三角形的中位线定理练习题.docx

合集下载

三角形中位线定理_练习题

三角形中位线定理_练习题

&0通■力调第1.已知三角形的周长为24 cm,则该三角形三条中位线的和为.2.三角形的面积为40 E2,则三条中位线组成的三角形的面积是.3.直角三角形斜边的中线长是6 cm,则它的两条直角边中点的连线长是.,顺次连接正方形各边中点所得的四边形是.5.如图 16.5-4,在AABC 中,D、E 分别是 AB、AC 的中点,则线段DE是/XABC的线,线段DE是/XAHE的线,线段BE是△ABC的线,若 BC= 10 cm,则DE=.图 16. 5— 46.如图16.5-5,D、E、F分别是△ABC各边的中点,(D图中的平行四边形有个;(2)图中与aDEF全等的三角形有个;(3)当AB=AC时,四边形AEDF是 1形;当NA = 90°时,四边形AEDF是形;当时,四边形AEDF是正方形.E 16. 5-6 3 16. 5 — 78.如图瓜 5 —7 ■在JLABC 中.AB = AC.AD_BC.M为AD的中点,CM交AB于P・D、•二CP交AB于N,若AB=6 cm.则AP的长为( )A. 1 cm R 2. 5 cmC. 2 cmD. 3 cm9.如图16.5 — 8,AABC中•中线BD、CE交于点O.F、G分别为OB、OC的中点.求证:四边形DEFG为平行四边形.图 16-5-8图 16.5—5如图16.5 — 6,人。

是△ABC的高,E为AB的中点,且EF.LBC于F,CD=《BD,那么FC是BF的(:A. 1■倍O10.如图15.5-9.二,亚力中.£、下分别是』。

、氏? 的中点.CE、AF分引文BD于V、、. 求证:B、= M\' = D\£7.三角形的中位线定理1.三角形中位线的定义:2.三角形中位线定理的证明:如图,在△ ABC^ , D E是AB和AC的中点,求证:DE// BC DE』BC. 2 方法一:方法二:3.归纳:(1)几何语言:(2)条中位线,对全等,个平行四边形(3)面积4.拓展:如图,在^ ABC+ , D是AB的中点,D日BQ 求证:DE=1 BCA【巩固练习】1.如图所示,□ ABCD的对角线AC BD相交于点Q AE=EB求证:O曰BCB2.如图所示,在^ ABC中,点D在BC上且CD=CA CF平分/ ACB AE=EB求证:EF=1 BD23.已知:如图,四边形ABC前,E、F、G H分别是AB BG CD DA的中点.求证:四边形EFGK平行四边形.4.如图所示,已知在DABC前,E, F分别是AD, BC的中点,求证:MN/ BC5.已知:△ ABC勺中线BD CE交于点Q F、G分别是OB OC勺中点.求证:四边形DEFG^平行四边形.6.已知:如图,E为DABCM DC边的延长线上的一点,且CE= DC连结AE分别交BC BD于点F、G,连结AC交BD于Q 连结OF求证:AB= 2OF.7.如图,在四边形ABC前,AD=BC点E, F, G分别是AB, CD AC的中点.求证:△EFG是等腰三角形。

专题 三角形中位线定理的运用(原卷版)

专题 三角形中位线定理的运用(原卷版)

