自动控制原理实验

合集下载

自控原理实验报告

自控原理实验报告

一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。

2. 掌握典型环节的数学模型及其在控制系统中的应用。

3. 熟悉控制系统的时间响应和频率响应分析方法。

4. 培养实验操作技能和数据处理能力。

二、实验原理自动控制原理是研究控制系统动态性能和稳定性的一门学科。

本实验主要涉及以下几个方面:1. 典型环节:比例环节、积分环节、微分环节、惯性环节等。

2. 控制系统:开环控制系统和闭环控制系统。

3. 时间响应:阶跃响应、斜坡响应、正弦响应等。

4. 频率响应:幅频特性、相频特性等。

三、实验内容1. 典型环节的阶跃响应- 比例环节- 积分环节- 比例积分环节- 比例微分环节- 比例积分微分环节2. 典型环节的频率响应- 幅频特性- 相频特性3. 二阶系统的阶跃响应- 上升时间- 调节时间- 超调量- 峰值时间4. 线性系统的稳态误差分析- 偶然误差- 稳态误差四、实验步骤1. 典型环节的阶跃响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。

- 使用示波器观察并记录各个环节的阶跃响应曲线。

- 分析并比较各个环节的阶跃响应曲线,得出结论。

2. 典型环节的频率响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。

- 使用频率响应分析仪测量各个环节的幅频特性和相频特性。

- 分析并比较各个环节的频率响应特性,得出结论。

3. 二阶系统的阶跃响应- 搭建二阶系统的实验电路。

- 使用示波器观察并记录二阶系统的阶跃响应曲线。

- 计算并分析二阶系统的上升时间、调节时间、超调量、峰值时间等性能指标。

4. 线性系统的稳态误差分析- 搭建线性系统的实验电路。

- 使用示波器观察并记录系统的稳态响应曲线。

- 计算并分析系统的稳态误差。

五、实验数据记录与分析1. 典型环节的阶跃响应- 比例环节:K=1,阶跃响应曲线如图1所示。

- 积分环节:K=1,阶跃响应曲线如图2所示。

自动控制原理实验

自动控制原理实验
-2-
自动控制原理实验
C
输 入
R2 R1 +
输 出 -1
Ui
0
t
Uo Uo 2 1
K=2
Ui=-1V
0
图 1-3 惯性环节实验原理图和输出波形
t
3.积分环节
积分环节实验原理图如图 1-4 所示。
G( S )
Z 2 1CS 1 Z1 R1 TS
, T=R1*C
当输入为单位阶跃信号,即 ui(t)=-1V 时,ui(s)= 所以输出响应为 uo(t)=
-1-
自动控制原理实验
R2
输 入
Ui
R1 +
0
输 出 -1 Uo Uo 2 1 k=2
t
Ui=-1V
0
图 1-2 比例环节实验原理图和输出波形
t
实验步骤: (1)调整示波器: 选择输入通道 CH1 或 CH2。 逆时针调节示波器的时间旋钮“TIME/DIV”到底, 使光标为一点, 并调节上下“位 移”旋钮使光标位于 0 线上。 调整示波器的输入幅度档位选择开关, 选择合适的档位使信号幅度便于观察, 例如 选择档位为 1V 档。 将输入幅度档位选择开关中心的微调旋钮顺时针旋到底。 将信号选择开关打到 DC 档。 (2)顺时针调节实验箱的旋钮,使阶跃信号为负(绿灯亮) 。 ( 3 )阶跃信号接到示波器上,调节实验箱的幅度旋钮。使负跳变幅度为一格(即 Ui=-1V) 。 (4)接好实验线路,按下阶跃信号按钮,观察示波器的波形。 预习思考:输出幅度跳变应为……? 2.惯性环节 惯性环节实验原理图如图 1-3 所示。 其传递函数为: G( S )
-8-
自动控制原理实验
大使稳态误差进一步减小,直到等于零。因此, “比例+积分(PI)”控制器,可以使系统在进 入稳态后无稳态误差。 这是相位滞后校正,滞后校正器的基本特性,是相频曲线具有负相 移(滞后相位角) 。滞后校正器实际是一个低通滤波器,基本原理主要是利用其滞后网络的 高频衰减特性,以降低系统的开环截止频率,从而使已校正系统获得足够的相角裕度。 比例微分(PD)控制:在微分控制中,控制器的输出与输入误差信号的微分(即误差 的变化率) 成正比关系。 自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。 其原因是由于存在有较大惯性组件(环节)或有滞后 (delay)组件,具有抑制误差的作用, 其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前” ,即在误差 接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是不 够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项” ,它能预测误差 变化的趋势,这样,具有“比例+微分”的控制器,就能够提前使抑制误差的控制作用等于 零, 甚至为负值, 从而避免了被控量的严重超调。 所以对有较大惯性或滞后的被控对象, “比 例+微分(PD)”控制器能改善系统在调节过程中的动态特性,是“超前”校正。超前校正的 原理是利用微分环节的超前调节作用, 实际上是利用了 RC 微分电路的高通特性进行超前校 正的。 “滞后-超前(PID) ”校正包含 PI 和 PD 这两种校正,其对系统性能的影响是上述两种 校正对系统作用的综合, 这种校正方法兼有滞后校正和超前校正的优点, 因此可以取长补短, 比单独使用超前或滞后校正方法能满足更多的性能要求。 “滞后-超前”校正器不仅能提高系 统的稳定性能,还可以减少超调量、加快系统响应速度。合理应用 PID 可以取得更好的校 正效果。

