巧用旋转法解几何题

合集下载

初三数学旋转模型(含详细解析)

初三数学旋转模型(含详细解析)
∴△PDQ为等边三角形,∴∠PQD=60°.
∵∠DQC=∠APD=180°-15°-15°=150°,
∴∠PQC=360°-60°-150°=150°=∠DQC,,
∵PQ=QD=CQ,∴∠PCQ=∠DCQ=15°∴∠PCD=30°∴∠PCB=60°
∵PC=BC=CD∴ΔPBC为等边三角形
例5、已知:如图,E是正方形ABCD的边BC上一点,AF平分∠EAD交CD于点F,说明AE=BE+DF的理由。
8.如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∠AOD=90°,则∠D的度数是.
9.如图,将矩形ABCD绕点A顺时针旋转90゜后,得到矩形AB′C ′D′,如果CD=2DA=2,
那么CC′=_________.
(第13题)
10.如图是中国共产主义青年团团旗上的图案(图案本身没有字母)则至少旋转____________度后能与原来图形重合.
【分析】:由于要证的3条线段AB、BE、DF分散在两个三角形中,可利用旋转变换,将其放到一个三角形中。
【解析】:把△ADF绕点A顺时针旋转90°,则点D转到了点B的位置,点F转到了点F'的位置,根据旋转的性质得:
∠3=∠1,F'B=FD,∠AF'B=∠AFD
∵ABCD为正方形
∴∠D=∠ABF'=90°
(1)如图(1),两三角尺的重叠部分为 ,则重叠部分的面积为,周长为.
(2)将图(1)中的 绕顶点 逆时针旋转 ,得到图(2),此时重叠部分的面积为,周长为.
(3)如果将 绕 旋转到不同于图(1)和图(2)的图形,如图(3),请你猜想此时重叠部分的面积为.
3、如图,P是等边△ABC内一点,PA=2, ,PC=4,求BC的长。