八年级下册数学《第十八章 平行四边形》专题 三角形中位线定理的运用【例题1】(2022秋•长沙期中)如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,F ,G 分别是AD ,AE 的中点,且FG =2cm ,则BC 的长度是( )A .4cmB .6cmC .8cmD .10cm【变式1-1】(2022秋•海淀区期中)如图,BD 是△ABC 的中线,E ,F 分别是BD ,BC 的中点,连接EF .若AD =4,则EF 的长为( )A .32B .2C .52D .4【变式1-2】(2022秋•莲池区校级期末)如图,在△ABC 中,∠B =45°,∠C =60°,AD ⊥BC 于点D ,BD =√6,若E ,F 分别为AB ,BC 的中点,则EF 的长为( )A .√2B .√62C .√63D .√3【变式1-3】(2022春•巨野县校级月考)如图,在△ABC 中,D 是AB 上一点,AE 平分∠CAD ,AE ⊥CD 于点E ,点F 是BC 的中点,若AB =10,AC =6,则EF 的长为( )A .4B .3C .2D .1【变式1-4】(2022秋•南关区校级期末)如图,四边形ABCD 中,∠A =90°,AB =12,AD =5,点M 、N 分别为线段BC 、AB 上的动点,点E 、F 分别为DM 、MN 的中点,则EF 长度的可能为( )A .2B .2.3C .4D .7【变式1-5】如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.若AB=8,AD=12,则四边形ENFM的周长为.【变式1-6】(2022春•海淀区校级期中)如图,在Rt△ABC中,∠BAC=90°,点D和点E分别是AB,AC的中点,点F和点G分别在BA和CA的延长线上,若BC=10,GF=6,EF=4,则GD的长为.【变式1-7】(2022春•本溪期末)如图,AC,BD是四边形ABCD的对角线,点E,F分别是AD,BC 的中点,点M,N分别是AC,BD的中点,顺次连接EM,MF,FN,NE,若AB=CD=2,则四边形ENFM的周长是.【变式1-8】(2022春•雁塔区校级期末)如图,点D,E分别是△ABC的边AB,AC的中点,连接BE,过点C 作CF ∥BE ,交DE 的延长线于点F ,若EF =3,求DE 的长.【变式1-9】如图,在△ABC 中,AB =12cm ,AC =8cm ,AD 、AE 分别是其角平分线和中线,过点C 作CG ⊥AD 于点F ,交AB 于点G ,连接EF ,求线段EF 的长.【例题2】(2022秋•安岳县期末)如图,在△ABC 中,D 、E 、F 分别是AB 、AC 、BC 的中点,若∠CFE =55°,则∠ADE 的度数为( )A .65°B .60°C .55°D .50°【变式2-1】(2021秋•鼓楼区校级期末)如图,点M ,N 分别是△ABC 的边AB ,AC 的中点,若∠A =60°,∠B=75°,则∠ANM=.【变式2-2】(2022•永安市模拟)如图,DE是△ABC的中位线,∠ABC的平分线交DE于点F,若∠DFB =32°,∠A=75°,则∠AED=.【变式2-3】(2022春•顺德区校级期中)如图,在四边形ABCD中,点E、F分别是边AB、AD的中点,BC=15,CD=9,EF=6,∠AFE=50°,求∠ADC的度数.【变式2-4】(2022•九江二模)如图,在四边形ABCD中,点E,F,G分别是AD,BC,AC的中点,AB =CD,∠EGF=144°,则∠GEF的度数为.【变式2-5】(2022秋•新泰市期末)如图,四边形ABCD中,AD=BC,E,F,G分别是AB,DC,AC 的中点.若∠ACB=64°,∠DAC=22°,则∠EFG的度数为.【变式2-6】(2022春•鼓楼区期中)如图所示,在△ABC中,∠A=40°,D,E分别在AB,AC上,BD =CE,BE,CD的中点分别是M,N,直线MN分别交AB,AC于P,Q.求∠APQ的度数.【例题3】(2021秋•杜尔伯特县期末)如图,已知△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足是E,F是BC的中点.求证:BD=2EF.【变式3-1】(2021春•秦都区期末)如图,在△ABC中,AB=AC,点D、E分别是边AB、AC上的点,连接BE、DE,∠ADE=∠AED,点F、G、H分别为BE、DE、BC的中点.求证:FG=FH.【变式3-2】(2021秋•互助县期中)如图,已知AB=AC,BD=CD,DB⊥AB,DC⊥AC,且E、F、G、H分别为AB、AC、CD、BD的中点,求证:EH=FG.【变式3-3】已知:如图,E为▱ABCD中DC边的延长线上的一点,且CE=DC,连接AE分别交BC、BD 于点F、G,连接AC交BD于O,连接OF.求证:AB=2OF.【变式3-4】(2021春•崇川区校级月考)已知:如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:(1)DE∥FG;(2)DG和EF互相平分.【变式3-5】(2022春•富平县期末)如图,在四边形ABCD中,对角线AC、BD相交于点O,且AC=BD,E、F分别是AB、CD的中点,E、F分别交BD、AC于点G、H,取BC边的中点M,连接EM、FM.