自动控制原理实验(全面)

自动控制原理实验(全面)

自动控制原理实验实验一 典型环节的电模拟及其阶跃响应分析一、实验目的⑴ 熟悉典型环节的电模拟方法。

⑵ 掌握参数变化对动态性能的影响。

二、实验设备⑴ CAE2000系统(主要使用模拟机,模/数转换,微机,打印机等)。

⑵ 数字万用表。

三、实验内容1.比例环节的模拟及其阶跃响应微分方程 )()(t Kr t c -= 传递函数 =)(s G )()(s R s C K -= 负号表示比例器的反相作用。

模拟机排题图如图9-1所示,分别求取K=1,K=2时的阶跃响应曲线,并打印曲线。

图9-1 比例环节排题图 图9-2 积分环节排题图 2.积分环节的模拟及其阶跃响应微分方程 )()(t r dtt dc T= 传递函数 sKTs s G ==1)(模拟机排题图如图9-2所示,分别求取K=1,K=0.5时的阶跃响应曲线,并打印曲线。

3.一阶惯性环节的模拟及其阶跃响应微分方程 )()()(t Kr t c dtt dc T=+ 传递函数 1)(+=TS KS G模拟机排题图如图3所示,分别求取K=1, T=1; K=1, T=2; K=2, T=2 时的阶跃响应曲线,并打印曲线。

4.二阶系统的模拟及其阶跃响应微分方程 )()()(2)(222t r t c dt t dc T dt t c d T =++ξ传递函数 121)(22++=Ts s T s G ξ2222nn n s s ωξωω++= 画出二阶环节模拟机排题图,并分别求取打印: ⑴ T=1,ξ=0.1、0.5、1时的阶跃响应曲线。