旋转解形法

旋转解形法

旋转解形法旋转解形法是一种常用的几何解题方法,通过将图形旋转使其变得更易处理或更容易观察,从而解决几何问题。

在这种方法中,我们可以利用旋转对称性或旋转变换来简化问题,找到问题的解决方案。

我们来看一个简单的例子。

假设有一个正方形,边长为a,我们想要计算其面积。

正方形的面积公式为A=a²,但是如果我们将正方形旋转45度,我们会发现它变成了一个菱形,其对角线的长度为a。

菱形的面积公式为A=1/2×d1×d2,其中d1和d2分别是菱形的两条对角线。

由于菱形的两条对角线长度相等,所以A=1/2×a×a=1/2a²,这与正方形的面积公式相同。

因此,通过旋转解形法,我们可以得到正方形的面积公式。

除了计算面积,旋转解形法还可以在解决其他几何问题时发挥重要作用。

例如,我们可以利用旋转解形法来证明两个三角形相似。

假设有两个三角形ABC和DEF,我们需要证明它们相似。

首先,我们将三角形ABC绕顶点A顺时针旋转一定角度使边AB与边DE重合,然后我们再将三角形ABC绕顶点B逆时针旋转一定角度使边BC与边EF重合。

这样,我们就得到了一个旋转后的三角形A'B'C',其中A'B'与DE重合,B'C'与EF重合。

由于旋转变换保持形状不变,所以A'B'C'与ABC相似。

根据相似三角形的性质,我们可以得出三角形ABC与DEF相似的结论。

在解决几何问题时,旋转解形法还可以帮助我们观察和发现一些性质。

例如,我们可以利用旋转解形法来证明一个正五边形的内角和为540度。

我们将正五边形绕其中一个顶点旋转72度,得到一个旋转后的正五边形。

由于旋转变换保持形状不变,所以旋转后的正五边形与原来的正五边形相似。

根据相似三角形的性质,我们可以得出旋转后的正五边形的内角和也为540度。

因此,我们可以得出正五边形的内角和为540度的结论。

整理中考数学几何图形旋转试题经典问题及解答

整理中考数学几何图形旋转试题经典问题及解答

几何图形旋转常见问题一、填空题1.如图1,把边长为1的正方形ABCD绕顶点A逆时针旋转30°到正方形AB′C′D′,那么它们的公共局部的面积等于.2.如图2,将一块斜边长为12cm,∠B=60°的直角三角板ABC,绕点C沿逆时针方向旋转90°至△A′B′C′的位置,再沿CB向右平移,使点B′刚好落在斜边AB上,那么此三角板向右平移的距离是cm.3.正△ABC的边长为3cm,边长为1cm的正△RPQ的顶点R与点A重合,点P,Q分别在AC,AB上,将△RPQ沿着边AB,BC,CA顺时针连续翻转〔如图3所示〕,直至点P第一次回到原来的位置,那么点P运动路径的长为cm.4.如图4,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,∠BCD=45°,将腰CD 以点D为中心逆时针旋转90°至ED,连结AE,CE,那么△ADE的面积是.二、解答题5.如图5-1,P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD 于点F.(1) 求证:BP=DP;(2) 如图5-2,假设四边形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP?假设是,请给予证明;假设不是,请用反例加以说明;(3) 试选取正方形ABCD的两个顶点,分别与四边形PECF的两个顶点连结,使得到的两条线段在四边形PECF绕点C按逆时针方向旋转的过程中长度始终相等,并证明你的结论 .6.如图6-1是一个美丽的风车图案,你知道它是怎样画出来的吗?按以下步骤可画出这个风车图案:在图6-2中,先画线段OA,将线段OA平移至CB处,得到风车的第一个叶片F1,然后将第一个叶片OABC绕点O逆时针旋转180°得到第二个叶片F2,再将F1、F2同时绕点O逆时针旋转90°得到第三、第四个叶片F3、F4.根据以上过程,解答以下问题:(1)假设点A的坐标为(4,0),点C的坐标为(2,1),写出此时点B的坐标;(2)请你在图6-2中画出第二个叶片F2;(3)在(1)的条件下,连接OB,由第一个叶片逆时针旋转180°得到第二个叶片的过程中,线段OB扫过的图形面积是多少?7.如图7,在直角坐标系中,点P0的坐标为(1,0),将线段OP按逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,…,OPn〔n为正整数〕.〔1〕求点P6的坐标;〔2〕求△P5OP6的面积;〔3〕我们规定:把点Pn (xn,yn)〔n=0,1,2,3,…〕的横坐标xn、纵坐标yn都取绝对值后得到的新坐标(|xn |,|yn|)称之为点Pn的“绝对坐标〞.根据图中点Pn的分布规律,请你猜测点Pn的“绝对坐标〞,并写出来.8.把正方形ABCD绕着点A,按顺时针方向旋转得到正方形AEFG,边FG与BC交于点H 〔如图8〕.试问线段HG与线段HB相等吗?请先观察猜测,然后再证明你的猜测.9.如图9-1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片〔如图9-2〕,量得他们的斜边长为10cm,较小锐角为30°,再将这两张三角形纸片摆成如图9-3的形状,但点B、C、F、D在同一条直线上,且点C与点F重合〔在图9-3至图9-6中统一用F表示〕图9-1 图9-2 图9-3 小明在对这两张三角形纸片进展如下操作时遇到了三个问题,请你帮助解决.〔1〕将图9-3中的△ABF沿BD向右平移到图9-4的位置,使点B与点F 重合,请你求出平移的距离;F交DE于〔2〕将图9-3中的△ABF绕点F顺时针方向旋转30°到图9-5的位置,A1点G,请你求出线段FG的长度;交DE于点H,请证明:〔3〕将图9-3中的△ABF沿直线AF翻折到图9-6的位置,AB1AH﹦DH.图9-4 图9-5 图9-6参考答案一、1. 2. 6-2 3二、5. 解:〔1〕解法一:在△ABP与△ADP中,利用全等可得BP=DP.解法二:利用正方形的轴对称性,可得BP=DP.〔2〕不是总成立 .当四边形PECF绕点C按逆时针方向旋转,点P旋转到BC边上时,DP>DC>BP,此时BP=DP 不成立.〔3〕连接BE、DF,那么BE与DF始终相等.在图1-1中,可证四边形PECF为正方形,在△BEC与△DFC中,可证△BEC≌△DFC .从而有 BE=DF .6. 解:〔1〕B〔6,1〕〔2〕图略〔3〕线段OB扫过的图形是一个半圆.过B作BD⊥x轴于D.由〔1〕知B点坐标为〔6,1〕,∴OB2=OD2+BD2=62+12=37.∴线段OB扫过的图形面积是.7. 解:〔1〕根据旋转规律,点P6落在y轴的负半轴,而点Pn到坐标原点的距离始终等于前一个点到原点距离的倍,故其坐标为P6(0,26),即P6(0,64).〔2〕由可得,△P0OP1∽△P1OP2∽…∽△Pn-1OPn,设P1(x1,y1),那么y1=2sin45°=,∴.又∵,∴.〔3〕由题意知,OP0旋转8次之后回到x轴正半轴,在这8次中,点Pn分别落在坐标象限的平分线上或x轴或y轴上,但各点绝对坐标的横、纵坐标均为非负数,因此,点Pn的坐标可分三类情况:令旋转次数为n.①当n=8k或n=8k+4时〔其中k为自然数〕,点Pn 落在x轴上,此时,点Pn的绝对坐标为(2n,0);②当n=8k+1或n=8k+3或n=8k+5或n=8k+7时〔其中k为自然数〕,点Pn落在各象限的平分线上,此时,点P n的绝对坐标为,即.③当n=8k+2或n=8k+6时〔其中k为自然数〕,点Pn落在y轴上,此时,点P n的绝对坐标为(0,2n).8. 解:HG=HB.证法1:连结AH〔如图10〕.∵四边形ABCD,AEFG都是正方形,∴∠B=∠G=90°.由题意,知AG=AB,又AH=AH,∴Rt△AGH≌Rt△ABH〔HL〕.∴HG=HB.证法2:连结GB〔如图11〕.∵四边形ABCD,AEFG都是正方形,∴∠ABC=∠AGF=90°.由题意知AB=AG.∴∠AGB=∠ABG.∴∠HGB=∠HBG.∴HG=HB.9. 解:〔1〕图形平移的距离就是线段BC的长.∵在Rt△ABC中,斜边长为10cm,∠BAC=30°,∴BC=5cm.∴平移的距离为5cm.〔2分〕〔2〕∵∠A1FA=30°,∴∠GFD=60°.又∠D=30°,∴∠FGD=90°.在Rt△EFD中,ED=10 cm,∴ .∵FG=cm.〔3〕在△AHE与△DHB1中,∠FAB1=∠EDF=30°.∵FD=FA,EF=FB=FB1,∴FD-FB1=FA-FE,即AE=DB1.又∵∠AHE=∠DHB1,∴△AHE≌△DHB1〔AAS〕.∴AH=DH.。