求证:(1)△MEF是等腰三角形;(2)OG=OH.【变式3-6】(2022春•瑶海区期末)已知:如图,在△ABC中,点D、E分别是AB、AC的中点(1)若DE=2,则BC=;若∠ACB=70°,则∠AED=°;(2)连接CD和BE交于点O,求证:CO=2DO.【变式3-7】(2022春•虎丘区校级期中)如图,线段AM是∠CAB的角平分线,取BC中点N,连接AN,过点C作AM的垂线段CE垂足为E.(1)求证:EN∥AB.(2)若AC=13,AB=37,求EN的长度.【例题4】(2021春•莆田期末)如图,在四边形ABCD 中,AD =BC ,E 、F 分别是边DC 、AB 的中点,FE 的延长线分别AD 、BC 的延长线交于点H 、G ,求证:∠AHF =∠BGF .【变式4-1】(2022春•西峰区校级月考)如图,四边形ABCD 中,AD =BC ,P 是对角线BD 的中点,N 、M 分别是AB 、CD 的中点,求证:∠PMN =∠PNM .【变式4-2】(2021春•歙县期中)如图,CD 是△ABC 的角平分线,AE ⊥CD 于E ,F 是AC 的中点,(1)求证:EF ∥BC ;(2)猜想:∠B 、∠DAE 、∠EAC 三个角之间的关系,并加以证明.【变式4-3】如图,△ABC 中,D 、E 分别为AB 、AC 上的点,且BD =CE ,M 、N 分别是BE 、CD的中点.过MN的直线交AB于P,交AC于Q,求证:∠QP A=∠PQA.【变式4-4】一个对角线相等的四边形ABCD,E、F分别为AB,CD的中点,EF分别交对角线BD,AC 于M,N,求证:∠OMN=∠ONM.【变式4-5】(2022春•船营区校级月考)如图是华师版九年级上册数学教材第80页的第3题.如图①,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是DC的中点,N是AB的中点.求证:∠PMN=∠PNM(1)在上边题目的条件下,延长图①中的线段AD交NM的延长线于点E,延长线段BC交NM的延长线于点F,如图②,请先完成图①的证明,再继续证明∠AEN=∠F.(2)若(1)中的∠A+∠ABC=122°,则∠F的大小为.【例题5】(2022秋•任城区期末)如图,在△ABC中,AE平分∠BAC,BE⊥AE于点E,点F是BC的中点,若AB=10,AC=6,则EF的长为()A.2B.3C.4D.5【变式5-1】(2022春•綦江区校级月考)如图,在四边形ABCD中,AC⊥BD,BD=16,AC=30,E,F 分别为AB,CD的中点,则EF=()A.15B..16C.17D.8【变式5-2】(2021春•沈北新区期末)如图,AD是△ABC的中线,E是AD的中点,F是BE延长线与AC的交点,求证:AF=12CF.【变式5-3】如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD上,P为AE的中点,连接PG,则PG的长为.【变式5-4】(2021•罗湖区校级模拟)如图,已知在Rt△ABC中,∠ACB=90°,点D是AC延长线上的一点,AD=24,点E是BC上一点,BE=10,连接DE,M、N分别是AB、DE的中点,则MN=.【变式5-5】(2022春•香坊区校级期中)如图所示,在四边形ABCD中,点E、F分别是AD、BC的中点,连接EF,AB=20,CD=12,∠B+∠C=120°,则EF的长为.【变式5-6】(2022秋•张店区校级期末)已知:如图,在△ABC中,点D在AB上,BD=AC,E、F、G 分别是BC、AD、CD的中点,EF、CA的延长线相交于点H.求证:(1)∠CGE=∠ACD+∠CAD;(2)AH=AF.【变式5-7】如图,在△ABC中,AE平分∠BAC,BE⊥AE于点E,点F是BC的中点.(1)如图1,BE的延长线与AC边相交于点D,求证:EF=12(AC﹣AB);(2)如图2,请直接写出线段AB、AC、EF的数量关系.【变式5-8】(1)如图1,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别是F、G,连接FG.求证:FG=12(AB+BC+AC).[提示:分别延长AF、AG与直线BC相交](2)如图2,若BD、CE分别是△ABC的内角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别是F、G,连接FG.线段FG与△ABC的三边又有怎样的数量关系?写出你的猜想,并给予证明.【变式5-9】如图,在四边形ABCD中,AB=CD,E.F分别是BC.AD的中点,连接EF并延长,分别与BA,CD的延长线交于点M,N,则∠BME=∠CNE(不必证明)(温馨提示:在图(1)中,连接BD,取BD的中点H,连接HE.HF,根据三角形中位线定理,证明HE=HF,从而∠1=∠2,再利用平行线的性质,可证明∠BME=∠CNE)(1)如图(2),在四边形ADBC中,AB与CD相交于点O,AB=CD,E.F分别是BC.AD的中点,连接EF,分别交CD.BA于点M.N,判断△OMN的形状,请直接写出结论.(2)如图(3)中,在△ABC中,AC>AB,D点在AC上,AB=CD,E.F分别是BC.AD的中点,连接EF并延长,与BA的延长线交于点G,若∠EFC=60°,连接GD,判断△AGD形状并证明.。