⑵ T=2,ξ=0.5 时的阶跃响应曲线。

四、实验步骤⑴ 接通电源,用万用表将输入阶跃信号调整为2V 。

⑵ 调整相应系数器;按排题图接线,不用的放大器切勿断开反馈回路(接线时,阶跃开关处于关断状态);将输出信号接至数/模转换通道。

⑶ 检查接线无误后,开启微机、打印机电源;进入CAE2000软件,组态A/D ,运行实时仿真;开启阶跃输入信号开关,显示、打印曲线。

自控原理课程实验报告

自控原理课程实验报告

一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。

2. 熟悉自动控制系统的典型环节,包括比例环节、积分环节、比例积分环节、惯性环节、比例微分环节和比例积分微分环节。

3. 通过实验,验证自动控制理论在实践中的应用,提高分析问题和解决问题的能力。

二、实验原理自动控制原理是研究自动控制系统动态和稳态性能的学科。

本实验主要围绕以下几个方面展开:1. 典型环节:通过搭建模拟电路,研究典型环节的阶跃响应、频率响应等特性。

2. 系统校正:通过在系统中加入校正环节,改善系统的性能,使其满足设计要求。

3. 系统仿真:利用MATLAB等仿真软件,对自动控制系统进行建模和仿真,分析系统的动态和稳态性能。

三、实验内容1. 典型环节实验(1)比例环节:搭建比例环节模拟电路,观察其阶跃响应,分析比例系数对系统性能的影响。

(2)积分环节:搭建积分环节模拟电路,观察其阶跃响应,分析积分时间常数对系统性能的影响。

(3)比例积分环节:搭建比例积分环节模拟电路,观察其阶跃响应,分析比例系数和积分时间常数对系统性能的影响。

(4)惯性环节:搭建惯性环节模拟电路,观察其阶跃响应,分析时间常数对系统性能的影响。

(5)比例微分环节:搭建比例微分环节模拟电路,观察其阶跃响应,分析比例系数和微分时间常数对系统性能的影响。

(6)比例积分微分环节:搭建比例积分微分环节模拟电路,观察其阶跃响应,分析比例系数、积分时间常数和微分时间常数对系统性能的影响。

2. 系统校正实验(1)串联校正:在系统中加入串联校正环节,改善系统的性能,使其满足设计要求。

(2)反馈校正:在系统中加入反馈校正环节,改善系统的性能,使其满足设计要求。

3. 系统仿真实验(1)利用MATLAB等仿真软件,对自动控制系统进行建模和仿真,分析系统的动态和稳态性能。

(2)根据仿真结果,优化系统参数,提高系统性能。

四、实验步骤1. 搭建模拟电路:根据实验内容,搭建相应的模拟电路,并连接好测试设备。

自动控制原理实验

自动控制原理实验

自动控制原理实验报告册实验一典型环节及其阶跃响应一、实验目的1、掌握控制模拟实验的基本原理和一般方法。

2、掌握控制系统时域性能指标的测量方法。

二、实验公式1、比例环节G(S)= -R2/R12、惯性环节G(S)= -K/TS+1 K= R2/R1, T= R2C3、积分环节G(S)= -1/TS T=RC4、微分环节G(S)= -RCS5、比例+微分环节G(S)= -K(TS+1) K= R2/R1, T= R2C6、比例+积分环节G(S)= K(1+1/TS) K= R2/R1, T=R2C三、实验结果1、比例环节阶跃波、速度波、加速度波依次为:2、惯性环节阶跃波、速度波、加速度波依次为:3、积分环节阶跃波、速度波、加速度波依次为:4、微分环节阶跃波、速度波、加速度波依次为:5、比例+微分环节阶跃波、速度波、加速度波依次为:6、比例+积分环节阶跃波、速度波、加速度波依次为:实验二二阶系统阶跃响应一、实验目的1、研究二阶系统的特征参数,阻尼比和无阻尼自然频率对系统动态性能的影响。

定量分析和与最大超调量和调节时间之间的关系。

2、进一步学习使用实验系统的使用方法。

3、学会根据系统阶跃响应曲线确定传递函数。

二、实验公式1、超调量:%=(Y MAX-Y OO)/Y OO X100%2、典型二阶系统的闭环传递函数:(S)= (1) (s)=U2(s)/U1(s)=(1/T2)/(S2+(K/T)S+1/T2) (2)式中:T=RC, K=R2/R1由(1)(2)可得: Wn=1/T=1/RCE=K/2=R2/2R1三、实验结果R1=100K、R2=50KR1=100K、R2=100KR1=100K、R2=100KR1=50K、R2=200K实验三控制系统的稳定性分析一、实验目的1、观察系统的不稳定现象。

2、研究系统开环增益和时间常数对系统稳定性的影响。

二、实验公式开环传递函数:G(S)=10K/S(0.1S+1)(TS+1)式中:K1=R3/R2 R2=100K R3=0~500K T=RC R=100K C=1uf或C=0.1uf三.实验结果第一种情况:C=1uf R3=50r3=100kr3=150kr3=200kr3=250kr3=450k第二种情况:C=0.1uf R=50kr=100k200k300k实验四系统频率特性测量一、实验目的1、加深了解系统及元件频率特性的物理概念。

