,有五年的年降水量在900毫米以下。一日最大降水量为204.9毫米,出现在1985年8月1日。统计全年暴雨日数(日降水量≥50毫米)平均为2.9天,以6-8月出现次数最多。统计全年总降水日数,历年平均为124天,最高年份1980年达144天,最少1995年仅99天。月降水日数最多的为6月份,1月为最少。历年平均相对湿度79%,各年变化差异不大,最大84%(1984年),最小69%(2005年),日最小相对湿度极值为6%(1986年3月5日)。相对湿度的日变化正好与温度反,一天中清晨气温出现最低时,往往是相对湿度最大时,反之亦然。 2.2修订后暴雨强度公式 目前,昆山市排水设计一直借用的城市暴雨强度公式为二十世纪九十年代初编制的苏州市暴雨强度公式,样本系列为1959~1979年21年的降雨资料,且选样采用了年多个样法。该公式编制时间较早,至今已有30余年。近年来,全球气候变化、极端天气频发,给许多地方带来了内涝灾害。同时,由于苏州市的快速发展和城区范围的扩大,旧暴雨强度公式已不能够代表现状及未来一段时间的苏州地区实际的暴雨特性。公式适用范围为除苏州中心城区(602km2)、常熟市、太仓市以外的苏州市域范围。就暴雨强度公式本身而言,无论从编制年代上、编制的技术方法上及适用范围,均不符合《室外排水设计规范》GB50014-2006(2014年版)及适用性、合理性和准确性的要求。 根据《省政府办公厅转发省住房城乡建设厅关于加强全省城市排涝设施建设管理意见的通知》(苏政办发[2011]20号文件),于2011年底前,经苏州市人民政府批准,昆山市开展了“昆山市设计暴雨强度公式和设计雨型研究”项目。修订后的暴雨强度公式如下: 式中:i——设计暴雨强度(mm/min); t——降雨历时(min); ——设计重现期(年)。 短历时设计暴雨雨型 根据《昆山市暴雨强度公式和设计暴雨雨型研究报告》中相关研究结果,采用K.C法对昆山雨量站1980-2015年共36场次降雨数据统计分析。根据36场次暴雨统计,雨峰出现在各降雨时段的比例确定120min雨峰位于第11位,雨峰时段雨量占总雨量的19.70%,r=0.438,120min降雨时程分配如下所示。 昆山市短历时设计降雨雨量时辰分配情况表 根据《昆山市暴雨强度公式和设计暴雨雨型研究报告》中相关研究结果,昆山市288*5min设计雨型如下图所示。288*5mi雨型中雨峰时段发生在第214位,r为0.741,雨峰时段雨量占总雨量的7.46%,288×5min雨型中按1h滑动的最大小时降雨量占总雨量的29.83%。 3内涝风险评估 平原河网地区的内涝风险主要有二种成因,一是城区局部短历时暴雨,此时河网水位基本维持常水位;二是由于区域性长历时降雨,河网水位抬高导致管网排水不畅,低洼地区积水。成熟城区有可能受上述二种风险因素之一,或者组合遭遇影响。短历时暴雨内涝风险 ①常水位1年一遇两小时设计暴雨下内涝风险

城市内涝监测系统建设方案(初稿)

城市内涝监测系统 建 设 方 案 XX有限公司 XX年XX月

城市内涝监测系统 一、项目背景 随着我国经济的不断繁荣,大中城市的建设也在突飞猛进地高速发展,城市圈也在已经不断扩大。为了缓解交通压力和保证出行的畅通,许多城市建设了不少的立交桥和下穿隧道。近年来,由强降雨引起的城市下穿隧道及立交桥下低洼处存在大量积水的现象时有发生,且有愈演愈烈的趋势,随之而来的诸多效应中,有许多因素加剧了汛期街道积涝的情况。城市积水造成公用设施受损,使交通、电力、通讯、网络传输、水源等受到了严重影响或损坏,给人们的生产生活带来诸多不便。另外随着城市人口资产密度的提高,同等淹没情况下损失增加;且城市的中枢作用使得次生影响和间接损失加大,严重时可能造成重大的经济损失和人员伤亡,目前我国城市抗涝形势非常严峻。 因此,已经引起市政、城管、防汛、路政等政府有关部门的高度关注:一方面要积极修建并管理好排水设施,另一方面建设城市内涝监测系统,也极为必要,它既可以为决策机构的领导提供道路积水的实时信息,也为市政排水调度管理机构提供支持,还可以通过广播、电视等媒体为广大老百姓提供出行指南。 逢大雨必涝,已成为我国城市的一种通病。 二、建设目标 利用传感器技术、信号传输技术,以及网络技术和软件技术从宏观、微观相结合的全方位角度,来监测影响道路积水通行安全的各种关键技术指标;记录历史数据和现有的数据,分析未来的走势,以便辅助政府决策,提升安全管理保障水平,有效防范和遏制重特大事故