(完整word版)三角形的中位线练习题含答案,推荐文档

(完整word版)三角形的中位线练习题含答案,推荐文档

三角形的中位线练习题三角形中位线定义:.符号语言:在△ABC中,D、E分别是AB、AC的中点,则:线段DE是△ABC的__ __,三不同点:①三角形中位线的两个端点都是三角形边的中点。

②三角形中线只有一个端点是边的中点,另一端点是三角形一个顶点。

相同点:都是一条线段,都有三条。

三角形中位线定理: .符号语言表述:∵DE是△ABC的中位线(或AD=BD,AE=CE) ∴DE//21BC练习1.连结三角形___________的线段叫做三角形的中位线.2.三角形的中位线______于第三边,并且等于_______.3.一个三角形的中位线有_________条.4.如图△ABC中,D、E分别是AB、AC的中点,则线段CD是△ABC的___,线段DE是△ABC_______5、如图,D、E、F分别是△ABC各边的中点(1)如果EF=4cm,那么BC=__cm如果AB=10cm,那么DF=___cm(2)中线AD与中位线EF的关系是___6.如图1所示,EF是△ABC的中位线,若BC=8cm,则EF=_______cm.(1) (2) (3) (4)7.三角形的三边长分别是3cm,5cm,6cm,则连结三边中点所围成的三角形的周长是_________cm.8.在Rt△ABC中,∠C=90°,AC=•5,•BC=•12,•则连结两条直角边中点的线段长为_______.9.若三角形的三条中位线长分别为2cm,3cm,4cm,则原三角形的周长为()A.4.5cm B.18cm C.9cm D.36cm10.如图2所示,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位EDBED同学帮他想了一个主意:先在地上取一个可以直接到达A ,B 的点C ,找到AC ,BC 的中点D ,E ,并且测出DE 的长为10m ,则A ,B 间的距离为( )A .15mB .25mC .30mD .20m11.已知△ABC 的周长为1,连结△ABC 的三边中点构成第二个三角形,•再连结第二个三角形的三边中点构成第三个三角形,依此类推,第2010个三角形的周长是( ) A 、20081 B 、20091 C 、220081 D 、22009112.如图3所示,已知四边形ABCD ,R ,P 分别是DC ,BC 上的点,E ,F 分别是AP ,RP 的中点,当点P 在BC 上从点B 向点C 移动而点R 不动时, 那么下列结论成立的是( ) A .线段EF 的长逐渐增大 B .线段EF 的长逐渐减少 C .线段EF 的长不变 D .线段EF 的长不能确定13.如图4,在△ABC 中,E ,D ,F 分别是AB ,BC ,CA 的中点,AB=6,AC=4,则四边形AEDF•的周长是( ) A .10 B .20 C .30 D .4014.如图所示,□ ABCD 的对角线AC ,BD 相交于点O ,AE=EB ,求证:OE ∥BC .15.已知矩形ABCD 中,AB =4cm ,AD =10cm ,点P 在边BC 上移动,点E 、F 、G 、H 分别是AB 、AP 、DP 、DC 的中点.求证:EF +GH =5cm ;16.如图所示,在△ABC 中,点D 在BC 上且CD=CA ,CF 平分∠ACB ,AE=EB ,求证:EF=12BD .17.如图所示,已知在□ABCD 中,E ,F 分别是AD ,BC 的中点,求证:MN ∥BC .BG A E FH D C 图518.已知:如图,四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点. 求证:四边形EFGH 是平行四边形.19.如图,点E ,F ,G ,H 分别是CD ,BC ,AB ,DA 的中点。

专题11 三角形中位线定理(原卷版)

专题11 三角形中位线定理(原卷版)