三角形旋转问题解题法和理由

三角形旋转问题解题法和理由

三角形旋转问题解题法和理由如下:
解题方法:
1.明确题目要求:首先需要明确题目要求,确定需要旋转的角度
和旋转中心,以及旋转后需要得到的图形或关系。

2.画出原始图形:根据题目描述,画出原始三角形,并标记好相
关的点和线段。

3.确定旋转中心和角度:根据题目要求,确定旋转的中心点和旋
转角度。

4.执行旋转操作:使用旋转工具或手动操作,将三角形绕旋转中
心按指定的角度旋转。

5.验证结果:旋转后,检查是否得到了题目要求的结果,并注意
验证角度、长度等是否符合题目要求。

理由:
1.旋转是几何变换中的基本变换,它可以通过改变图形的位置来
得到新的图形关系或结构。

2.通过旋转操作,可以揭示条件与结论之间的内在联系,找出证
题途径。

3.在三角形旋转问题中,通过旋转可以得到新的角度、长度等关
系,从而为解题提供新的思路和方法。

中考数学解答题压轴题突破 重难点突破八 几何综合题 类型六:旋转在几何综合题中的应用

中考数学解答题压轴题突破 重难点突破八 几何综合题 类型六:旋转在几何综合题中的应用

(2)证明:BE=AH+DF.
(2)证明:将△ABH绕着点B顺时针旋转90° 得到△BCM,∵四边形ABCD是正方形, ∴AD=BC,∠ADC=∠C=90°,∴∠ADF=∠C, ∵AF∥BE,∴∠F=∠BEC,∴△ADF≌△BCE(AAS), ∴DF=CE.又由旋转可知AH=CM,∠AHB=∠M,∠BAH=∠BCM=90°, ∵∠BCD=90°,∴∠BCD+∠BCM=180°, ∴点E,C,M在同一直线.∴AH+DF=EC+CM=EM.
类型六:旋转在几何综合 题中的应用
模型一:旋转构造基本图形 【解题方法模型构建】 若题干中出现“共顶点、等线段(相邻等线段)”这一特征.常考虑构造 旋转,通过旋转可以将线段转移,将已知条件集中,从而解决问题.
1.遇60°旋转60°,构造等边三角形(等边三角形旋转模型).
通过旋转可将线段AP,BP,CP转移在同一个三角形中(△CPP′). 注:根据“旋转的相互性”也可绕A点旋转△APC,或绕B,C点旋转相应 三角形(还有5种构造方法).
模型二:旋转构造模型 【解题方法模型构建】 1.如图,在△OAB中,OA=OB,在△OCD中,OC=OD,∠AOB=∠COD=
α,将△OCD绕点O旋转一定角度后,连接AC,BD,相交于点E.简记 为:双等腰,共顶点,顶角相等,旋转得全等.
【结论】(1)△AOC≌△BOD(SAS); (2)AC=BD; (3)两条拉手线AC,BD所在直线的夹角与∠AOB相等或互补.
【结论】△ABD≌△AEC;△ABE∽△ADC.
2.请阅读下列材料: 问题:如图①,在等边三角形ABC内有一点P,且PA=2,PB= 3 ,PC= 1,求∠BPC度数的大小和等边三角形ABC的边长. 李明同学的思路:将△BPC绕点B逆时针旋转60°,画出旋转后的图形 (如图②),连接PP′,可得△P′PB是等边三角形,而△PP′A又是直角 三角形(由勾股定理的逆定理可证),∴∠AP′B=150°,而∠BPC=∠ AP′B=150°,进而求出等边角形ABC的边长为 7,问题得到解决.