自动控制原理实验3

自动控制原理实验3
实验 三
经典三阶系统旳稳定性 研究
一、试验目旳
1、 熟悉反馈控制系统旳构造和工作原理; 2、了解开环放大系数对系统稳定性旳影 响。
二、试验要求:
观察开环增益对三阶系统稳定性 旳影响。
三、试验仪器:
1.自控系统教学模拟机 XMN-2 1台; 2.TDS1000B-SC 系列数字存储示波 器1台; 3.万用表
由劳斯判据懂得,当:
11.9619.6 19.6k 0
19.6k 0
得到系统稳定范围:0 k 11.96
当:
11.96 19.6 19.6k 0
得到系统临界稳定时:
k 11.96
当:
11.96 19.6 19.6k 0
得到系统不稳定范围:k 11.96
将K=510/R代入(3-6)~(3-8)得: R>42.6KΩ 系统稳定 R=42.6KΩ 系统临界稳定 R<42.6KΩ 系统不稳定
G(S)H (S)
510 / R
S(0.1S 1)(0.51S 1)
系统旳特征方程为:
S 3 11.96S 2 19.6S 19.6K 0
用劳斯判据求出系统稳定、临界稳定、 不稳定时旳开环增益:
S3
1
19.6
S2
11.96
19.6K
11.96 19.6 19.6K
S1
11.96
S0
19.6K
四、试验原理和内容:
利用自控系统教学模拟机来模拟 给定三阶系统。
经典三阶系统原理方块图如下图 所示。
G(S )H (S )
K1K 2
T0S (T1S 1)(T2S 1)
K
S(T1S 1)(T2S 1)
给定三阶系统电模拟图

自动控制原理实验教程及实验报告

自动控制原理实验教程及实验报告

实验三 典型环节(或系统)的频率特性测量一、实验目的1.学习和掌握测量典型环节(或系统)频率特性曲线的方法和技能。

2.学习根据实验所得频率特性曲线求取传递函数的方法。

二、实验内容1.用实验方法完成一阶惯性环节的频率特性曲线测试。

2.用实验方法完成典型二阶系统开环频率特性曲线的测试。

3.根据测得的频率特性曲线求取各自的传递函数。

4.用软件仿真方法求取一阶惯性环节频率特性和典型二阶系统开环频率特性,并与实验所得结果比较。

三、实验步骤1.利用实验设备完成一阶惯性环节的频率特性曲线测试。

在熟悉上位机界面操作的基础上,充分利用上位机提供的虚拟示波器与信号发生器功能。

为了利用上位机提供的虚拟示波器与信号发生器功能,接线方式将不同于上述无上位机情况。

仍以一阶惯性环节为例,此时将Ui 连到实验箱 U3单元的O1(D/A 通道的输出端),将Uo 连到实验箱 U3单元的I1(A/D 通道的输入端),并连好U3单元至上位机的并口通信线。

接线完成,经检查无误,再给实验箱上电后,启动上位机程序,进入主界面。

界面上的操作步骤如下:①按通道接线情况完成“通道设置”:在界面左下方“通道设置”框内,“信号发生通道”选择“通道O1#”,“采样通道X ”选择“通道I1#”,“采样通道Y ”选择“不采集”。

②进行“系统连接”(见界面左下角),如连接正常即可按动态状态框内的提示(在界面正下方)“进入实验模式”;如连接失败,检查并口连线和实验箱电源后再连接,如再失败则请求指导教师帮助。

③进入实验模式后,先对显示进行设置:选择“显示模式”(在主界面左上角)为“Bode”。

④完成实验设置,先选择“实验类别”(在主界面右上角)为“频域”,然后点击“实验参数设置”,在弹出的“频率特性测试频率点设置”框内,确定实验要测试的频率点。

注意设置必须满足ω<30Rad/sec 。

⑤以上设置完成后,按“实验启动”启动实验。

界面中下方的动态提示框将显示实验测试的进展情况,从开始测试直至结束的过程大约需要2分钟。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告姓名:学号:班级:实验一 一、二阶系统的电子模拟及时域响应的动态测试一、 实验目的1. 了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。

2. 学习在电子模拟机上建立典型环节系统模型的方法。

3. 学习阶跃响应的测试方法。

二、 实验内容1. 建立一阶系统的电子模型,观测并记录在不同时间常数T 时的阶跃响应曲线,并测定其过渡过程时间Ts 。

2.建立二阶系统的电子模型,并记录在不同的阻尼比ζ时的阶跃响应曲线,并测定其超调量δ%及过渡过程时间Ts 。

三、 实验原理1.一阶系统系统传递函数为: 模拟运算电路如图1-1所示:图 1-1其中R1=R2,T=R2·C 其中电阻电容的具体取值见表1-12. 二阶系统系统传递函数为: 模拟运算电路如图1-2所示:图1-2其中R2·C1=1,R3·C2=1,R4/R3=ξ21各元器件具体取值如图1-2所示。