发生,保障人民群众的生命与财产安全。 系统依托智能的软件系统,建立分析预警模型,监控中心通过数据研判,生成内涝积水预警,通过LED显示屏与短消息平台相结合的方式,提前发布警告信息,尽快启动相应预案。 三、项目需求 1、建立基于传感网络技术的实时、可靠的涝情数据监测系统。为涝情应急决策提供数据支持。主要包括降雨量监测、积水深度监测、积水面积监测、风速风向监测、GPS地理位置信息。 2、 发现、排除堵情。 3、 制。 4、建立稳健的无线通信网络实现传感数据与控制设备与指挥中心的连接。 5、结合当前已建成的视频监控系统并作适当的补充建立基于GIS的城市实景涝情平台。 6、建立涝情预警网络实现街道、小区、学校等人口集中区域的涝情预警。主要包括广播、 短信。 7、建立涝情WEB发布平台与移动设备访问终端实现市民的远程访问为市民提供直观的出行指南。 四、建设方案 4.1设计原则 系统设计本着实用、可靠、先进以及经济四大原则,根据工程的实际情况协调配置,发挥应有的效果,具体要求是: 实用——有的放矢地进行设计,做到目的明确,针对性强,突出重点,兼顾全局。分清城市内涝监测预警系统运行管理的主次,以安全监控为主要目的,有选择地将监控对象纳入系统,使系统既经济合理,又满足科学管理的需要。 可靠——设计方案和仪器的选择要考虑运行期的长期稳定可靠。设备以国内外著名工控产品为主,采用稳定性好、抗干扰能力强的仪器。

基于PLC的抽水泵站自动控制系统设计教程

摘 要 小型灌溉抽水泵站PLC自动控制系统这种自动抽水灌溉系统在农业上的应用可以解决很多问题。本设计主要以西门子PLC为主控制器,西门子Miscro Master 430变频器为变频运行器件,结合空气断路器,接触器,开关电器,中间继电器等组成硬件控制系统。整体上可分为主控制器PLC部分、检测部分、操作界面、监控系统、报警系统、保护系统。西门子S7-300的编程软件是STEP 7,监控系统用组态王构建。在监控系统中能实时显示系统的运行参数和运行趋势图及故障报警显示。用可编程逻辑控制器PLC 设计抽水泵站的自动控制系统不仅能合理、高效的完成灌溉,且可靠性高、耗能低,是最理想的控制系统。 关键词:S7-300 PLC;抽水泵站;自动控制系统;监控系统

Abstract This thesis is a design process of the automatic control system of the irrigation pumping station based on PLC. The application of this automatic pumping irrigation system in agriculture can solve many problems. This design mainly consist of SIEMENS model PLC controller, Circuit breaker, Contactor, Switch appliance, and SIEMENS Master Miscro 430 converter for variable speed operating device. The overall system can be divided into six part, including the main controller PLC part, detection part, operation interface, monitoring system, alarm system, protection system. The programming software of SIEMENS S7-300 is STEP 7, and the monitoring system for the construction of Kingview. In the monitoring system, the operating parameters of the system , the running trend chart and the fault alarming display can be displayed in the monitoring interface. The design of the automatic control system with the programmable logic controller PLC of pumping station can not only be reasonable but efficient to complete the irrigation. With the well reliability , the low energy consumption , it is the ideal control system. Keyword: PLC; Pumping station; Automatic control system; Monitoring system.

污水处理自动化PLC远程控制系统改造设计方案

污水处理自动化PLC远程控制系统改造设计方案 我国大多数污水处理厂中的污水泵站自动化系统主要采用可编程逻辑控制器(PLC)为基础的分布式计算机监控系统,PLC的配置灵活,具有较强的安全性、可靠性和适应性。但目前运用自动化系统的泵站也存在一些问题,例如整体系统不完善,功能设计不合理、缺乏设备维保措施等,再加上技术人员的缺乏,使实际操作中无法发挥其功能性。 污水泵站自动化系统控制及结构中的问题 1.人工控制造成的问题 目前一些污水泵站在阀门的开关上还是采用传统的人工控制的方法,由于人工的疏忽或其他因素的影响,在阀门控制中会由于个人疏忽造成控制不及时,导致泵坑集水过多、水位上升过高的问题,严重时会淹没泵室,影响泵站的正常运行。 2.自动化控制系统不完善 一部分污水泵站缺乏完善的控制系统线路,无法充分保护系统主要设置,影响自动化控制系统功能的发挥。系统设备的维保工作不到位,造成系统网格结构陈旧,易造成泵站与中央控制室之间重要数据的丢失,影响自动化控制数据的完整性和准确性。除此以外,系统对泵站具体运行情况缺乏动态化的监控和管理,不利于信息的完整性。 污水自动化plc远程控制系统改造解决方案 为解决我国污水泵站自动化系统运行现状及问题,南京康卓环境科技有限公司开发出新一代污水泵站自动化系统,其主要功能包括泵站电气量采集、水位采集、报警、一键开机、