几何的运动学会用几何的运动方法解决问题

几何的运动学会用几何的运动方法解决问题

几何的运动学会用几何的运动方法解决问题在几何学中,运动学是研究物体在空间中的位置、速度和加速度变化规律的一门学科。

几何的运动学是指通过几何的方法来解决与运动有关的几何问题。

几何的运动学方法可以广泛应用于各种几何学问题的解决,例如线段的平移、旋转、镜像等。

一、平移平移是几何中最基本的运动之一。

当我们需要将一条线段沿特定方向移动一定距离时,可以利用平移的性质来解决。

平移不改变线段的长度和方向,只改变了它的位置。

二、旋转旋转是几何学中另一种常见的运动方式。

当我们需要将一个图形绕着某个点旋转一定角度时,可以利用旋转的性质来解决。

旋转保持了图形的形状和大小,只改变了它的方向和位置。

三、镜像镜像是几何学中的另一种重要的运动方式。

当我们需要将一个图形通过某个镜面反射时,可以利用镜像的性质来解决。

镜像保持了图形的形状和大小,只改变了它的方向和位置。

运动学方法在几何学中的应用举例:例一:线段的平移假设有一条线段AB,长度为5个单位长度。

现在需要将线段AB沿x轴正方向平移3个单位长度,求平移后线段的坐标。

解:利用平移的性质,我们可以得出平移后线段的起点坐标为(3,0),终点坐标为 (8,0)。

例二:图形的旋转假设有一个正方形ABCD,边长为4个单位长度。

现在需要将正方形绕着点A逆时针旋转90°,求旋转后正方形的顶点坐标。

解:利用旋转的性质,我们可以得出旋转后正方形的顶点坐标为A(0, 0),B(-4, 4),C(0, 8),D(4, 4)。

例三:图形的镜像假设有一个三角形ABC,其中顶点A的坐标为(0,0),顶点B的坐标为(4,6),顶点C的坐标为(8,0)。

现在需要将三角形关于y轴进行镜像,求镜像后三角形的顶点坐标。

解:利用镜像的性质,我们可以得出镜像后三角形的顶点坐标为A'(0,0),B'(-4,6),C'(-8,0)。

综上所述,几何的运动学可以通过平移、旋转和镜像等几何的运动方法解决各种问题。

初中七年级上旋转动角问题专题

初中七年级上旋转动角问题专题

初中七年级(上)旋转动角问题专题(适用于七年级上学期)〖解题策略〗角是一种基本的几何图形,凡是由直线组成的图形都出现角. 角既可以看成有公共端点的两条射线组成的图形,也可以看成是一条射线绕着端点从一个位置旋转到另一个位置所成的图形.解与角有关的问题常用到以下知识与方法:1.角平分线的应用,如双角平分线模型;2. 多个角间的数量关系及其等量代换;3. 引入字母表示比例角度、动角,用方程的观点来进行角的计算;4.角的边位置不定时,需要分类讨论.〖典型例题〗已知∠AOB=150°,OC为∠AOB内部的一条射线,∠BOC=60°.(1)如图1,若OE平分∠AOB,OD为∠BOC内部的一条射线,∠COD=∠BOD,求∠DOE的度数;(2)如图2,若射线OE绕着O点从OA开始以15度/秒的速度顺时针旋转至OB结束、OF绕着O点从OB开始以5度秒的速度逆时针旋转至OA结束,运动时间为t秒,当∠EOC=∠FOC时,求t的值:(3)若射线OM绕着O点从OA开始以15度秒的速度逆时针旋转至OB结束,在旋转过程中,ON平分∠AOM,试问2∠BON一∠BOM在某时间段内是否为定值,若不是,请说明理由;若是请补全图形,求出这个定值并写出t所在的时间段.(本题中的角均为大于0°且小于180°的角)版权所有解:(1)∵∠AOB=150°,OE平分∠AOB,∴∠EOB=∠AOB=75°,∵∠BOC=60°,∠COD=∠BOD,∴∠BOD=40°,∠COD=20°,∴∠EOD=∠EOB﹣∠DOB=75°﹣40°=35°.(2)当OE在∠AOC内部时,∵∠EOC=∠FOC,∴90﹣15t=60﹣5t,∴t=3.当OE与OF重合时,15t+5t=150°,t=7.5.综上所述,当∠EOC=∠FOC时,t=3s或7.5s.(3)2∠BON﹣∠BOM的值为定值(4<t<12).理由:∵∠AOM=15t.∠AON=∠MON=7.5t,∠BON=210°﹣7.5t,∠BOM=210°﹣15t,∴2∠BON一∠BOM=2(210°﹣7.5t)﹣(210°﹣15t)=210°(4<t<12).〖同步练习〗一. 填空题.1.计算:53°40′30″+75°57′28″=2.同学们,闹钟都见过吧!它的时针和分针如同兄弟俩在赛跑,可你是否知道时针每分钟走多少度?分针每分针走多少度?当你弄清楚这个问题后,你能解决很多关于闹钟有趣的问题:(1)三点整时时针与分针所夹的角是度.(2)7点25分时针与分针所夹的角是度.(3)一昼夜(0点到24点)时针与分针互相垂直的次数有多少次?3.如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOB,∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“巧分线”.如图2,若∠MPN=75°,且射线PQ绕点P从PN位置开始,以每秒15°的速度逆时针旋转,射线PM同时绕点P以每秒5°的速度逆时针旋转,当PQ与PN成180°时,PQ与PM同时停止旋转,设旋转的时间为t秒.当射线PQ是∠MPN的“巧分线”时,t的值为.4.如图1所示∠AOB的纸片,OC平分∠AOB,如图2把∠AOB沿OC对折成∠COB(OA与OB重合),从O点引一条射线OE,使∠BOE=∠EOC,再沿OE把角剪开,若剪开后得到的3个角中最大的一个角为76°,则∠AOB=°.二. 解答题5.如图,∠AOB=20°,∠AOE=110°,OB平分∠AOC,OD平分∠AOE.(1)求∠COD的度数;(2)若以点O为观察中心,OA为正东方向,求射线OD的方位角;(3)若∠AOE的两边OA,OE分别以每秒5°和每秒3°的速度,同时绕点O按逆时针方向旋转,当OA回到原处时,OA,OE停止运动,则经过多少秒时,∠AOE=30°?6.如图,O是直线AB上一点,∠COD是直角,OE平分∠BOC.(1)若∠AOC=100°,则∠DOE=;若∠AOC=120°,则∠DOE=;(2)若∠AOC=α,则∠DOE=(用含α的式子表示),请说明理由;(3)在∠AOC的内部有一条射线OF,满足∠AOC﹣2∠BOE=4∠AOF,试确定∠AOF与∠DOE的度数之间的关系,并说明理由.7.一副三角板ABC、DEF,如图(1)放置,(∠D=30°、∠BAC=45°)(1)求∠DBA的度数.(2)若三角板DBE绕B点逆时针旋转,(如图2)在旋转过程中BM、BN分别平分∠DBA、∠EBC,则∠MBN如何变化?(3)若三角板BDE绕B点逆时针旋转到如图(3)时,其它条件不变,则(2)的结论是否变化?8.