专题11 三角形中位线定理【考点归纳】(1)三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.(2)几何语言:【好题必练】一、选择题1.(2020秋•罗湖区期末)如图,已知△ABC中,AB=AC,AD是∠BAC的平分线,AE是∠BAC的外角平分线,ED∥AB交AC于点G,下列结论:①AD⊥BC;②AE∥BC;③AE=AG;④AD2+AE2=4AG2.其中正确结论的个数是()A.1B.2C.3D.42.(2020秋•安丘市期末)如图,面积为2的等边三角形ABC中,D,E,F分别是AB,BC,CA的中点,则△DEF的面积是()A.1B.C.D.3.(2020秋•长春期末)如图,在边长为4的等边三角形ABC中,DE为△ABC的中位线,则四边形BCED 的面积为()A.2B.3C.4D.64.(2020秋•长春期末)△ABC中,AB=7,BC=6,AC=5,点D、E、F分别是三边的中点,则△DEF 的周长为()A.4.5B.9C.10D.125.(2020秋•绿园区期末)如图,为测量位于一水塘旁的两点A,B间的距离,在地面上确定点O,分别取OA,OB的中点C,D,量得CD=10m,则A,B之间的距离是()A.5m B.10m C.20m D.40m6.(2020秋•内江期末)如图,在四边形ABCD中,P是对角线BD的中点,点E、F分别是AB、CD的中点,AD=BC,∠EPF=140°,则∠EFP的度数是()A.50°B.40°C.30°D.20°二、填空题7.(2020春•兴化市期中)如图,D、E分别是△ABC的边AB、AC的中点.若BC=6,则DE的长为.8.(2020春•姜堰区期中)已知以三角形各边中点为顶点的三角形的周长为6cm,则原三角形的周长为cm.9.(2020春•建湖县期中)如图,AB∥CD,AB=7,CD=3,M、N分别是AC和BD的中点,则MN的长度.10.(2020春•常熟市期中)如图,在△ABC中,BC=14,D、E分别是AB、AC的中点,F是DE延长线上一点,连接AF、CF,若DF=12,∠AFC=90°,则AC=.11.(2020•凤山县一模)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD的中点.若BC=2,则EF的长度为.三、解答题12.(2020•房山区二模)如图,在△ABC中,BD平分∠ABC交AC于点D,DE∥AB交BC于点E,F是BD中点.求证:EF平分∠BED.13.如图,四边形ABCD中,AB=AD,对角线BD平分∠ABC,E,F分别是BD,CD的中点.求证:AD∥EF.14.如图,在△ABC中,D为BC的中点,E为AC的中点,AB=6,求DE的长.15.如图,在△Rt△ABC中,∠ACB=90°,DE、DF是△ABC的中位线,连接EF、CD,求证:CD=EF.16.如图,点D,E,F分别为△ABC三边的中点,若△DEF的周长为10,求△ABC的周长。

三角形中位线经典测试题

三角形中位线经典测试题

三角形中位线经典测试题1、已知三角形ABC,其中AC与BD交于点O,BC边中点为E,OE=1,求AB的长。

2、已知三角形ABC,其中DE是BC边的中位线,DE=2cm,求BC的长。

3、已知三角形ABC,要测量A、B两点间的距离,取OA的中点C,OB的中点D,测得CD=30米,求AB的长。

4、顺次连结任意四边形各边中点所得到的四边形一定是平行四边形。

5、以三角形的三个顶点及三边中点为顶点的平行四边形共有4个。

6、已知四边形ABCD中,R、P分别是BC、CD上的点,E、F分别是AP、RP的中点,当点P在CD上从C向D移动而点R不动时,线段EF的长不变。

7、已知三角形三边长分别为6、8、10,则它的中位线构成的三角形的面积为24.8、已知△ABC中,AD=11/44AB,AE=AC,BC=16,求DE的长。

9、已知四边形ABCD中,M、N、P、Q分别为AB、BD、CD、AC的中点,证明四边形MNPQ是平行四边形。

10、已知四边形ABCD中,AD∥BC,BC=3AD,E、F分别是对角线AC、BD的中点,证明四边形ADEF是平行四边形。

11、已知四边形ABCD中,AB=CD,E、F分别为BC、AD的中点,BA、EF的延长线交于点M,CD、EF的延长线交于点N,证明∠AME=∠XXX。

12、已知△ABC中,P是中线AD的中点,连接BP并延长交AC于E,F为BE的中点,证明AF∥DE。

13、已知四边形ABCD中,M是OB的中点,连接AM并延长至P,使MP=AM,连接DP交AC于N,证明(1)MN∥AD;(2)S四边形MPNQ=S△XXX。

14、已知△ABC中,AD是外角平分线,CD⊥AD于D,E是BC的中点,证明(1)DE∥AB;(2)DE=1/2(AB+AC)。

15、已知等腰梯形ABCD中,AB∥CD,AB>CD,AD=BC,对角线相交于点O,∠AOB=60°,且E、F、M分别是OD、OA、BC的中点,证明△EFM是等边三角形。