自动开机、远程控制等。基于智能控制器的泵站自动化系统的常规操作按钮与一般控制系统操作一致,有利于快速实现操作人员的智能化操作。 中央控制系统 污水泵站自动化系统的控制器设置在常规电气柜之内,二者是一体的,省去了另外设置单独控制柜的步骤,有效地节省空间和接线。系统的核心就是控制器,泵站智能系统主要由进线柜、泵控制柜、无功补偿柜、站用配电柜、安全预防系统等构成。其中,进线启动柜的功能主要包括接入总进线电源、进线继电的保护、泵站智能控制、信息数据的采集与交流、运行状态、参数提醒等; 泵站控制柜在整个系统中的功能包括自动完成启动和停止、电动机的继电保护、运行状态及参数提醒等;泵站的配电由站用配电柜完成;安全预防系统能够保障系统的安全性,发挥出警告信号的作用。要加强对系统软件的更新和完善,并对系统硬件设备定期维修和版样,保证污水泵站自动化的顺利运行。 电气设备与线路的改造 在电气设备的改造方面,重点在系统控制箱内增加格栅过电流、过力矩保护和报警的功能,保证格栅出现故障后并不会对水泵运行造成巨大影响,除此以外,还要加强对格栅的独立控制。泵控电机易出现电流过大故障,可在其主回路中增设线路的电流检测仪器,保证过流的顺利运行。 在低压运行线柜中设置智能电力检测装置,运用串联连接至系统服务器网络之中,监测泵站低压侧的主要电量。在泵站控制系统的控制回路方面,重点进行线路的维修和改造,逐一排查主回路、控制回路、信号回路等走线的设置,降低因线间电磁干扰造成的线路传输问题。要增加整个设备的集中控制能力,重点改造没有集控功能的设备等。 自动化监控系统 污水泵站自动化系统运用先进的泵站专家控制系统技术,该技术能够根据环境、泵机组设备运行变化等数据信息,不断完善和优化泵组设备的组合,通过增加设备的使用率实现节能降耗的作用,提高泵站运行的经济效益。泵站自动化控制系统还运用泵站安全预防技术,该技术能够智能识别和检测安全故障; 该技术能够在开机前自动检测管理区域是否安全,若出现非安全故障或情况,系统会自动关闭泵组并发出警告信号,保障工作人员的安全;在无人值班期间利用自动检测功能保障区域的安全性,防止财产、设备等丢失、破坏现象。 泵站智能系统还运用先进的泵站热点数据无线定制点播与推送技术,系统管理和操作人员可以利用网络实时了解各类热点信息,实现了泵站的智能化、网络化管理;系统利用先

城市排水雨水防涝综合规划编制大纲

城市排水(雨水)防涝综合规划编制大纲 第一部分规划编制大纲一、规划背景与现状概况 (一) 规划背景 1、区位条件 2、地形地貌 3、地质水文 4、经济社会概况 5、上位规划概要 6、相关专项规划概要 (二) 城市排水防涝现状及问题分析 1、城市排水防涝现状 2、问题及成因分析 二、城市排水防涝能力与内涝风险评估 (一) 降雨规律分析与下垫面解析 (二) 城市现状排水系统能力评估 1、排水系统总体评估 2、现状排水能力评估 (三) 内涝风险评估与区划

三、规划总论 (一) 规划依据 (二) 规划原则 (三) 规划范围 (四) 规划期限 (五) 规划目标 (六) 规划标准 1、雨水径流控制标准 2、雨水管渠、泵站及附属设施设计标准 3、城市内涝防治标准 (七) 系统方案 四、城市雨水径流控制与资源化利用 (一) 径流量控制 (二) 径流污染控制 (三) 雨水资源化利用 五、城市排水(雨水)管网系统规划 (一) 排水体制 (二) 排水分区 (三) 排水管渠 (四) 排水泵站及其她附属设施 六、城市防涝系统规划

(一) 平面与竖向控制 (二) 城市内河水系综合治理 (三) 城市防涝设施布局 1、城市涝水行泄通道 2、城市雨水调蓄设施 (四) 与城市防洪设施的衔接 七、近期建设规划 八、管理规划 (一) 体制机制 (二) 信息化建设 (三) 应急管理 九、保障措施 (一) 建设用地 (二) 资金筹措 (三) 其她 十、附件 (一) 近期建设任务与投资列表 (二) 规划附图要求

第二部分关于规划编制大纲的说明 一、规划背景与现状概况 (一) 规划背景 1、区位条件 描述城市位置与区位情况。 2、地形地貌 描述城市地形地貌概况。 3、地质水文 描述城市气候、降雨、土壤与地质等基本情况。 4、经济社会概况 描述城市人口、经济社会情况等。 5、上位规划概要 (1)城市性质、职能、结构、规模等内容。 (2)城市发展战略与用地布局等内容。 (3)城市总体规划中与城市排水防涝相关的绿地系统规划、城市排水工程规划、城市防洪规划等内容。 6、相关专项规划概要 重点分析城市防洪规划、城市竖向规划、城市绿地系统专项规划、城市道路(交通)系统规划、城市水系规划等与城市排水 与内涝防治密切相关的专项规划的内容。 (二) 城市排水防涝现状及问题分析

相关文档
最新文档