如图,直线EF与MN相交于点O,∠MOE=30°,将一直角三角尺的直角顶点与O重合,直角边OA与MN重合,OB在∠NOE内部.操作:将三角尺绕点O以每秒3°的速度沿顺指针方向旋转一周,设运动时间为t(s).(1)当t为何值时,直角边OB恰好平分∠NOE?此时OA是否平分∠MOE?请说明理由;(2)若在三角尺转动的同时,直线EF也绕点O以每秒9°的速度顺时针方向旋转一周,当一方先完成旋转一周时,另一方同时停止转动.①当t为何值时,EF平分∠AOB?②EF能否平分∠NOB?若能请直接写出t的值;若不能,请说明理由.9.如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=135°,将一个含45°角的直角三角尺的一个顶点放在点O处,斜边OM与直线AB重合,另外两条直角边都在直线AB的下方.(1)将图1中的三角尺绕着点O逆时针旋转90°,如图2所示,此时∠BOM=;在图2中,OM是否平分∠CON?请说明理由;(2)紧接着将图2中的三角板绕点O逆时针继续旋转到图3的位置所示,使得ON在∠AOC的内部,请探究:∠AOM与∠CON之间的数量关系,并说明理由;(3)将图1中的三角板绕点O按每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为(直接写出结果).10.如图1,在数轴上A,B两点对应的数分别是6,﹣6,∠DCE=90°(C与O重合,D点在数轴的正半轴上)(1)如图1,若CF平分∠ACE,则∠AOF=;(2)如图2,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位后,再绕点顶点C逆时针旋转30t度,作CF 平分∠ACE,此时记∠DCF=α.①当t=1时,α=;②猜想∠BCE和α的数量关系,并证明;(3)如图3,开始∠D1C1E1与∠DCE重合,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位,再绕点顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α,与此同时,将∠D1C1E1沿数轴的负半轴向左平移t (0<t<3)个单位,再绕点顶点C1顺时针旋转30t度,作C1F1平分∠AC1E1,记∠D1C1F1=β,若α与β满足|α﹣β|=20°,请直接写出t的值为.〖参考答案〗一. 填空题.1.计算:53°40′30″+75°57′28″=129°37′58″,解:53°40′30″+75°57′28″=128°97′58″=129°37′58″2.同学们,闹钟都见过吧!它的时针和分针如同兄弟俩在赛跑,可你是否知道时针每分钟走多少度?分针每分针走多少度?当你弄清楚这个问题后,你能解决很多关于闹钟有趣的问题:(1)三点整时时针与分针所夹的角是90度.(2)7点25分时针与分针所夹的角是72.5度.(3)一昼夜(0点到24点)时针与分针互相垂直的次数有多少次?解:(1)3×30=90°;(2)2×30°=72.5°;(3)从重合到第一次垂直所需要的时间为,设一次垂直到下一次垂直经过x分钟,则6x﹣0.5x=2×905.5x=180x=,(24×60﹣)÷=24×60×=43.5(次)取整为43次.故总次数为43+1=44(次)答:一昼夜时针与分针互相垂直的次数为44次.3.如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOB,∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“巧分线”.如图2,若∠MPN=75°,且射线PQ绕点P从PN位置开始,以每秒15°的速度逆时针旋转,射线PM同时绕点P以每秒5°的速度逆时针旋转,当PQ与PN成180°时,PQ与PM同时停止旋转,设旋转的时间为t秒.当射线PQ是∠MPN的“巧分线”时,t的值为3或或.解:当∠NPQ=∠MPN时,15t=(75°+5t),解得t=3;当∠NPQ=∠MPN时,15t=(75°+5t),解得t=.当∠NPQ=∠MPN时,15t=(75°+5t),解得t=.故t的值为3或或.4.如图1所示∠AOB的纸片,OC平分∠AOB,如图2把∠AOB沿OC对折成∠COB(OA与OB重合),从O点引一条射线OE,使∠BOE=∠EOC,再沿OE把角剪开,若剪开后得到的3个角中最大的一个角为76°,则∠AOB=114°.解:∵OC是∠AOB的平分线则∠AOC=∠BOC=∠AOB或∠AOB=2∠AOC=2∠BOC又∵剪开后得到的3个角中最大的一个角为76°,∴2∠COE=76°∴∠COE=38°又∵∠BOE=∠EOC,∴∠BOE=×38°=19°∴∠BOC=∠BOE+∠EOC=19°+38°=57°则∠AOB=2∠BOC=2×57°=114°.二. 解答题5.如图,∠AOB=20°,∠AOE=110°,OB平分∠AOC,OD平分∠AOE.(1)求∠COD的度数;(2)若以点O为观察中心,OA为正东方向,求射线OD的方位角;(3)若∠AOE的两边OA,OE分别以每秒5°和每秒3°的速度,同时绕点O按逆时针方向旋转,当OA回到原处时,OA,OE停止运动,则经过多少秒时,∠AOE=30°?解:(1)因为OB平分∠AOC,∠AOB=20°,所以∠AOC=40°,因为OD平分∠AOE,∠AOE=110°,所以∠AOD=55°,因为∠COD=∠AOD﹣∠AOC,所以∠COD=55°﹣40°=15°;(2)因为90°﹣55°=35°,所以射线OD的方位角是北偏东35°;(3)设经过x秒时,∠AOE=30°,①如图1所示,当OA未追上OE时,依题意,得5x﹣110=3x﹣30,解得,x=40;②如图2所示,当OA超过OE时,依题意,得5x﹣110=3x﹣305x﹣110=3x+30,解得,x=70.6.如图,O是直线AB上一点,∠COD是直角,OE平分∠BOC.(1)若∠AOC=100°,则∠DOE=50°;若∠AOC=120°,则∠DOE=60°;(2)若∠AOC=α,则∠DOE=α(用含α的式子表示),请说明理由;(3)在∠AOC的内部有一条射线OF,满足∠AOC﹣2∠BOE=4∠AOF,试确定∠AOF与∠DOE的度数之间的关系,并说明理由.