三角形的中位线定理练习题

三角形的中位线定理练习题

三角形的中位线定理练习题一、填空选择题:1.若三角形的三条中位线长分别为2cm,3cm,4cm,则原三角形的周长为()A.4.5cm B.18cm C.9cm D.36cm2、三角形三条中位线的长分别为3、4、5,则此三角形的面积为_________3.三角形的三边长分别为12cm、16cm、20cm,则它的中位线构成的三角形的周长与面积分别为____ 和___.4.三角形一条中位线分三角形所成的新三角形与原三角形周长之和为60 cm ,则原三角形的周长为_______. 5.三角形的周长是135cm,过三角形各顶点作对边的平行线,则这三条平行线所组成的三角形的周长是6.已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点B向点C移动而点R不动时,那么下列结论成立的是(C )A.线段EF的长逐渐增大B.线段EF的长逐渐减少C.线段EF的长不变D.线段EF的长不能确定7、在平行四边形ABCD中,AB=2AD,∠A=60°,E,F分别是AB,CD的中点,且EF=1cm,那么对角线BD=____cm.8、在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,AD=BC,∠PEF=18°,则∠PFE的度数是____度.18°9.梯形的上底长4cm,下底长6cm,则梯形的中位线长为( B )A.12cmB.5cmC.10cmD.20cm10.如果梯形的一底为6,中位线为8,则另一底为( C ) A.4 B.7 C.10 D.14 11.已知等腰梯形ABCD的中位线EF的长为5,腰AD的长为4,则这个等腰梯形的周长为. 18 12.在四边形ABCD中,对角线AC=BD,那么顺次连结四边形ABCD各边的中点所得的四边形一定是( ) 13.梯形的中位线长16cm,梯形的一条对角线把中位线分成两条线段,这两条线段的差是4cm,则梯形上底长是cm. 12 cm14.梯形ABCD中,AD//BC,BD为对角线,中位线EF交BD于O点,若FO-EO=3,则BC-AD等于(B )A.4 B.6 C.8 D.1015.梯形ABCD中,AD∥BC,AD=12,BC=16,中位线EF与对角线分别相交于H和G,则GH的长是. 216.如图,梯形ABCD中,AD∥BC,EF为中位线,G为BC上任一点,如果S△GEF=cm2,那么梯形的面积是cm2.217.如图,EF 是△ABC 的中位线,BD 平分∠ABC 交EF 于D ,若DE =2,则EB =_____.2二、证明题:1.已知:△ABC 的中线BD 、CE 交于点O ,F 、G 分别是OB 、OC 的中点. 求证:四边形DEFG 是平行四边形.3.如图,已知四边形ABCD 中,点E ,F ,G ,H 分别是AB 、CD 、AC 、BD 的中点,并且点E 、F 、G 、H 有在同一条直线上.求证:EF 和GH 互相平分.4.如图,同底边BC 的△ABC 与△DBC 中,E 、F 、G 、H 分别是AB 、AC 、DB 、DC 的中点,求证:EH 与FG 互相平分。

三角形的中位线练习题含答案

三角形的中位线练习题含答案

.三角形的中位线练习题三角形中位线定义:.A符号语言:在△ ABC 中, D 、E 分别是 AB 、AC 的中点 , E则:线段 DE 是△ ABC 的__D__,BC三不同点 :①三角形中位线的两个端点都是三角形边的中点。