222()()()2n n nC s s R s S S ωζωωΦ==++()()()1C s Ks R s TS Φ==+四、实验数据1.一阶系统1)数据表格(取5%误差带,理论上Ts=3T)表1-1T/s 0.25 0.5 1 R2(R1)/Ω250k 500k 1MC/μF 1 1 1Ts实测/s 0.74 1.46 2.99Ts理论/s 0.75 1.5 3 阶跃响应曲线图1-3 图1-4 图1-5 2)响应曲线图1-3 (T=0.25)图1-4 (T=0.5)图1-5 (T=1)2. 二阶系统 1)数据表格表1-2说明:(1)0﹤ζ﹤1,为欠阻尼二阶系统,超调量理论计算公式2/1%100%eπζζσ--=⨯(2)取5%误差带,当ζ值较小(0﹤ζ﹤0.7)采用近似公式 进行估算;当ζ值较大(ζ﹥0.7)采用近似公式 7.145.6-=ξsT 进行估算.2)响应曲线图1-6 (ζ=0.25)ζ0.25 0.5 0.7 1.0 /rad/s 1 1 1 1 R 4/M Ω 2.0 1.0 0.7 0.5 C2/μF 1.0 1.0 1.0 1.0 σ%实测 43.77 16.24 4.00 0.02 σ%理论 44.43 16.30 4.600 Ts 实测/s 13.55 5.47 3.03 4.72 Ts 理论/s 14 7 5 4.75 阶跃响应曲线图1-6图1-7图1-8图1-9ns T ξω5.3=图1-7 (ζ=0.5)图1-8 (ζ=0.7)图1-9 (ζ=1)五、 误差分析1. 对一阶系统阶跃响应实验当T=0.25 时, 1.3%%10075.074.0-75.0=⨯=误差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自动控制原理实验实验一 控制系统的数学模型一、 实验目的1. 熟悉Matlab 的实验环境,掌握Matlab 建立系统数学模型的方法。

2. 学习构成典型环节的模拟电路并掌握典型环节的软件仿真方法。

3. 学习由阶跃响应计算典型环节的传递函数。

二、 实验内容1. 已知图1.1中()G s 和()H s 两方框相对应的微分方程分别是:()610()20()()205()10()dc t c t e t dtdb t b t c t dt+=+=且满足零初始条件,用Matlab 求传递函数()()C s R s 和()()E s R s 。

图1.1 系统结构图2. 构成比例环节、惯性环节、积分环节、比例-积分环节、比例-微分环节和比例-积分-微分环节的模拟电路并用Matlab 仿真;3. 求以上各个环节的单位阶跃响应。

三、 实验原理1. 构成比例环节的模拟电路如图1.2所示,该电路的传递函数为:21().R G s R =-图1.2 比例环节的模拟电路原理图2. 构成惯性环节的模拟电路如图1.3所示,该电路的传递函数为:221(),,.1R KG s K T R C Ts R =-==+图1.2 惯性环节的模拟电路原理图3. 构成积分环节的模拟电路如图1.3所示,该电路的传递函数为:1(),.G s T RC Ts==图1.3 积分环节的模拟电路原理图4. 构成比例-积分环节的模拟电路如图1.4所示,该电路的传递函数为:2211()1,,.R G s K K T R C Ts R ⎛⎫=-+== ⎪⎝⎭图1.4 比例-积分环节的模拟电路原理图5. 构成比例-微分环节的模拟电路如图1.5所示,该电路的传递函数为:221()(1),,.R G s K Ts K T R C R =-+==图1.5 比例-微分环节的模拟电路原理图6. 构成比例-积分-微分环节的模拟电路如图1.6所示,该电路的传递函数为:121211212121121()1(1)()()()()()p d i f p i i ff i f f f f f d f f G s K T s T s R R R R C K R R C T R CT R R C R R C R R R R R R CC T R R C R R C⎛⎫=++ ⎪⎝⎭++=+==+++++=+++图1.6 比例-积分-微分环节的模拟电路原理图四、实验要求1.画出各环节的模拟电路图。

比例环节的模拟电路原理图惯性环节的模拟电路原理图积分环节的模拟电路原理图比例-积分环节的模拟电路原理图比例-微分环节的模拟电路原理2.获得各个典型环节的单位阶跃响应曲线。