解:(1)∵∠AOC=100°,∴∠BOC=180°﹣100°=80°,∵OE平分∠BOC,∴∠COE=∠BOC=×80°=40°,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣40°=50°;∵∠AOC=120°,∴∠BOC=180°﹣120°=60°,∵OE平分∠BOC,∴∠COE=∠BOC=×60°=30°,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣30°=60°;(2)∠DOE=α;∵∠AOC=α,∴∠BOC=180°﹣α,∵OE平分∠BOC,∴∠COE=∠BOC=90°﹣α,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣(90°﹣α)=α;(3)∠DOE﹣∠AOF=45°.理由:∵∠AOC﹣2∠BOE=4∠AOF,∴∠AOC﹣3∠AOF=2∠BOE+∠AOF,设∠DOE=x,∠AOF=y,左边=∠AOC﹣3∠AOF=2∠DOE﹣3∠AOF=2x﹣3y,右边=2∠BOE+∠AOF=2(90°﹣x)+y=180°﹣2 x+y,∴2x﹣3y=180﹣2 x+y 即4x﹣4y=180°,∴x﹣y=45°∴∠DOE﹣∠AOF=45°.7.一副三角板ABC、DEF,如图(1)放置,(∠D=30°、∠BAC=45°)(1)求∠DBA的度数.(2)若三角板DBE绕B点逆时针旋转,(如图2)在旋转过程中BM、BN分别平分∠DBA、∠EBC,则∠MBN 如何变化?(3)若三角板BDE绕B点逆时针旋转到如图(3)时,其它条件不变,则(2)的结论是否变化?解:(1)∠DBA=∠DBC﹣∠ABC=60°﹣45°=15°;(2)∠MBN的度数不变化,理由如下:设∠ABE=x°,则∠ABD=60﹣x°、∠CBE=45°﹣x°,∵BM、BN分别平分∠ABD、∠CBE∴∠ABM=∠ABD=(60°﹣x°),∠EBN=∠EBC=(45°﹣x°),∴∠MBN=∠ABM+∠ABE+∠EBN=(60°﹣x°)+x°+(45°﹣x°)=52.5°;(3)(2)中的结论不变,理由如下:设∠ABE=x°,则∠ABD=60+x°、∠CBE=45°+x°,∵BM、BN分别平分∠ABD、∠CBE,∴∠ABM=∠ABD=(60°+x°),∠EBN=∠EBC=(45°+x°),∴∠MBN=∠ABM﹣∠ABE+∠EBN=(60°+x°)﹣x°+(45°+x°)=52.5°.8.如图,直线EF与MN相交于点O,∠MOE=30°,将一直角三角尺的直角顶点与O重合,直角边OA与MN重合,OB在∠NOE内部.操作:将三角尺绕点O以每秒3°的速度沿顺指针方向旋转一周,设运动时间为t(s).(1)当t为何值时,直角边OB恰好平分∠NOE?此时OA是否平分∠MOE?请说明理由;(2)若在三角尺转动的同时,直线EF也绕点O以每秒9°的速度顺时针方向旋转一周,当一方先完成旋转一周时,另一方同时停止转动.①当t为何值时,EF平分∠AOB?②EF能否平分∠NOB?若能请直接写出t的值;若不能,请说明理由.解:(1)∵当直角边OB恰好平分∠NOE时,∠NOB=∠NOE=(180°﹣30°)=75°,∴90°﹣3t°=75°,解得:t=5.此时∠MOA=3°×5=15°=∠MOE,∴此时OA平分∠MOE.(2)①OE平分∠AOB,依题意有30°+9t﹣3t=90°÷2,解得t=2.5;OF平分∠AOB,依题意有30°+9t﹣3t=180°+90°÷2,解得t=32.5.故当t为2.5s或32.5s时,EF平分∠AOB②OB在MN上面,依题意有180°﹣30°﹣9t=(90°﹣3t)÷2,解得t=14;OB在MN下面,依题意有9t﹣(360°﹣30°)=(3t﹣90°)÷2,解得t=38(舍去).故EF能平分∠NOB,t的值为14s.9.如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=135°,将一个含45°角的直角三角尺的一个顶点放在点O处,斜边OM与直线AB重合,另外两条直角边都在直线AB的下方.(1)将图1中的三角尺绕着点O逆时针旋转90°,如图2所示,此时∠BOM=90°;在图2中,OM是否平分∠CON?请说明理由;(2)紧接着将图2中的三角板绕点O逆时针继续旋转到图3的位置所示,使得ON在∠AOC的内部,请探究:∠AOM与∠CON之间的数量关系,并说明理由;(3)将图1中的三角板绕点O按每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为 4.5秒或40.5秒(直接写出结果).解:(1)如图2,∠BOM=90°,OM平分∠CON.理由如下:∵∠BOC=135°,∴∠MOC=135°﹣90°=45°,而∠MON=45°,∴∠MOC=∠MON;(2)∠AOM=∠CON.理由如下:如图3,∵∠MON=45°,∴∠AOM=45°﹣∠AON,∵∠AOC=45°,∴∠NOC=45°﹣∠AON,∴∠AOM=∠CON;(3)T=×45°÷5°=4.5(秒)或t=(180°+22.5°)÷5°=40.5(秒).10.如图1,在数轴上A,B两点对应的数分别是6,﹣6,∠DCE=90°(C与O重合,D点在数轴的正半轴上)(1)如图1,若CF平分∠ACE,则∠AOF=45°;(2)如图2,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位后,再绕点顶点C逆时针旋转30t度,作CF 平分∠ACE,此时记∠DCF=α.①当t=1时,α=30°;②猜想∠BCE和α的数量关系,并证明;(3)如图3,开始∠D1C1E1与∠DCE重合,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位,再绕点顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α,与此同时,将∠D1C1E1沿数轴的负半轴向左平移t (0<t<3)个单位,再绕点顶点C1顺时针旋转30t度,作C1F1平分∠AC1E1,记∠D1C1F1=β,若α与β满足|α,请直接写出t的值为.﹣β|=20°解:(1)如图1中,∵∠EOD=90°,OF平分∠EOD,∴∠FOD=∠EOD=45°,(2)①如图2中,当t=1时,∵∠DCA=30°,∠ECD=90°,∴∠ECA=120°,∵CF平分∠ACE,∴∠FCA=∠ECA=60°∴α=∠FCD=60°﹣30°=30°②如图2中,猜想:∠BCE=2α.理由:∵∠DCE=90°,∠DCF=α,∴∠ECF=90°﹣α,∵CF平分∠ACE,∴∠ACF=∠ECF=90°﹣α,∵点A,O,B共线∴AOB=180°∴∠BCE=∠AOB﹣∠ECD﹣∠ACD=180°﹣90°﹣(90°﹣2α)=2α.(3)如图3中,由题意:α=∠FCA﹣∠DCA=(90°+30t)﹣30t=45°﹣15t,β=∠AC1D1+∠AC1F1=30t+(90°﹣30t)=45°+15t,∵|β﹣α|=20°,,∴|30t|=20°解得t=.。