②三角形中线只有一个端点是边的中点,另一端点是三角形一个顶点。

相同点: 都是一条线段,都有三条。

三角形中位线定理:.ADEBC符号语言表述: ∵ DE 是△ ABC 的中位线(或 AD=BD,AE=CE) ∴ DE// 12 BC练习1.连结三角形 ___________的线段叫做三角形的中位线. 2.三角形的中位线 ______于第三边,并且等于 _______. 3.一个三角形的中位线有_________条.4. 如图△ ABC 中, D 、 E 分别是 AB 、 AC 的中点,则线段 CD 是△ ABC 的___, 线段 DE 是△ ABC _______5、如图, D 、 E 、 F 分别是△ ABC 各边的中点( 1)如果 EF = 4cm ,那么 BC =__ cm 如果 AB = 10cm ,那么 DF =___ cm( 2)中线 AD 与中位线 EF 的关系是___6.如图 1 所示, EF 是△ ABC 的中位线,若 BC=8cm ,则 EF=_______cm .(1) (2) (3) (4)7.三角形的三边长分别是 3cm , 5cm , 6cm ,则连结三边中点所围成的三角形的周长是_________cm .8.在 Rt △ ABC 中,∠ C=90°, AC=?5, ?BC=?12, ?则连结两条直角边中点的线段长为 _______. 9.若三角形的三条中位线长分别为2cm , 3cm ,4cm ,则原三角形的周长为( )A . 4.5cm B. 18cmC.9cmD. 36cmA ,B 间的距离,但绳子不够长,一位.同学帮他想了一个主意:先在地上取一个可以直接到达 A ,B 的点 C ,找到 AC ,BC 的中点 D ,E ,并且测出 DE的长为 10m ,则 A , B 间的距离为( )A . 15mB. 25mC. 30mD. 20m11.已知△ ABC 的周长为 1,连结△ ABC 的三边中点构成第二个三角形,?再连结第二个三角形的三边中点构成第三个三角形,依此类推,第2010 个三角形的周长是( )A 、1 、 1C 、1D 、1B20082009200820092212.如图 3 所示,已知四边形 ABCD , R , P 分别是 DC , BC 上的点, E ,F 分别是 AP , RP 的中点,当点 P 在 BC上从点 B 向点 C 移动而点 R 不动时, 那么下列结论成立的是( )A .线段 EF 的长逐渐增大B .线段 EF 的长逐渐减少C .线段 EF 的长不变D.线段 EF 的长不能确定13.如图 4, 在△ ABC 中, E ,D , F 分别是 AB , BC , CA 的中点, AB=6, AC=4,则四边形 AEDF?的周长是( )A .10B .20C .30D .4014.如图所示, □ ABCD 的对角线 AC ,BD 相交于点 O , AE=EB ,求证: OE ∥BC .15.已知矩形 ABCD 中, AB=4cm , AD =10cm ,点 P 在边 BC 上移动,点E 、F 、G 、 H分别是 AB 、 AP 、 DP 、 DC 的中点 . 求证: EF+GH =5cm ;16.如图所示,在△ ABC 中,点 D 在 BC 上且 CD=CA ,CF 平分∠ ACB ,AE=EB ,求证: EF= 1BD .217.如图所示,已知在 □ABCD 中, E ,F 分别是 AD , BC 的中点,求证:MN ∥BC .;..18.已知:如图,四边形ABCD 中, E、F、 G、 H 分别是 AB 、 BC 、 CD、DA 的中点.求证:四边形EFGH 是平行四边形.D19.如图,点 E, F, G, H 分别是 CD, BC, AB , DA 的中点。

完整版三角形的中位线经典练习题及其答案

完整版三角形的中位线经典练习题及其答案

八年级三角形的中位线练习题及其答案1 •连结三角形2 •三角形的中位线于第三边,并且等于3 •一个三角形的中位线有__________ 条.4. 如图△ ABC中,D E分别是ABAC的中点,则线段CD>^ ABC的_______ ,线段。