环节图像比例积分比例微分惯性环节3.针对惯性环节、积分环节,适当改变参数(自行选取),改变相应的时间常数,比较和分析单位阶跃响应曲线的区别。

4.从图中可看出,随着时间常数T的增加,振荡环节的调节时间增加,积分环节的斜率越小。

五、实验思考1.为什么函数step()不支持纯微分环节?为什么说纯微分环节在实际中无法实现?答:因为纯微分环节的输出量只与输入量对时间的各阶导数有关,单位阶跃函数的导数为无穷大,故函数step()不支持纯微分环节。

在实际系统或元件中,由于惯性的普遍存在,以致很难实现理想的纯微分关系。

2.惯性环节在什么情况下可视为比例环节?能否通过实验验证?答:在时间常数T比较小时,可视为比例环节,可以通过实验近似验证。

实验二二阶系统的动态过程分析一、实验目的1.掌握二阶控制系统的电路模拟方法及其动态性能指标的测试技术。

2.定量分析二阶系统的阻尼比ξ和无阻尼自然频率ω对系统动态性n能的影响。

3.加深理解“线性系统的稳定性只与其结构和参数有关,而与外作用无关”的性质。

4.了解和学习二阶控制系统及其阶跃响应的Matlab仿真和Simulink实现方法。

二、实验内容1.分析典型二阶系统()G s的ξ和nω变化时,对系统的阶跃响应的影响。

从图中可看出,当wn 不变时,随着ζ的减小,系统的超调量越来越大;当ζ不变,随着wn 的增加,系统的调节时间减小。

2. 用实验的方法求解以下问题:设控制系统结构图如图2.1所示,若要求系统具有性能:%20%,1,p p t s σσ===试确定系统参数K 和τ,并计算单位阶跃响应的特征量d t ,r t 和s t 。

图2.1 控制系统的结构图其中k=12.4、т=0.16;单位阶跃响应图线:从图中可看出t d=0.35s 、t r=0.62s 、t s=2.02s 3. 用实验的方法求解以下问题:设控制系统结构图如图2.2所示。

图中,输入信号()r t t θ=,放大器增益A K 分别取13.5,200和1500。

试分别写出系统的误差响应表达式,并估算其性能指标。

图2.2 控制系统的结构图K=13.5K=200 K=1500三、 实验原理任何一个给定的线性控制系统,都可以分解为若干个典型环节的组合。

将每个典型环节的模拟电路按系统的方块图连接起来,就得到控制系统的模拟电路图。

通常,二阶控制系统222()2nn nG s s ωξωω=++可以分解为一个比例环节、一个惯性环节和一个积分环节,其结构原理如图2.3所示,对应的模拟电路图如图2.4所示。

图2.3 二阶系统的结构原理图图2.4 二阶系统的模拟电路原理图图2.4中:()(),()()r c u t r t u t c t ==-。

比例常数(增益系数)21R K R =,惯性时间常数131T R C =,积分时间常数242T R C =。

其闭环传递函数为:12221112()1()(1)c r KU s TT K K U s T s T s K s s T TT ==++++(0.1)又:二阶控制系统的特性由两个参数来描述,即系统的阻尼比ξ和无阻尼自然频率n ω。

其闭环传递函数的标准形式为:222()()2n n nC s R s s ωξωω=++ (0.2)比较(0.1)和(0.2)两式可得:n ωξ== 当3412,R R R C C C ====时,有12()T T T RC ===,因此,n ωξ==可见:(1)在其它参数不变的情况下,同时改变系统的增益系数K 和时间常数T (即调节21R R 的比值和改变RC 的乘积)而保持n ω不变时,可以实现ξ单独变化。

只改变时间常数T 时,可以单独改变n ω。

这些都可以引起控制系统的延迟时间d t 、上升时间r t 、调节时间s t 、峰值时间p t 、超调量%σ和振荡次数N 等的变化。

(2)记录示波器上的响应曲线满足性能要求时的各分立元件值,就可以计算出相应的参数和其它性能指标值。

四、 实验要求4. 记录ξ和n ω变化时二阶系统的阶跃响应曲线以及所测得的相应的超调量%σ,峰值时间p t 和调节时间s t 值,分析ξ和n ω对系统性能的影响。