巧旋转,妙解题

巧旋转,妙解题
由旋车 知 . 专 AD= Pc. DAN= P.
‘ .
A D =D C ,


’ .
D C=P C. A M =D C+CM . A M =PC+CM . B
:: P
M c

’ .


即 AM = ’
・ .

N A M =
P.
◇o = 童 j
8D:lC 2 ,D - AD +
o0
C-0 , 为 BC 上 一 点 ,试 证 明 : - _  ̄D 9
侧 2 已 知在 △ 4 BC 中 , - AB AC, 证 明 : 将 △A肋
9 o 得 △A 0 ,
绕 点 A 按 逆 时 针 方 向 旋 转
, 接 肋 , 图 2 连 如
图 3
’ .

D A N = NA M .
即 AN 平 分 DA
以 上 例 题 在 解 题 时 都 巧 妙 地 运 用 了旋 转 的 知 识 . 而 使 问 题 变 得 简 从 单 明 了. 就 要 求 同 学 们 在 解 题 过 程 中 学 会 设 想 将 一 个 图 形 绕 一 个 定 点 这 旋 转 一 个 角 度 , 过 这 种 旋 转 , 到 使 问 题 的 条 件 相 对 集 中 的 目的 通 达 化难 为易. 注 意 : 利 用 旋 转 解 题 时 . 中 的 关 键 是 如 何 在 其 确定 旋转 的 方 向以及 旋转 角 的大小 .
维普资讯
在 平 面 内 把 某 图形 绕 某 个 定 点 旋 转 一 定 的 角 度 . 样 的 变 换 叫 做 旋 这 转 . 个定 点 叫做旋 转 中心 . 个 定 角 叫做 旋 转 角. 用 旋 转 的 特 征解 题 这 这 利 是 几 何 中 常 用 的 方 法 . 妙 地 运 用 旋 转 知 识 能 够 使 复 杂 的 几 何 题 化 繁 为 巧
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

巧用旋转法解几何题将一个图形绕着某一点旋转一个角度的图形变换叫做旋转,由旋转的性质可知旋转前后的图形全等,对应点到旋转中心的连线所组成的夹角等于旋转角。

旋转法是在图形具有公共端点的相等的线段特征时,可以把图形的某部分绕相等的线段的公共端点,旋转另一位置的引辅助线的方法,主要用途是把分散的元素通过旋转集中起来,从而为证题创造必要的条件。

旋转方法常用于等腰三角形、等边三角形及正方形等图形中。

现就旋转法在几何证题中的应用举例加以说明,供同学们参考。

例1.如图,在Rt △ABC 中,∠C=90°,D 是AB 的中点,E ,F 分别AC 和BC 上,且DE ⊥DF , 求证:EF 2=AE 2+BF2分析:从所证的结论来看,令人联想到勾股定理,但注意到EF ,AE ,BF 三条线段不在同一个三角形中,由于D 是中点,我们可以考虑以D 为旋转中心,将BF 旋转到和AE 相邻的位置,构造一个直角三角形,问题便迎刃而解。

证明:延长FD 到G ,使DG=DF ,连接AG ,EG ∵AD=DB ,∠ADG=∠BDF∴⊿ADG ≌⊿BDF (SAS )∴∠DAG=∠DBF ,BF=AG∴AG ∥BC∵∠C=90°∴∠EAG=90°∴EG 2=AE 2+AG 2=AE 2+BF 2∵DE ⊥DF ∴EG=EF ∴EF 2=AE 2+BF2例2,如图2,在⊿ABC 中,∠ACB=90°,AC=BC ,P 是⊿ABC 内一点,且PA=3,PB=1,PC=2,求∠BPC 的度数.分析:题目已知条件中给出了三条线段的长度和一个直角,但已知的三条线段不在同一三角形中,故可考虑通过旋转变换移至一个三角形中,由于⊿ACB 是等腰直角三角形,宜以直角顶点C 为旋转中心。

解:作MC ⊥CP ,使MC=CP ,连接PM ,BMGFEDCBA∵∠ACB=90°,∠PCM=90°∴∠1=∠2∵AC=BC , ∴⊿CAP ≌⊿CBM (SAS )∴MB=AP=3∵PC=MC ,∠PCM=90°∴∠MPC=45°由勾股定理PM==22MC PC =22PC =22, 在⊿MPB 中,PB 2+PM 2=(22)2+12=9=BM 2∴⊿MPB 是直角三角形∴∠BPC=∠CPM+∠MPB=45°+90°=135°例3,如图3,直角三角形ABC 中,AB=AC ,∠BAC=90°,∠EAF=45°,求证:EF 2=BE 2+CF 2分析:本题求证的结论和例1十分相似,无法直接用勾股定理,可通过旋转变换将BE ,CF 转移到同一个直角三角形中,由于⊿BAC 是等腰直角三角形,不妨以A 为旋转中心,将∠BAE 和∠CAF 合在一起,取零为整。