丘是厶ABC ___________5、如图,D E、F分别是△ ABC各边的中点(1)如果EF= 4cm,那么BC= cm 如果AB= 10cm,那么DF= __________________________ cm(2) ________________________________ 中线AD与中位线EF的关系是____________________________6 .如图1所示,EF是厶ABC的中位线,若BC=8cm贝UEF=_________________________________________________cm7 .三角形的三边长分别是3cm 5cm, 6cm,则连结三边中点所围成的三角形的周长是 __________________ cm.8.在Rt △ ABC中,/ C=90°, AC=?5 ?BC=?12, ?则连结两条直角边中点的线段长为 ____________ .9 .若三角形的三条中位线长分别为2cm, 3cm, 4cm,则原三角形的周长为()A . 4.5cmB . 18cmC . 9cmD . 36cm10. 如图2所示,A, B两点分别位于一个池塘的两端,小聪想用绳子测量A, B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A, B的点C,找到AC, BC的中点D, E,并且测出DE 的长为10m,则A, B间的距离为()A . 15mB . 25mC . 30mD . 20m11. 已知△ ABC的周长为1,连结△ ABC的三边中点构成第二个三角形,?再连结第二个三角形的三边中点构成第三个三角形,依此类推,第2010个三角形的周长是( )A 1 1 1 1A、 B C D、2008 2009 20082 2009212.如图3所示,已知四边形ABCD R, P分别是DC BC上的点,E,F分别是AP, RP的中点,当点P在BC上从点B向点C移动而点R不动时,那么下列结论成立的是()A .线段EF的长逐渐增大B .线段EF的长逐渐减少C .线段EF的长不变D .线段EF的长不能确定13.如图4,在厶ABC中, E, D, F分别是AB, BC CA的中点,AB=6, AC=4,则四边形AEDF?勺周长是()A . 10B . 20C . 30D . 40A__________ D的线段叫做三角形的中位线.14. 如图所示,口ABCD的对角线AC, BD相交于点O, AE=EB求证:OE// BC.15. 已知矩形ABCD中,AB=4cm, AD=10cm,点P在边BC上移动,点E、F、G、H 分别是AB、AP、DP、DC的中点.求证:EF+GH=5cm;16 .如图所示,在△ ABC中,点D在BC上且CD=CA CF平分/ ACB AE=EB求证:EF=1BD.217.如图所示,已知在口ABCD中, E, F分别是AD, BC的中点,求证:MN/ BC.18.已知:如图,四边形ABCD中,E、F、G、H分别是AB、BC、arc CD、DA的中点.求证:四边形EFGH是平行四边形.19.如图,点E, F, G, H分别是CD, BC, AB , DA的中点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形的中位线定理练习题 2、如图2所示,A, B 两点分别位于一个池塘的两端,小聪想用绳子测量A, B 间的距离,
但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A, B 的点C, 找到AC, BC 的中点D, E,并且测出DE 的长为10m,则A, B 间的距离为()
A. 15m B ・ 25m C ・ 30m D ・ 20m
D, F 分别是AB, BC, CA 的中点,AB=6, ACM,则四边形AEDF
的周长是()
4、三角形的三边长分别是3cm, 5cm, 6cm,则连结三边中点所围成的三角形的周长是
_____________ c m.
6、在RtAABC 中,ZC 二90° , AO 5, BC= 12,则连结两条直角边中点的线段长为 ___________
7、若三角形的三条中位线长分别为2cm, 3cm, 4cm,则原三角形的周长为()
A. 4.5cm
B. 18cm
C. 9cm
D. 36cm
8、 如图,在平行四边形ABCD 中,AB=2AD, ZA=60°, E, F 分别是AB, CD 的中点,
且EF=lcm,那么对角线BD 二 _________ c m.
9、 如图,在四边形ABCD 中,P 是对角线BD 的中点,E, F 分别是AB, CD 的中点,AD=BC, ZPEF=18°,则ZPFE 的度数是 ____________ ・
10、 如图所示,平行四边形ABCD 中,点E 在边AD 上,以BE 为折痕,将AABE 向上翻 折,点A 正好落在CD±的点F,若△FDE 的周长为8, AFCB 的周长为22,则FC 的长 为 1、 、填空选择题:
如图1所示,EF 是AABC 的中位若 BC=8cm,则 EF 二 3、如图3,在AABC 中,E, A. 10
B. 20
C. 30
D. 40
5、三角形三条中位线的长分别为3、4、 5,则此三角形的面积为 __________
C

cm.
11、(2011・黔西南州)如图,小红作出了边长为1的第1个正三角形△A]BiCi,算出了正
AA I B I C I的面积,然后分别取△ AjBiCi三边的中点A2B2C2,作出了第二个正三角形△A2B2C2,算出第2个正△ A2B2C2的面积,用同样的方法作出了第3个正△ A3B3C3,算出第3个正△ A3B3C3的面积,依此方法作下去,由此可得第n次作出的正△AnBnCn的面
12.已知:如图,四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点. 求证:四
边形EFGH是平行四边形.
13 (2006*肇庆)如图,在AABC中,AB二AC,点D, E分别是AB, AC的中
点,F是BC
延长线上的一点,且CF二丄BC.
2
(1)求证:DE二CF; (2)求证:BE=EF.
C。

相关文档
最新文档