1. 画出研究内容2题中对应的模拟电路图,并标明各电路元件的取值。

2. 根据研究内容3题中不同的A K 值,计算出该二阶系统的ξ和n ω,由近似公式求其动态性能,并与仿真结果比较。

五、 实验思考1. 分析通常采用系统的阶跃响应特性来评价其动态性能指标的原因。

因为典型输入信号的数学表达式比较简单,并且比较接近系统的实际输入信号,因此常被用来作为研究系统时域性能的输入信号。

2. 用Matlab 绘制以下问题中系统的输出响应曲线。

设角度随动系统如图2.5所示。

图中,K 为开环增益,0.1T s =为伺服电动机的时间常数。

若要求系统的单位阶跃响应无超调,且调节时间1s t s ≤,K 应取多大?此时系统的延迟时间d t 及上升时间r t 各等于多少?此时k=2.5由单位阶跃响应图可知:td=0.3s 、tr=1.5s图2.5 角度随动系统实验三 控制系统的稳定性分析一、 实验目的1. 观察系统的不稳定现象。

2. 了解系统的开环增益和时间常数对系统稳定性的影响。

3. 研究系统在不同输入下的稳态误差的变化。

4. 掌握系统型次及开环增益对稳态误差的影响。

二、 实验内容1. 分析开环增益0K 和时间常数T 改变对系统稳定性及稳态误差的影响。

系统开环传递函数为:10().(0.11)(1)K G s s s Ts =++2. 分析实验内容1中系统型次v 改变对系统稳态误差的影响。

3. 分析实验内容1中系统在不同输入时的稳态误差。

4. 用实验的方法求解以下问题:设具有测速发动机内反馈的位置随动系统原理图如图3.1所示。

要求计算()r t 分别为21(),,2t t t 时,系统的稳态误差,并对系统在不同输入形式下具有不同稳态误差的现象进行物理说明。

图3.1 位置随动系统原理图三、 实验原理构成实验内容1系统的模拟电路如图3.2所示。

图3.2 稳定性实验系统的模拟电路系统的开环传递函数为:10().(0.11)(1)K G s s s Ts =++式中,20121,100,0~500;,100R K R k R k T RC R k R ==Ω=Ω==Ω,C 取1F μ或0.1F μ两种情况。

(1)输入信号1,1r U C F μ==;改变电位器,使2R 从0500k →Ω方向变化,观察系统的输入波形,确定使系统输出产生等幅振荡时相应的2R 值及0K 值,分析0K 变化对系统稳定性的影响。

(2)分析T 值变化对系统的影响。

(3)观察系统在不同输入下稳态误差变化的情况。

四、实验要求1.记录各步骤中绘出的响应曲线。

2.T=1; K o=0.04 k o=0.1 k o=1Ko=0.4;T =2 T=10 T=0.13.对响应曲线进行分析,验证参数K、T即系统型次与系统稳定性和稳态误差之间的关系。

随着K0的增加,系统的超调量增加;随着T的减小,系统的动态性能变好。

五、实验思考影响系统稳定性和稳态误差的因素有哪些?如何改善系统的稳定性,减小和消除稳态误差?影响因素有开环增益和系统的型别,增大开环增益可以减小稳态误差,提高系统的型别可以减少稳态误差。

实验四 控制系统的根轨迹分析一、实验目的1. 学习MATLAB 在控制系统中的应用;2.熟悉MATLAB 在绘制根轨迹中的应用;2. 掌握控制系统根轨迹绘制,应用根轨迹分系统性能的方法。

二、实验内容1.熟悉MATLAB 中已知开环传递函数绘制闭环根轨迹的方法;2.学习使用MATLAB 进行一阶、二阶系统仿真的基本方法。

3.对下列给定的开环传递函数系统,绘制根轨迹图并计算相应参数值。

(1)10)()(+=*S K s H s G (2))6)(2()()(++=*S S K s H s G (3)2)3)(1()2()()(+++=*S S S K s H s G (4))5010)(2()3()()(2++++=*S S S S S K s H s G (5))5.2)(5.2()54)(5.1()()(22++++++=*S S S S S S S K s H s G已知开环传递函数绘制闭环根轨迹命令格式: rlocus(num,den) 求根轨迹上任一点处的增益命令格式: rlocfind( num,den )要求:记录根轨迹,并观察根轨迹的起点、终点,根轨迹与开环零、极点分布的关系,实轴上的分离点、会合点,虚轴交点,出射角、入射角,和系统在不同值下的工作状态。

相关文档
最新文档