证明:过A 作AP ⊥AE 交BC 的垂线CP 于P ,连结PF ∵∠EAP=90°,∠EAF=45° ∴∠PAF=45°∵∠BAC=90° ∴∠BAE=∠PAC ∵AB=AC , ∴∠B=∠ACB=∠ACP=45° ∴⊿ABE ≌⊿ACP (ASA ) ∴PC=AE ,,AP=AE ∴⊿AEF ≌⊿APF (SAS ) ∴EF=PF故在Rt ⊿PCF 中,PF 2=CF 2+PC 2,即EF 2=CF 2+AE 2例4,如图4,正方形ABCD 中,E ,F 分别在AD ,DC 上,且∠EBF=45°,BM ⊥EF 于M ,求证:BA=BM 分析:本题与例3相同之处在于直角三角形家夹有45°角,可利用相同的方法,将∠ABE 和∠CBF “化散为整”来构造全等三角形。

证明:延长FC 到N ,使CN=AE ,连结BNAPMCBANFC B∵四边形ABCD 是正方形 ∴AB=AC ,∠BAC=90°∵∠EBF=45°∴∠ABE+∠CBF=45°由⊿ABE ≌⊿CBN 知BE=BN ,∠CBN=∠ABE∴∠CBN+∠CBF=45°,即∠EBF=∠NBF 又BE=BN ,BF=BF∴⊿EBF ≌⊿NBF (SAS )∴BM=BC ∴BM=BA例5、如图6,五边形ABCDE 中,AB =AE ,BC +DE =CD ,∠ABC +∠AED =180°。

求证:∠ADE =∠ADC 。

解析:条件中有共点且相等的边AE 和AB ,可将△ADE 以点A 为中心,顺时针方向旋转∠BAE 的角度到△AFB 的位置,如图7。

这就使已知条件∠ABC +∠AED =180°和BC +DE =CD 通过转化得到集中,使解题思路进一步明朗。

由△ADE ≌△AFB ,得∠AED =∠ABF ,∠ADE =∠AFB ,ED =BF ,AF =AD 。

由∠ABC +∠AED =180°,得∠ABC +∠ABF =180°。

所以C 、B 、F 三点共线。

又CD =BC +DE =BC +BF =CF ,故∠CFD =∠CDF 。

由AF =AD ,得到∠DFA =∠FDA 。

∴∠ADE =∠AFB =∠CFD +∠DFA =∠CDF +∠FDA =∠ADC 。

例6、如图,P 是等边三角形ABC 内的一个点,PA=2,PB=32,PC=4,求△ABC 的边长。

分析:PA 、PB 、PC 比较分散,可利用旋转将PA 、PB 、PC 放在一个三角形中,为此可将△BPA 绕B 点逆时针方向旋转60°可得△BHC 。

解:把△BPA 绕B 点逆时针方向旋转60°得到△BHC 。

因为BP=BH ,∠PBH=60° 所以△BPH 是等边三角形所以∠BPH=60°,所以BP=PH 32 又因为HC=PA=2,PC=4 所以所以△HCP 是Rt △,所以∠CHP=90°又因为HC=2,PC=4 所以∠HPC=30°又因为∠BPH=60°,所以∠CPB=90° 在Rt △BPC 中,=12+16=28,72=BC ,那么△ABC 的边长为72。

例7、如图2,O 是等边三角形ABC 内一点,已知:∠AOB=115°,∠BOC=125°,则以线段OA 、OB 、OC 为边构成三角形的各角度数是多少?解:可将△BOC 绕B 点按逆时针方向旋转60°可得△BMA 。

因为BO=BM ,∠MBO=60° 所以△BOM 是等边三角形, 所以∠1=∠2=60°又因为∠AOB=115°,所以∠MOA=55° 又因为∠AMB=∠COB=125° 所以∠AMO=65° 又因为AM=OC ,MO=BO所以△AMO 正好是以AO 、OC 、BO 为边组成的三角形, 所以∠MAO=180°-(55°+65°)=180°-120°=60°即:以线段OA 、OB 、OC 为边构成三角形的各角的度数分别为55°、65°、60°。

例8、如图4,P 是正方形ABCD 内一点,将△ABP 绕点B 顺时针方向旋转能与'CBP ∆重合,若PB=3,求'PP 的长。

分析:将△ABP 绕点B 顺时针方向旋转能与'CBP ∆重合,实际上就是把△ABP 顺时针方向旋转90°可得'CBP ∆,即=∠'PBP 90°。

解:因为,'BP BP ==∠'PBP 90°。

所以'PP 2333222'2=+=+=B P BP 。

例9、如图5,P 为正方形ABCD 内一点,且PA :PB :PC=1:2:3,求∠APB 的度数。

分析:PA :PB :PC=1:2:3,不妨设PA=1,PB=2,PC=3,而这些条件较分散,可设法把PA 、PB 、PC 相对集中起来即把△BCP 绕B 点顺时针方向旋转90°得到△BAE 。

解:因为BP=BE ,∠PBE=90°所以22222+=PE ,所以22=PE又在△APE 中,222,3AE PE PA CP AE =+==即2223)22(1=+所以∠APE=90°即∠APB=90°+45°=135° 所以∠APB=135°。

例10、如图,正方形ABCD 的边长为1,AB 、AD 上各存一点P 、Q ,若△APQ 的周长为2,求∠PCQ 的度数。

解:把△CDQ 绕点C 旋转90°到△CBF 的位置,CQ=CF 。

因为AQ+AP+QP=2 又AQ+QD+AP+PB=2 所以QD+BP=QP 又DQ=BF ,所以PQ=PF 所以FCP QCP ∆≅∆ 所以∠QCP=∠FCP又因为∠QCF=90°,所以∠PCQ=45°。

由上例可知,利用旋转的概念及性质,把图中的一部分图形通过旋转,可把题化难为易,它为题设和结论的沟通架起了桥梁,同学们在做题时多练,多观察,增强解答几何题的能力 从以上几例来看,都巧妙地运用了旋转的方法构造全等三角形,或借助中点,或旋转一角,通过将相关线段和有关的角转移到一个直角三角形中,运用勾股定理及它的逆定理来达到解题的目的。

相关文档
最新文档